
Optimal Control in Large Open Quantum Systems: The Case of Transmon
Readout and Reset

Ronan Gautier ,1,2,3 Élie Genois ,1 and Alexandre Blais1,4
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We present a framework that combines the adjoint-state method together with reverse-time back-
propagation to solve prohibitively large open-system quantum control problems. Our approach enables the
optimization of arbitrary cost functions with fully general controls applied on large open quantum systems
described by a Lindblad master equation. It is scalable, computationally efficient, and has a low-memory
footprint. We apply this framework to optimize two inherently dissipative operations in superconducting
qubits which lag behind in terms of fidelity and duration compared to other unitary operations: the dispersive
readout and all-microwave reset of a transmon qubit. Our results show that while standard pulses for
dispersive readout are nearly optimal, adding a transmon drive during the protocol can yield 2×
improvements in fidelity and duration. We further demonstrate a 2× improvement in reset fidelity and
duration through pulse shaping, indicating significant potential for enhancement in reset protocols. Our
approach can readily be applied to optimize quantum controls in a vast range of applications such as
reservoir engineering, autonomous quantum error correction, and leakage-reduction units.
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Introduction—Quantum optimal control (QOC) pro-
vides a framework to design external controls for realizing
arbitrary quantum operations with maximal fidelity and
minimal time [1–3], crucial requirements of useful quan-
tum error correction [4]. A common assumption of QOC is
that minimizing operation time will also reduce the impact
of environmental noise, such that only closed quantum
systems need to be considered. However, these approaches
are limited by the fact that controlling the system’s
coherent dynamics can drastically alter the impact of some
noise sources, as exemplified by dynamical decoupling
methods [5–7]. Moreover, closed-system approaches can-
not extend to inherently dissipative processes such as qubit
readout and reset. Consequently, optimally controlling
open quantum systems emerges as an important avenue
[8–10]. It addresses both the minimization of decoherence
in quantum information processing [11–13] and the design
of dissipative protocols [14–16], marking a significant
step toward comprehensive quantum control in engineered
systems.
Over the last decade, several approaches have emerged for

open-system QOC. Closed-loop control methods, such as
feedback engineering [17,18] and reinforcement learning
[19–22], have seen recent success but are difficult to scale to
many parameters. Open-loop methods, including gradient
ascent pulse engineering [15,23], Krotov’s method [24–26],
and automatic differentiation [27–30], circumvent this

limitation by computing numerical gradients, enabling
efficient exploration of the parameter space. However,
controlling large open systems remains challenging: The
sheer problem size prohibits frameworks that require vecto-
rizing the Liouvillian or storing density matrices at each time
step. Although methods for low-memory differentiation
have been proposed for closed quantum systems [31,32],
extending them to open systems while maintaining a
favorable memory overhead remains unresolved.
In this Letter, we present a framework enabling the

realization of QOC on large open quantum systems with a
fully general parametrization over the controls and arbitrary
cost functions. Our approach combines the adjoint-state
method [33–35] with reverse-time backpropagation [36–39]
to reduce the memory cost of differentiation from linear to
constant relative to the number of numerical integration
steps. This significant reduction enables solving otherwise
prohibitively large open-system quantum control problems
defined in Lindblad form [40], and makes the scheme ideal
for GPU acceleration. Our approach thus ensures precise,
fast, and scalable computation of arbitrary gradients. We
apply this method to optimize two critical operations for the
realization of a fault-tolerant quantum computer based on
superconducting circuits: dispersive readout [41–43] and
all-microwave reset [44,45] of a transmon qubit [46]. Using
the signal-to-noise ratio (SNR) of the readout as a cost
function, we find several optimal controls with increasing
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experimental complexity and up to 2× improvements in
fidelity and duration compared to standard protocols. For
reset, we show that pulse shaping alone can halve the
operation duration, an improvement of high practical
relevance.
Adjoