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Implementing fast and high-fidelity quantum operations using open-loop quantum optimal control relies
on having an accurate model of the quantum dynamics. Any deviations between this model and the com-
plete dynamics of the device, such as the presence of spurious modes or pulse distortions, can degrade
the performance of optimal controls in practice. Here, we propose an experimentally simple approach to
realize optimal quantum controls tailored to the device parameters and environment while specifically
characterizing this quantum system. Concretely, we use physics-inspired machine learning to infer an
accurate model of the dynamics from experimentally available data and then optimize our experimental
controls on this trained model. We show the power and feasibility of this approach by optimizing arbi-
trary single-qubit operations in detailed numerical simulations of a superconducting transmon qubit. We
demonstrate that this framework produces an accurate description of the device dynamics under arbitrary
controls, together with the precise pulses achieving arbitrary single-qubit gates with a high fidelity of

~99.99%.
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I. INTRODUCTION

The precise characterization and control of quantum
devices are central to the development of useful quan-
tum technologies. The powerful framework of quantum
optimal control (QOC) theory can be used to go from
a given description of the quantum dynamics, such as
a characterized model, to realizing arbitrary quantum
operations with maximal fidelity and minimal duration
[1-3]. The successful practical implementation of many
QOC approaches, such as the GRAPE [4] and Krotov
[5] methods, thus rely on having an accurate model
of the system dynamics to produce the desired output
quantum state or process [6]. In simulation, optimiz-
ing the input controls using these methods can routinely
yield quantum operations with decoherence-limited or
even machine-precision fidelity, and these controls can
have much shorter durations compared to what is achiev-
able with simpler, monochromatic and flat, pulse shapes
[7—11].
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A critical problem with wusing open-loop QOC
approaches in experiments is model bias, since the per-
formance of the resulting controls is intrinsically limited
by the underlying model accuracy. Indeed, any mismatch
between the model used to describe the quantum evolution
and the actual dynamics of the physical system can cause
the optimal controls to perform significantly worse in prac-
tice. This performance degradation is routinely observed
when considering parameter deviations to the assumed
model, and has led to the development of robust QOC
approaches [12—15]. These approaches sacrifice some con-
trol performance for the benefit of robustness under certain
model parameter variations. However, beyond being inac-
curate with model parameters deviating from their “true”
values due to finite characterization precision and sys-
tem drifts, the model used for QOC can additionally be
incomplete, which also leads to important biases. Out-
of-model dynamics typically originate from unaccounted
frequency- and power-dependent distortions in the con-
trol lines, crosstalk between qubits and control lines, and
more generally coupling to spurious modes not included in
the system modeling, such as material defects, box modes,
and neighboring couplers and readout apparatus. Precisely
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characterizing and modeling the dynamics associated with
each of these potential interactions is a challenging task,
both experimentally and numerically. There is thus a need
for alternative approaches to optimally control quantum
systems.

The shortcomings of using inaccurate models in the con-
trol optimization has led to recent proposals of closed-loop
optimization approaches based on reinforcement learning
(RL), which rely on direct interactions between a controller
and the quantum system of interest [16—20]. Using such a
feedback control approach, the QOC problem can be made
model-free, thus alleviating the aforementioned problem
of model bias. For example, this approach was applied
experimentally to realize high-fidelity single- and two-
qubit quantum gates, as well as a quantum error-correction
stabilization protocol in superconducting quantum devices
[21-23].

Although useful for precisely calibrating a specific
operation, these model-free approaches possess important
drawbacks, notably in terms of sample efficiency, gener-
alizability beyond performing a single quantum operation,
ease of experimental implementation given the need for
real-time feedback, and performance of the control solu-
tions. For instance, Porotti et al. [20] demonstrated that
model-based gradient-ascent approaches, such as GRAPE,
significantly outperform model-free RL approaches on
standard state-preparation optimal control tasks, in terms
of both state fidelity and data efficiency. This can be under-
stood from the fact that, in the model-free setting, the task
of the learning agent is much more complex, as it needs to
both resolve how a given control pulse (action) impacts
the state or process fidelity (reward), and learn how to
improve that control by navigating the enormous control
parameter space. The first part of this task can be rec-
ognized as a quantum characterization problem, whereas
the second part of finding the optimal control strategy can
be directly achieved using one of the many successful
QOC approaches, instead of relying on the trial-and-error
exploration of the RL approach.

Based on this understanding, we propose in this work to
simplify the quantum optimal control problem by break-
ing it down into two parts that we perform in succession.
First, we frame the quantum characterization problem,
or model learning problem, as a supervised machine-
learning (ML) task. We use a parameterized representation
to learn a description of the quantum system dynam-
ics directly from experimentally available data. Second,
we use that trained model in a gradient-based optimal
control loop to find the external controls realizing our
target operations. In the following, we demonstrate that
this modular and easily implementable approach can yield
high-fidelity controls using experimentally realistic data,
while providing notable benefits in terms of data effi-
ciency, scalability to complex control problems, and device
characterization.

The paper is organized as follows. In Sec. I, we describe
our machine-learning-based optimal control approach
and its benefits over alternative control approaches.
Using detailed numerical simulations, we then present a
case-study implementation of our approach and demon-
strate its performance for realizing high-fidelity arbitrary
single-qubit gates in a transmon qubit in Sec. III. In Sec.
IV, we analyze the impact of out-of-model dynamics on
the optimal control performance, and demonstrate the dis-
tinct advantages of our approach in the presence of model
bias. We conclude with a short discussion on the relevance
of this work in Sec. V.

II. MACHINE-LEARNING BASED QOC

The two main steps of our proposed quantum optimal
control approach based on machine-learning characteriza-
tion are presented schematically in Fig. 1. The characteri-
zation task consists of constructing a model that captures
the transformation from arbitrary input pulse shapes to
the resulting quantum state observables of interest. In this
work, we focus on qubit gates and therefore take these
observables to be the Pauli matrices on n qubits, which are
informationally complete to describe qubit states. We can
thus consider that the model we want to construct outputs
the full quantum state p(¢). Note that a more restricted set
of observables could be used if acquiring this information
is prohibitive, for example, in the case of a large Hilbert
space, as long as the relevant metric to optimize can be
described by the model output observables.

The idea of our approach is to learn this model directly
from data taken on the device of interest using a supervised
machine-learning strategy. To construct the dataset, we
simply drive the quantum system sequentially with a large
set of different pulses, and perform projective measure-
ments to obtain bits of information about how the quantum
state was transformed by each of these pulses. After aver-
aging over a chosen number of shots, these measurement
outcomes form the labels that the model will be trained
to predict, using a loss function quantifying the distance
between the model predictions and the labels. As detailed
in Sec. 111, additional physically motivated loss terms are
added to regularize the model’s training, as was done in
our previous work [24]. We emphasize that this machine-
learning training is performed offline such that no real-time
feedback between the model and the quantum system is
required.

The second step consists of directly using the trained
model in a gradient-based optimal control loop to find our
control strategy. At this point after the learning stage, the
model parameters are fixed and only the parameterized
pulse shapes are optimized. Given the autodifferentiable
nature of the model and its fast evaluation on graph-
ics processing units (GPUs), these optimizations can be
performed in less than a minute on standard hardware.
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FIG. 1. Optimally controlling a quantum system using

machine-learning characterization. (a) A supervised machine-
learning approach is used to characterize the quantum dynamics
produced by arbitrary input controls. The dataset is constructed
by applying a set of diverse pulses sequentially to the quan-
tum system and obtaining labels of the system observables using
(projective) measurements. A parameterized representation (blue
box) learns this transformation from the input pulse shape to out-
put quantum observables by minimizing a loss function related to
the distance between its predictions and the data labels. (b) The
trained model is used directly in a gradient-based quantum opti-
mal control loop to find the pulses best realizing the quantum
operations of interest. The parameterized pulse shape is itera-
tively updated so as to minimize a cost function associated with
a state or process infidelity.

Additionally, the optimization can be designed to include
arbitrary experimental limitations in the cost function [25],
so as to directly find optimal controls that are easily imple-
mentable in practice. Importantly, in contrast to direct
feedback control approaches, the trained representation is
not tied to a specific quantum gate, and we can use the
trained model to optimize for arbitrary quantum operations
which can be described and realized by the same input con-
trols and output observables as the model. For instance,
using a model outputting the quantum state of n qubits,
we can optimize for arbitrary qubit gates and qubit state
preparations. This can be directly generalized to higher-
dimensional systems such as qudits and bosonic modes, as
long as these additional degrees of freedom are observable
in the quantum system of interest.

An important advantage of our two-step approach to
quantum control is that it is highly modular and cus-
tomizable. First, having a trained model describing the
system dynamics for arbitrary input controls that is fast
to evaluate can be very valuable for understanding, cal-
ibrating, and improving the quantum system of interest.
Indeed, this model can be used as a heuristic digital twin
of the device to perform simulations and to prototype
new protocols. This is especially useful given that the

trained model heuristically includes experimentally rele-
vant imperfections that were learned from data and that
are typically not accounted for when modeling the sys-
tem. Additionally, this model is fully differentiable, which
means one can replace typically used parameter sweeps or
gradient-free approaches with gradient-based optimization
of the controls, which are faster and yield better solutions
[26,27].

The second aspect making our approach modular is that
the specific architecture used to learn from data, together
with the optimal control algorithm used subsequently, can
be explicitly engineered to satisfy the specific data, speed,
and performance requirements of a given quantum sys-
tem. This is particularly useful to explore the bias-variance
trade-offs of learning an accurate representation of the
device dynamics and to perform model selection. For
instance, using a black-box learning model to remove any
potential bias might require too much data to be trained
to reach the desired precision, whereas a fully principled
approach based on a physics description might be compu-
tationally prohibitive to model or unable to describe the
dynamics accurately enough. Using a graybox approach
[28] combining physical priors about the device properties
together with additional freedom might be optimal in such
a realistic scenario, which can be directly realized within
our framework. Indeed, our approach allows us to use as
much prior knowledge as desired in the learning model,
anywhere from a parameterized master equation [24,29] to
a fully general neural network, as long as the model outputs
are informationally complete for quantifying the desired
quantum operations fidelity.

We note that approaches of directly combining char-
acterization (system identification) and control have been
studied in control theory [30] and applied to quantum
systems using a variety of models and data [28,31-36].
Focused on experimental feasibility and on mitigating the
problem of model bias, this work provides a comprehen-
sive framework for applying such an approach to super-
conducting and other solid-state devices and demonstrates
its performance through detailed simulations. In addition,
an important distinction of our work is the demonstration
for the first time of using a trained neural network as the
model for performing open-loop quantum optimal control,
which allows us to significantly mitigate any model bias
in practice. In contrast to the similar approach by Youssry
et al. [28], we show that learning an explicit Hamiltonian
description of the dynamics is not required for performing
arbitrary QOC with high fidelity.

III. TRANSMON SINGLE-QUBIT GATES

We now present a comprehensive case study of
our approach applied to realizing fast and high-fidelity
microwave single-qubit gates in a fixed-frequency super-
conducting transmon qubit [37]. We emphasize that our
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approach is agnostic to the specific physical implemen-
tation and could be applied to other platforms following
the steps detailed here. The available qubit controls in
the chosen superconducting qubit system are microwave
pulses generated at room temperature by classical con-
trol electronics, which travel down a cryogenic fridge
before reaching the qubit. Information about the dynamics
resulting from the controls can be acquired via projective
measurement of arbitrary qubit operators using standard
dispersive qubit readout [38,39]. Given these input con-
trols and available output observables, the task of interest
is to design the external microwave pulses so as to real-
ize arbitrary qubit unitaries with the highest fidelity and
minimal duration.

The following four subsections detail the four steps
required for achieving this task using our machine-
learning-based quantum optimal control approach
(MLQOC). Namely, the framework consists of: acquiring
a dataset on the device; training a machine-learning model
on these data; performing QOC optimizations using this
trained model; and testing the performance of the optimal
controls on the device of interest. As a proof of principle
of the method, here the dataset is generated by numer-
ical simulation of the device (first step), and the same
is true for testing the performance of the optimized con-
trols (fourth step). The other two steps remain unchanged
when working with an experimental device. In our simula-
tions, we take special care not to make approximations that
would artificially simplify the model learning and optimal
control tasks considered, in an effort to provide a convinc-
ing demonstration of our approach in an experimentally
realistic scenario.

A. Simulation dataset
1. Physical model

We consider a transmon qubit capacitively coupled to
a microwave drive line described by the Hamiltonian
(h=1)[37]

Hi(H) = 4Ec( — ng)? —Eycos g+ QO (1)
= I:Itrans + Q (t)ﬁa (2)

with Ec (E;) the charging (Josephson) energy, 2(#) the
applied microwave drive coupling to the transmon charge
operator 7, and ¢ the canonically conjugate phase operator.
Given that the qubit is operated in the transmon regime,
E;/Ec = 110, and that we are interested in quantum oper-
ations limited to the qubit subspace, we can safely ignore
the gate charge ng [37]. Throughout this work, we simu-
late this full Hamiltonian keeping the first five eigenstates
of Hygans. We do not perform any rotating-wave approxima-
tion (RWA) in order to capture the fast-oscillating dynam-
ics that are relevant for high-fidelity and fast operations
[7,40].

We parameterize the drive pulses Q2 (f) as the input to
the arbitrary waveform generator (AWG) that produces in-
phase (I) S; and quadrature (Q) Sp signals. These signals
are then combined to a local oscillator (LO) of frequency
wLo to be up-converted to the desired gigahertz-frequency
signals, a process known as sideband mixing [41,42]. This
pulse parameterization reflects the actual controls of a
realistic experiment, allowing our model to capture poten-
tial IQ-mixer imperfections and other pulse distortions, in
addition to allowing for precise control of the pulse’s fre-
quency spectrum. In the absence of imperfections in the
control electronics and pulse distortion in the control lines,
the microwave pulse reaching the qubit is described by

Q(1) = S§;(t) cos(wrot) + Sp(?) sin(wLol). 3)

To drive the transmon on resonance at w, and avoid IQ-
mixer imperfections producing distorted output signals
at frequencies close to wr o, the AWG signals are typi-
cally generated by convolving the pulse envelope with an
intermediate-frequency oscillation at frequency wir such
that w0 + wir = w, [42]. We reproduce this experimental
condition here using typical values of wp/27 = 100 MHz
and wp /27 = 6.198 GHz to reach the qubit frequency at
wy/2m ~ 6.298 GHz [43].

As shown in Appendix F, when restricting the descrip-
tion to the computational states of the transmon, the effect
of the drive Q2 (¢) takes the usual form in the rotating frame
of the qubit, I:Iqubit = 1()6, + O(1)6,, for a resonant drive
and under the RWA. The real-valued signals / and Q can
be expressed as linear combinations of the AWG signals
Sy and Sp. We thus understand how controlling S; and Sp
allows us to perform arbitrary single-qubit gates. Here, we
avoid the approximations mentioned above and simulate
the full transmon Hamiltonian in Eq. (2) directly using Eq.
(3) with arbitrary time-dependent signals S; and Sp.

In the AWG, as in our simulations, the pulse shapes S;
and Sp are specified by real amplitudes positioned at a
finite number of times during the operation, called pixels.
We take the size of these pixels to be 1ns. Importantly,
we apply a Gaussian filter to these discrete signals to
(i) interpolate between pixels and simulate experimentally
accurate continuous-time evolutions beyond a piecewise-
constant pulse approximation [7,27], and (ii) account for
the finite bandwidth of the AWG and the filters used in
experiments. We use a Gaussian filter standard deviation
of 250 MHz.

To simulate the full time dynamics of the system under
the application of the drives, we solve the Lindblad master
equation (ME)

p .~ A P PYPI
— = "Ha(0, ]+ yD[b]p + 2y, DIbDIp,  (4)

which accounts for transmon relaxation and dephasing
[39]. In this expression, y (y,) is the relaxation (pure
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dephasing) rate, and D[X]p = XpXT — (X1X,5}/2 is
the Lindblad dissipator. In the following, we use rel-
atively high relaxation and coherence times of 7] =
T, = 300 ps, corresponding to y /2w = 3.33kHz and y,,/
2w = 1.67 kHz. This choice allows us to resolve the finite
control precision of our MLQOC approach, beyond the
gate fidelity limit set by decoherence. We use the open-
source library dynamigs to perform these simulations,
which allows us to use GPU acceleration and to effi-
ciently batch the simulations over multiple pulse shapes
in parallel [44].

2. Experiment and dataset generation

As illustrated in Fig. 2(a), the experiment we consider
consists of three steps, where (I) the transmon is prepared
in one of the six cardinal states of the Bloch sphere, (II)
a microwave drive with a given pulse shape and dura-
tion is applied to the qubit, and (III) the qubit is read
out in the basis 0; € {X,Y,Z}. This same experiment is
repeated Ngpors times to acquire statistics, where Ngpois > 1,
and the label associated with this specific pulse shape and
preparation is the qubit expectation value estimate result-
ing from averaging these shots. We emphasize that we
never feed the full quantum state to the model and that
this label, i.e., the average measurement result, is a real-
istic noisy estimate of the true qubit expectation value that
the model is trying to predict. State preparation and mea-
surement (SPAM) errors can add noise to these labels.
This noise can be made effectively unbiased using standard
error-mitigation strategies based on inverting the confu-
sion matrix or on measuring half of the shots with the
negative measurement operator. For simplicity in evalu-
ating model performances, we did not model the effect
of the mitigated SPAM errors which would typically be
significantly smaller than shot noise in our simulations
(Nshots = 32)

To construct the supervised ML datasets, this experi-
ment is repeated for all of the pulse shapes in a chosen set
of pulses, while randomizing over the prepared state and
measurement axis for each of these pulses. Implementation
details for constructing the pulse set, so as to efficiently
sample the control space, are presented in Appendix C.
We have found that using a combination of random pulse
shapes together with physically motivated envelopes, such
as Gaussian, sinusoidal, and flat-top envelopes with DRAG
(derivative removal by adiabatic gate) components [45]
was sufficient for the ML models considered to learn an
accurate and generalizable representation of the quantum
dynamics.

Putting these data together in the form of supervised
learning datasets, each input consists of a one-hot encoded
vector p describing which of the six cardinal states
was prepared, together with a two-dimensional real array
S = (3’1, Sp) containing the pulse-shape amplitudes at each

pixel of the evolution for the two drive quadratures. The
output labels are a combination of a one-hot encoded
vector m capturing which Pauli operator was measured
together with a single floating-point number representing
the associated qubit expectation value estimate Tr[o; o (£)].
Finally, we split this dataset into training, validation, and
test sets, as is standard in supervised learning approaches
both to avoid overfitting by selecting the best model from
the performance on the validation set, and to obtain unbi-
ased model performance metrics by evaluating the chosen
models on a separate test set [46].

B. Model learning
1. Model architecture

The parameterized representation we use to learn the
quantum dynamics from the data described above is the
physics-inspired neural network illustrated in Fig. 2(a).
It is principally composed of a recurrent-neural-network
(RNN) architecture [46,47], which processes the input
pulse shapes one pixel at a time so as to preserve the
time-ordered structure of the learning problem. The RNN,
composed here of a long-short-term memory (LSTM) unit
cell [48], is performing the same set of operations at
each time step in a recurrent fashion, using the new input
together with a hidden state (%) to encode information
about the context of that input. This vector allows the
model to capture correlations within the input data and to
potentially keep a memory of previous inputs. Given our
quantum characterization problem where the model needs
to output the quantum state at different times, we engineer
a direct correspondence between the hidden state of the
model £, and the quantum state of the system p,. We thus
use an encoding layer, a small fully connected neural net-
work, to map the initially prepared quantum state to the
initial hidden state of the model, and use a similar decod-
ing layer to map this hidden state back to the qubit state
prediction p(7).

To have a model that can efficiently train on a finite and
realistic dataset, we have designed the model architecture
to explicitly preserve most of the structure of the phys-
ical problem at hand. Nonetheless, the model is general
enough to go significantly beyond the usual assumptions of
a Markovian, single-mode description of the qubit dynam-
ics. As demonstrated in Sec. IV, this choice is motivated
by our objective of obtaining high-fidelity controls in
scenarios where the physical description used in typical
open-loop control approaches is insufficient. We empha-
size that many other architecture choices could be directly
used within our framework, such as a transformer model
[49] or a parameterized master equation.

To train the model, we use a loss function principally
composed of a mean-squared error (MSE) loss between the
model predictions and the labels, as is common for regres-
sion tasks in supervised machine learning. Additionally,
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FIG. 2. Learning-driven qubit dynamics using supervised machine learning. (a) Model architecture. Preserving the structure of the
three-step experiment, the model uses a small fully connected neural network (FNN; Encode) to map the nominally prepared quantum
state (pg) to the initial hidden state representation of the model (%y). Each pixel of the input pulse shape is fed sequentially to a
recurrent-neural-network cell (RNN). A second FNN (Decode) is used to produce the predicted quantum state p,, here parameterized
using Pauli expectation values. During training, the experimental readout outcomes are used as labels and the model parameters are
adjusted by minimizing a loss function, here principally composed of a mean-squared error (MSE) between the labels and predictions.
(b) Loss on the training and validation datasets during a supervised LSTM training. All hyperparameters and dataset characteristics
are detailed in Appendix B. The dashed lines correspond to the sampling noise floor of the noisy labels for both datasets; see text for
details. (c) Mean-squared error of the predicted quantum state expectation values as a function of pulse duration, averaged over the
entire test dataset. Dashed lines correspond to the median over time, with values reported in the legend. The MSE is zero for the first
4 ns because we impose a zero padding of 2 ns at the beginning and end of every pulse. (d) Sample model predictions (circles) and
true quantum trajectories (full lines) for three input pulse shapes unseen during training. The envelopes of the Gaussian flat top (top),
random (middle), and sinusoidal (bottom) pulses are shown in the insets, with axes corresponding to drive amplitude in megahertz and
time in nanoseconds. Note that, during training, the ML model never has access to the true quantum trajectories used here for evaluating
model performance in panels (c) and (d), but only has access to the noisy labels obtained from Ng,ois = 32 projective measurements.

following Ref. [24], we expand the loss function with
terms assuring that the RNN outputs are valid quantum
states, i.e., that they are positive, and that the initial state
predicted by the model corresponds to the known prepared
state of the qubit. These physically motivated loss terms
help regularize the model training, as it explores the param-
eter space of valid representations more efficiently [50]. An
explicit expression for the full loss function, together with
the hyperparameters used, can be found in Appendix B.

2. Quantum characterization results

A typical training of the RNN model is presented in
Fig. 2(b) on a training dataset comprising 3.2 million pulse
shapes of maximal duration of 30 ns, each measured for
32 shots. As demonstrated in Appendix A, similar perfor-
mances can be reached using significantly fewer data. Both
the training and validation MSE losses reach a value close
to the sampling noise floor of about 5.6 x 1073, which

is obtained by computing the same MSE metric assum-
ing perfect knowledge of the qubit expectation values, as
given by the simulation data. This imprecision is signifi-
cant, as it corresponds to an average distance between the
noisy labels and the model output qubit state probabilities
of about 7%. Such a high noise floor raises the question of
whether the ML model is learning an accurate description
of the quantum dynamics.

Leveraging the fact that we are working with simula-
tion data, we can go beyond the experimentally available
noisy labels and compare the model predictions directly
to the ground-truth quantum trajectories obtained from
simulation. In Fig. 2(d), we can qualitatively observe the
high accuracy of the trained model in describing the qubit
dynamics for various input pulse envelopes, as the model
predictions (dots) match closely the true trajectories (full
lines). This agreement is quantified in Fig. 2(c), show-
ing a median MSE of about 5 x 10~> across the three
measurement axes and over different pulse lengths on the
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previously unseen test dataset. This order-of-magnitude
improved accuracy on the predicted outcome probabilities
indicates that, remarkably, the ML model is able to use the
noisy labels that one can obtain experimentally in order
to learn the mapping from arbitrary pulse shapes to highly
accurate quantum dynamics. The error associated with the
model predictions is lowest at the initial time, where we
have the most accurate information about the qubit state
given the finite number of prepared states shared amongst
all experiments. The finite model precision for evolving the
quantum state for every pixel then leads to a linear increase
in the prediction error over time, which is translated into a
quadratic increase on the MSE in Fig. 2(c). This behavior
is expected for any model with a finite accuracy, and is akin
to evolving the state using the ME with slightly inaccurate
model parameters, or to numerically solving a differential
equation with a finite-precision solver.

The accuracy of the ML model can be significantly
improved by extending the training dataset, for example,
using more shots so as to construct more precise labels, and
performing more experiments with different pulse shapes
so as to explore more of the control space. As we will
show next, the amount and quality of the training data used
here are sufficient to obtain high-fidelity controls from the
model. Additional results exploring how the quality and
quantity of training data impact the learned representation
and the performance of the resulting optimal controls are
presented in Appendix A.

The neural-network model takes about an hour to train
on a standard Nvidia RTX 3080 GPU. This time could be
significantly reduced if needed for a specific implementa-
tion, for example, by pretraining the model on simulation
data before training on the experimental measurements.
This time scale is comparable to the experimental data
acquisition time for building the datasets using transmon
qubits, which is a few hours per million pulse shapes
with 32 shots, including the overhead of pulse sequence
uploading on the control electronics.

C. Quantum optimal control

Having demonstrated that an RNN can be used to
accurately learn quantum dynamics from experimentally
realistic data, we now present how one can successfully
use that representation to perform quantum optimal con-
trol. We focus on single-qubit quantum gates and optimize
the external controls so as to maximize the average gate
fidelity of a given unitary Uyger. As schematically illus-
trated in Fig. 1(b), the optimization procedure simply
consists of making each pixel of the input pulse a free
parameter and computing the evolution of the quantum
system due to these controls using the trained ML model
with fixed internal parameters. By evolving a set of ini-
tial quantum states forming a complex projective 2-design,
one can compute the average gate fidelity of the arbitrary

black-box quantum channel [51,52], which is represented
here by a neural network. For the case of one qubit, the
six cardinal states used as preparations in our experiment
form a complex projective 2-design [53]. Finally, an opti-
mization algorithm is used to update the input controls so
as to maximize the fidelity of the operation of interest.

Making use of the fact that the RNN is fully autodiffer-
entiable, we employ a gradient-based approach and design
the cost function to include a multitude of experimentally
relevant constraints, without having to analytically derive
an expression for their gradient. In addition to the cost
associated with the average gate infidelity of the operation
of interest, we use regularizing costs that yield smooth and
low-amplitude controls, which are desirable in the exper-
iment to mitigate crosstalk and pulse distortion effects
[25,54]. In particular, we use a cost term proportional to
the average absolute pulse amplitude to penalize for unnec-
essarily strong pulses, a cost for amplitudes |Q2|/27 >
100 MHz, together with terms proportional to the first and
second derivatives of the pulse shapes to find smooth con-
trols with a limited frequency spectrum. We perform the
optimizations using the Adam optimizer [55]. The full
cost function and optimization parameters used here are
presented in Appendix D.

A typical control optimization on the trained RNN is
shown in Fig. 3(a) for the case of a 20-ns Ry (7) transmon
qubit gate. Benefiting from the fast forward and backward
evaluation of the RNN, 30 randomly initialized pulses are
optimized in parallel on a single GPU card in under a
minute. This batched optimization and ability to perform a
large number of iterations significantly mitigates the con-
vergence issues that many GRAPE-like approaches face.
As aresult, we can use the trained model to obtain optimal
controls for a wide variety of gates on a very short time
scale, which can be used to create a universal gate set of
optimal pulses or to compile continuously parameterized
gates.

The optimal control found by our MLQOC approach
yields a 99.994% average gate fidelity on the full five-
level transmon model. The pulse shape and resulting qubit
dynamics are illustrated in Figs. 3(b) and 3(c). Importantly,
this optimal pulse is smooth and easily implementable
in practice with limited-bandwidth electronics. The main
sinusoidal oscillations seen in the optimal pulse correspond
to the expected intermediate frequency of about 27w x
100 MHz. Deconvolving this intermediate frequency, we
obtain a smooth envelope in the quadrature effectively
driving ox (black line), together with a small orthogo-
nal component (gray line) necessary to adjust the Z phase
of the resulting unitary and to mitigate leakage to the
|2) state [45]. As shown in Fig. 3(c), the pulse produces
coherent dynamics on the qubit that resemble the one of
standard sinusoidal and Gaussian control pulses, according
to both the RNN model (dots) and the true master equation
dynamics (lines).
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FIG. 3.

Quantum optimal control of a 20-ns Ry (;r) gate on a trained RNN. The optimal MLQOC pulse fidelity is 99.994% on the

five-level transmon. (a) Parallel optimization of 30 randomly initialized pulse shapes. The optimization of the best-performing pulse
is highlighted in red, with the inset showing its decomposition into individual costs. (b) Resulting raw (bars) and Gaussian filtered
(dots with line) optimal pulse shape for the two drive quadratures / and Q. The associated smooth envelope effectively driving oy (oy)
is shown in black (gray). (c) Predicted (dots) and true (lines) quantum state evolution when applying the optimal pulse shape on the

initial state |1).

D. MLQOC performance

An important advantage of our approach is that the
trained model is not tied to a specific set of gates and
can be used to optimize for arbitrary quantum operations
captured by the model inputs and outputs, here any single-
qubit unitary. As a demonstration, we use the same trained
RNN model presented in Fig. 2 to optimize for a variety
of gates and compile the results in Table 1. We first opti-
mize for & and =7 /2 rotations around the three axes of
the Bloch sphere. This gate set, together with the iden-
tity operation / realized by applying no drive, generates
the full single-qubit Clifford group. We obtain an average
fidelity of about 99.99% for this gate set, demonstrating
that a finite-precision model trained on realistic data can
yield high-fidelity quantum operations. We have also opti-
mized 100 unitaries sampled uniformly at random from
the Haar measure [56], and obtained gates with similar
performances. This result further demonstrates that the
trained RNN representation is accurately capturing arbi-
trary dynamics on the qubit subspace of our transmon
model such that it can be used directly for performing
QOC.

TABLE 1. Gate performance of the MLQOC approach, eval-
uated on the full five-level transmon. The trained model can be
used to find arbitrary Clifford and Haar random unitaries with
high fidelity. Reported fidelities are the average over the different
axes (X, 7, and Z) for Clifford gates and the median over 100
uniformly sampled gates for the Haar random gates. The trans-
mon coherence limits are 99.9975% and 99.9967% for 15- and
20-ns gates, respectively. Note that the gate durations include a
4-ns zero padding to avoid gate bleed-through.

SQ gate Duration (ns) Fidelity (%)
Ry yz(mw) 20 99.993
RX,y,Z(:tT[/z) 15 99.983
Haar random 20 99.984

The fact that the trained ML model does not fully reach
the coherence-limited average gate fidelities of ~99.997%
can be attributed to the finite precision of the heuristic that
the RNN learns to represent the quantum dynamics. As
shown in Appendix A, reducing shot noise and increasing
the training dataset size does not significantly improve the
control fidelity results, and important stochasticity in the
performance of similar models remains, even for trained
models performing the quantum characterization task sig-
nificantly better than the one presented in Fig. 2. Given that
it is possible to train a model that would yield coherence-
limited gates, such as a model approaching the master
equation used to generate the data, it would be interest-
ing to try refining the training data by sampling around the
optimal pulses or to explore the performance of different
machine-learning architectures. Despite not fully reaching
the coherence limit, we show in the next section that our
MLQOC approach can significantly outperform open-loop
QOC approaches in practical scenarios by alleviating the
problem of model bias.

IV. COMPARISON WITH OPEN-LOOP QOC

Having presented proof-of-principle results of our
approach on transmon single-qubit gates, we now demon-
strate the advantage of using MLQOC in realistic exper-
imental settings where model bias will necessarily be
present. In particular, we show that the MLQOC approach
studied here achieves significantly better quantum gates
than typical open-loop QOC methods under realistic model
bias. This improvement is achieved by learning an accurate
representation of the device dynamics from data, and using
that model to design high-fidelity controls.

We consider model bias solely coming from out-of-
model dynamics, i.e., effects that are present in the quan-
tum device but not in the physical modeling used by the
open-loop QOC approach. We take these dynamics to be
unaccounted pulse distortions in the control lines, which
produce discrepancies between the pulse shape the qubit
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FIG. 4. Demonstrating the robustness of the proposed
MLQOC approach under a realistic source of model bias in the
form of random pulse distortions. (a) Predicting the quantum
state dynamics of the test dataset using the master equation
model (blue) and RNN models trained on experimentally
available data containing 1 million pulse shapes, each sampled
for 32 shots (red). (b) Performance of the 20-ns Ry () gates
found by optimizing on the models of panel (a), as evaluated on
the full transmon model. The gate coherence limit is indicated
by a black line.

receives and the one we model. Note that considering pulse
distortions is simply a choice for demonstrating the perfor-
mance of MLQOC in the presence of model bias, although
this choice is motivated by realistic experimental scenarios
with superconducting qubits [57—60]. The methodology
used to generate the random pulse distortions is detailed
in Appendix E.

In Fig. 4, we present the performance of the open-loop
(blue) and machine-learning-based (red) QOC approaches
in performing the two tasks identified within our frame-
work, namely the quantum characterization as reported by
the MSE in Fig. 4(a) and the optimal control as reported by
the obtained average gate infidelity in Fig. 4(b), both as a
function of the amplitude of the random pulse distortions
A. Scaling this amplitude A directly translates into scaling
the magnitude of the model bias. For instance, a distor-
tion of A = 0.2 corresponds to pulses deviating on average
by only 3% from their original shape, which is less than
0.3 MHz. See Appendix E for more details on the definition
of the parameter A.

Since the model used for the open-loop QOC approach
is the full master equation used to describe the trans-
mon qubit, it perfectly describes the quantum system
when no model bias is present (A = 0), and achieves
coherence-limited single-qubit gates. However, as we scale

the amplitude of the pulse distortions (A > 0), the mean-
squared error for predicting the true quantum states of
our test dataset grows sharply. Consequently, the controls
optimized using the ME model yields single-qubit gate
fidelities that rapidly drop below 99.9% when amplifying
the out-of-model dynamics as shown in Fig. 4(b).

In contrast, our proposed ML framework is designed to
learn the entire transformation describing our control of
the quantum system, from the input pulses of the AWG all
the way to the measurement bits we extract, which includes
pulse distortions as well as any other dynamics of the quan-
tum device that can affect our measurements. As shown in
Fig. 4(a), the ML model precision is then virtually unaf-
fected by the added pulse distortions, simply because these
dynamics are present in the data it learns from. Using these
trained models in Fig. 4(b) then allows us to find optimal
controls that remain close to 99.99% fidelity, even under
important pulse distortions.

These results constitute a clear demonstration that, in
a realistic scenario where model bias limits our ability
to perform open-loop QOC, our approach of employing
ML can lead to a considerable gain in quantum control
fidelity. We note that, even in a well-characterized sys-
tem where our physical model yields similar quantum
characterization performance to the trained ML model,
our MLQOC approach can still offer an advantage. This
is the case here for A = 0.2, where the MSE are simi-
lar for both approaches, see Fig. 4(a), but the resulting
fidelity is superior for MLQOC, see Fig. 4(b). This is
explained by the fact that the trained model can capture
the full device dynamics and thus provide optimal pulses
that account for spurious effects such as pulse distortions.
As opposed to the physical ME model, the ML model
is providing an effectively unbiased estimator of the true
quantum dynamics, which for the same level of precision
can yield better-performing controls in practice.

V. CONCLUSION

In this work, we have presented an experimentally
simple two-step approach to quantum control aimed
at successfully realizing optimal quantum operations in
practice. We tackled the problem of model bias by learn-
ing a parameterized representation of the system dynam-
ics directly from experimentally available data, before
using that representation to find optimal controls. Using
accurate transmon simulations, we have demonstrated
that our machine-learning-based quantum optimal control
approach can leverage a practical amount of experimen-
tal data to provide a precise characterization of the qubit
dynamics and produce high-fidelity (~99.99%) controls
for arbitrary single-qubit gates, thus going significantly
beyond realizing a single operation with high fidelity.

The MLQOC framework promises to enable many
quantum optimal control applications where model bias
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is an important bottleneck, without necessitating any real-
time feedback control or having to rely on data-intensive
black-box optimizations of single operations. Beyond
experimental ease of implementation, our approach is
applicable to a wide range of quantum control prob-
lems because its modular features can be adapted to the
specificities and requirements of a given quantum sys-
tem. Importantly, our method of reducing the complexity
of the learning task to only the quantum characterization,
together with the use of powerful gradient-based QOC
techniques, suggests it might be more data-efficient and
more scalable to complex control problems than model-
free approaches. It will be interesting to explore how
these approaches perform as we expand towards optimally
controlling multiqubit entangling and parallel operations.
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APPENDIX A: DATA REQUIREMENTS

The success of our approach to quantum optimal control
relies on constructing an accurate model of the quantum
dynamics from data. We explore here how the amount and
quality of training data impact our results. We change the
accuracy of the data labels by numerically sampling more
measurements (Ngpots), from the experimentally inexpen-
sive 32 shots (results of the main text), up to the limit of
perfect labels. See Appendix C for a discussion on differ-
ent approaches to sampling the pulse shapes we use for
training.

In Fig. 5, we present the impact of the training dataset
size and experiment repetitions (Ngpots) used on both tasks
considered in this work: the ML-based characterization
of the quantum dynamics in Fig. 5(a) and the resulting
quantum optimal control gate fidelity in Fig. 5(b). Unsur-
prisingly, using more training data leads to models with
better prediction accuracy on the unseen test data. How-
ever, we show that such an improvement in the ML model

is not necessarily needed to obtain high-fidelity quan-
tum controls. For example, we can get the MSE on the
model prediction down by a factor greater than 2 (from
2.1 x 107 to 8.5 x 107°) using 3.2 million training pulse
shapes instead of 1 million. However, the optimal con-
trols found by both of these models lead to a single-qubit
gate fidelity of about 99.99%, with most of the variabil-
ity in the resulting fidelities explained by the stochastic
nature of both the model training and the control opti-
mization. Similarly, increasing the number of shots leads
to significant improvements in the model prediction accu-
racy (about an order-of-magnitude reduction in the MSE
at 3.2 million pulses between the three cases considered),
but this improvement does not translate into significant
improvements in the resulting control fidelities.

We explain this feature of our approach by the fact that,
even though the ML model has a finite precision, which
can be thought of as error bars on the model parameter
estimates, as long as the learned parameterization does not
lead to a significant bias in the quantum dynamics, the
optimal controls on the finite precision model should also
be close to optimal on the true quantum system. We can
think of the QOC optimization on the trained neural net-
work, which has a finite precision but very small bias, as
adding Gaussian noise to the quantum state evolved using
the master equation. The controls that maximize the gate
fidelity on average using such a noisy model should also be
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FIG. 5. Impact of the quantity and quality of training data on

the model learning and optimal control performance. (a) Mean-
squared prediction error on the unseen test dataset of RNN
models trained on increasingly more pulse shapes with differ-
ent sampling repetitions (Nghots)- (b) Average gate infidelity of
20-ns Ry () gate optimized on the models of panel (a), as eval-
uated on the true five-level transmon model. The black line is the
coherence limit of the gate.
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optimal on the true noiseless model. Here, we show that,
as long as we have enough data to train a model with a
mean-squared prediction error of less than about 2 x 1074,
we can obtain quantum gates with 99.99% fidelity. Given
the important time cost associated with acquiring large
amounts of data on the quantum system, it is then desirable
to use as few data as required for the MLQOC protocol to
yield the desired control fidelities.

We emphasize that on the megahertz-scale repetition
rate typical of quantum systems such as superconducting
qubits, only a few hours are required to acquire the num-
ber of data considered here. Given that our framework can
be easily extended to parallel single-qubit gates with virtu-
ally no additional experimental time, optimizing quantum
operations using MLQOC is easily achievable with current
experiments. Additionally, the limited data requirements
we obtain for performing arbitrary single-qubit operations
open the door to realistically using MLQOC for more com-
plex control tasks such as two-qubit gates, readout, and
reset operations, which is beyond the scope of this work.

APPENDIX B: MACHINE-LEARNING TRAINING

In this section, we present the implementation details of
our machine-learning (ML) model training, whose archi-
tecture is illustrated in Fig. 2. Our numerical implemen-
tation is based on PyTorch [62]. The recurrent neural
network we use is the vanilla long-short-term memory unit
implemented in torch.nn.1stm with a single layer and
a hidden size of 48. (Please refer to the PyTorch docu-
mentation for more details.) The Encode transformation
is a depth-2 fully connected neural network (FCNN) with
a hidden size of 96 and a sigmoid activation function,
whereas the Decode transformation is a single-layer lin-
ear network, using again a sigmoid activation function to
map the network output into proper probabilities € (0, 1).
We emphasize that none of these hyperparameters were
carefully optimized, as the objective in this work is to
demonstrate how our proposed MLQOC framework can be
successful with a simple implementation. Such a hyperpa-
rameter optimization, together with using more powerful
neural-network architectures such as transformer models
[49], could yield slightly better performance, but would not
change any of our conclusions.

We train this model using gradient-descent based on
the Adam optimizer [55] with a learning rate of 0.001.
During training, we use an initial batch size of 256 and
double it at epochs [100,200, 500, 800] in order to reduce
the stochastic noise in the optimal model parameters as
training progresses. We use the following physics-inspired
loss function to train our model [24]:

L= Epred + Wpositﬁposit + Wprepﬁprepa (B1)

where
N
Lprea = Z (I, — 1)), (B2)
Coost = m ;0 ; ReLU(7,,> — 1),  (B3)
1 5
Loy = 5 ; o — ol (B4)

Here ReLU(-) is the rectified linear unit (see below), and
Otn = Xips VinsZen) 1s the model prediction of the qubit
states for the nth quantum trajectory at time index ¢, given
N pulse shapes with NV, pixels. We use the hyperparameters
Wposit = Wprep = 1.0.

The prediction loss Lpreq is a simple mean-squared error
between the labels and the model predictions for the qubit
population in the j € {X, Y, Z} basis, given by I, = (-
(67))/2 € [0, 1]. Here the labels are also the probabili-
ties of measuring the qubit state in the —1 eigenstate of
the operator o/, which are constructed from averaging the
Nsnots = 32 projective measurements for each input pulse
shape. The MSE given by this loss term is the metric we
care most about to obtain an accurate quantum charac-
terization of the qubit dynamics. However, there is more
information about the RNN output that we can use to
quantify if it accurately describes our physical problem.

We leverage that information with the following two
loss terms, which allow us to make our model training
more accurate and more data-efficient. The positivity loss
Lposit insures that the ML model predictions correspond
to valid quantum states, i.e., that the predicted density
matrices are positive. The rectified linear unit ReLU(x) =
max(0,x) allows us to penalize only for nonphysical states
and not for mixed state predictions, given that we are learn-
ing from data with relaxation and dephasing. Finally, the
preparation loss L., makes the RNN predictions accurate
at the beginning of the quantum trajectory, ¢t = 0, by using
our knowledge of the finite set of prepared initial states.
When dealing with experimental data, or more generally
with data containing state preparation and measurement
errors, we can set the targeted prepared states pg, to be
consistent with our best estimate of these errors. For exam-
ple, we can average over subsets of the data where the
projective readout immediately follows the preparation,
and effectively perform quantum state tomography of the
six cardinal states of the Bloch sphere [63].

We note that the model architecture, together with the
loss functions we use, can easily be extended to model-
ing the dynamics of # qubits or multilevel systems. For
example, the input dimension of the RNN could be 2n
for n microwave drives with two quadratures, and the pre-
pared and output quantum states can be represented using
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4" — 1 expectation values for n qubits. This natural exten-
sion would be sufficient to apply our framework to opti-
mize for two-qubit gates and parallel single-qubit gates.
Of course, the data requirements and model complexity
necessary for successfully applying MLQOC to control-
ling a quantum system with an exponentially large Hilbert
space should also scale unfavorably with the number of
qubits. However, using the heuristic representation of a
machine-learning model might be beneficial for tackling
such complex control problems.

APPENDIX C: PULSE DATASETS

The quantum characterization task is achieved by train-
ing a parameterized representation, such as a neural net-
work acting as a universal function approximator, to
describe the transformation from arbitrary input pulse
shapes into the dynamics of the quantum systems under
study. Given the enormous size of the input control param-
eter space, with every pixel taking an arbitrary floating-
point value, and the fact that we want to acquire a finite
dataset in a reasonable experimental time, it is natural
to try uniformly sampling at random the input controls
to form our ML datasets. This approach works well and
the trained ML model can predict the dynamics for ran-
dom pulse shapes accurately. However, with that choice
the model performs poorly at predicting the dynamics of
smooth pulses, which for example possess a very dif-
ferent frequency spectrum than random pulses (data not
shown). Given that in an experimental scenario we want to
use smooth control pulses, so as to respect the bandwidth
limitations of the control electronics and avoid crosstalk
problems arising from having signals with a wide fre-
quency spectrum, having a trained model that is inaccurate
at capturing the dynamics of smooth pulses is practically
not useful.

To remedy the situation, we simply include smooth
pulses in the training data. Here, we generate these smooth
pulses using physically motivated envelopes that are com-
monly used to perform single-qubit gates. Specifically, in
addition to uniformly sampled random envelopes, our set
of pulses is composed of flat, Gaussian, Gaussian with a
flat top, Gaussian with an orthogonal DRAG component,
and sinusoidal pulses. Heuristically, we chose proportions
of 25% of flat pulses with random amplitudes, 25% of
flat-top Gaussian pulses with random widths, amplitudes,
and standard deviations, 25% of uniformly sampled ran-
dom pulses, 12.5% of Gaussian pulses with an orthogonal
DRAG component with random amplitudes, and 12.5% of
sinusoidal pulses with random amplitudes and frequencies.
We generated a total 4.25 million pulses, and used 75% for
the training set, 15% for the validation set used to avoid
overfitting, and 10% for the test set used to evaluate and
compare model performances.

Given our pulse parameterization at the level of the
AWG before IQ mixing, our pulses should have a main
sinusoidal oscillation corresponding to the intermediate
frequency, here around 100 MHz, such that the resulting
pulses reach the qubit frequency and produce nontriv-
ial dynamics. We thus generate all of the aforementioned
pulses at the envelope level, i.e., without any explicit oscil-
lating component. We then convolve these envelopes with
the intermediate-frequency oscillations, which result in the
final pulses of the dataset. In order to explicitly sample
the impact of detuned drives on the qubit dynamics, we
randomly sample the intermediate frequency we use to
convolve with our envelopes, using a Gaussian distribu-
tion centered at the nominal wir/27 = 100 MHz with a
standard deviation of 1 MHz.

We note that fine-tuning the quality of the training
dataset by using pulses that are known to achieve the tar-
get operations with good fidelity, and perhaps increasing
the sampling (Ngnots) for these pulses, could be beneficial
to the performance of the MLQOC approach. However, as
we have demonstrated in the main text, such fine-tuning
is unnecessary and the approach works well as long as the
pulses seen during training have the same characteristics
as the controls we implement in the end. In that sense,
although such an informed construction of the training
dataset will necessarily bias the model learning towards
a given set of dynamics, this bias should be beneficial
for learning a good model efficiently, as long as the bias
is consistent with the constraint we put on the following
QOC optimizations. Indeed, it is desirable to have a trained
model that is good at predicting the dynamics of smooth
pulses, even if it is somewhat specialized and not fully gen-
eralizable, since ultimately this is what our optimal control
task requires. This bias is enforced explicitly in this work
by using a cost function minimizing the first and second
derivatives of the optimal controls.

APPENDIX D: QOC IMPLEMENTATION DETAILS

In this section, we present the implementation details of
our quantum optimal control approach illustrated in Fig.
1(b). We use an open-loop optimization where the pulses
are parameterized at every pixel, the trained ML model
with fixed parameters is used to compute the dynamics
resulting from the pulses, and the cost function is expressed
as follows [25]:

C = Chder + Wclampcclamp + WmeanCmean

+ WhrstCirst + WsecondCseconds (D1)

where

N
1
Craer = 7 ) 1 = AGF(p7),

n=1

(D2)

034073-12



MACHINE-LEARNING BASED QUANTUM OPTIMAL CONTROL

PHYS. REV. APPLIED 24, 034073 (2025)

Ny N
Cotarmp = m ;) ; ReLU(Qys — Qmax), (D3)
| Ny N )
Cinean = NN+ 1) ; ; 12,17, (D4)
Cﬁrst = L % i |8th,t|2’ (DS)
NN t=1 n=1
| Ny N
Csecond = m Z Z |a;29n,t|2- (D6)

t=2 n=1

Here Q. 1s the maximal allowed drive amplitude, which
is 2 x 100 MHz in this work. This constitutes a reason-
able choice to avoid significantly amplifying the effect of
classical crosstalk on a transmon chip, as typical sinusoidal
20-ns single-qubit 7 gates require |2| /27 ~ 31 MHz.

The partial time derivatives in the smoothing cost func-
tions are implemented as finite differences numerically
with 9,92, = Q,, — Q,,1, and the average gate fidelity
is computed as [64]

Zf Tr(Utargethj leu‘get RNN(0/)) + d*

2d+1) ’
(D7)

AGF(pnr) =

where d =2 for a qubit, T is the final time index, o/
are the six cardinal states (our chosen complex projec-
tive 2-design), and RNN( /) represents the transformation
realized by our trained ML model, which acts here in place
of the usual quantum channel.

As mentioned in the main text, we optimize for a batch
of 30 pulses in parallel on the same GPU card in under
a minute, and select the best-performing pulse on the full
cost function as the optimal control. We use the Adam opti-
mizer with a learning rate of 0.001 to perform the gradient
descent [55]. As in the ML model training, all the gradi-
ents are computed numerically using the autodifferentiable
feature of PyTorch [62].

We have observed that, whereas the clamping cost Cejamp
simply allows the pulses to respect an experimental con-
straint, the average amplitude cost Cpean together with the
smoothing cost functions Cgrs; and Cgecong are very impor-
tant for constraining the parameter exploration during the
optimization towards controls where the trained RNN has
an accurate representation of the dynamics. Indeed, the
trained model predicts dynamics which are very close to
the true master equation dynamics for smooth input pulses,
which allows us to find optimal controls with over 99.99%
fidelity when using these regularizing cost functions. How-
ever, optimizing the controls on the trained model using
only the fidelity cost can lead to pulses where the predicted
and true dynamics diverge significantly. This problem can

be completely avoided using the smoothing cost func-
tions, and if necessary a simple postselection based on
the same smoothness criteria over the optimization results
of the batch. We optimize our pulses for all the single-
qubit gate results presented in the main text using Wejamp =
10.0, Wiean = 0.1, and Werst = Weecond = 0.01. We have
observed that fine-tuning these hyperparameters does not
lead to significant changes in the resulting optimal gate
fidelities.

APPENDIX E: RANDOM PULSE DISTORTIONS

We simulate pulse distortions numerically by applying
a fixed causal transfer function to the pulses. We first gen-
erate the random transfer function F(w) in the frequency
domain, using the noise parameter A that we scale from 0
to 0.4 in Fig. 4. We add the noise to the trivial flat transfer
function such that

F(w=>0) =1+ U(—A, 1), (E1)

where U(min, max) is the uniform distribution, and we
replicate the values for the negative frequencies such that
F(w) is even. To obtain a smooth transfer function, we
sample 11 points from the uniform distribution, which
we attribute to frequencies up to 600 MHz, before using
a Gaussian filter with a 2.5-GHz bandwidth to interpo-
late between these values for 1001 points in the range
[—1.5,1.5] GHz.

Instead of using Fourier transforms to convolve all the
pulses of our datasets with the noisy transfer function
defined in the frequency domain, we express F'(w) in the
time domain using a transfer matrix which can be directly
applied to the pulses using a simple matrix multiplication.
This transfer matrix is obtained by numerically solving [7]

Ty = /°° Fo) sin(wAt/2) cos(w(j — k) At) doo. (E2)

00 Tw

where At is the pixel size (in units of time) and j and & are
the pixel indices.

Finally, given that this noise models a physical process,
we impose causality by setting the lower triangular ele-
ments to zero and renormalizing it. Using this approach,
we can simulate a realistic scenario where out-of-model
dynamics are present in the quantum system we are trying
to control, and we can have a single tunable parameter X to
quantify the resulting model bias.

APPENDIX F: IQ MIXING AND QUBIT DRIVE

In this section, we detail the 1Q mixing transformation
applied to the input microwave pulses, typically generated
by an arbitrary waveform generator, before reaching the
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transmon qubit. We then show how these mixed pulses
can be viewed as the usual oy and oy drive Hamiltonian
prefactors. As detailed in Refs. [41,42], the two AWG sig-
nals S; and Sp get mixed with a local oscillator signal of
frequency wr o in a process known as sideband mixing to
produce the drive:

Q (1) = S;(t) cos(wrot) + Sp(1) sin(wLot). (F1)
We then define the AWG signals with an envelope
combined with sinusoidal oscillations at an intermediate
frequency wrr and a phase ¢, such that

S;() = I(1) cos(wrrt + ¢), (F2)

So(t) = —0(1) sin(wipt + ¢). (F3)

We then directly get

1(?)
Q) = 7[cos(w+t + @) + cos(w_t + ¢)]

_ %[cos(w_t +¢) —cos(wit+ )], (F4)

where wy = wir £ wro. We thus see that, by setting /(¢) =
0(f) = A(1), we obtain a single carrier frequency signal at
the upper sideband w,

Q) = Acos(wyt+ @). (F5)
Using an LO close to the qubit frequency such that wyg +
wLo ~ wy, we can then precisely control the frequency
spectrum of the qubit pulses we send, with a limitation
set by the AWG bandwidth and potentially the cable fil-
ters used in the experiment. Note that one can also choose
a different phase between the S; and Sy signals to drive the
lower sideband.

We now demonstrate that such a drive can be used to
perform arbitrary qubit gates. Starting from Eq. (2), we can
introduce the creation and annihilation operators to diago-
nalize the quadratic terms of the transmon Hamiltonian and
obtain, after expanding the cos ¢ term and truncating after
the second order [39]:

: ovr Eciiaens 2B\ ..
H(t) ~ w,b'h — —-b'b'bb + sz(z)% (E—C) B —b).

J
(F6)

Going into the qubit rotating frame with the transforma-
tion U(f) = exp(iw,b'bt) and applying the rotating-wave

approximation, we obtain the time-dependent drive Hamil-
tonian

. 1/4

Hy(0) ~ 1 (2Ec\ " A0 (b Art9) — peitarta)
2\ E; 2

(F7)

where A = w, — w,. Performing a two-level truncation
with 5" — o, b — o_, and o1 = (o £ 0v)/2, redefin-
ing the prefactor in front of the last parentheses to be A(%),
and assuming that the drive is on resonance with the qubit
(A =0), we finally get the textbook single-qubit drive
Hamiltonian

AP (1) = A1) [cos(p)oy — sin(@)oy].  (FS)
We thus understand how controlling the pixel amplitudes

of the AWG inputs S;(#) and Sp(#) allows us to perform
arbitrary single-qubit operations.
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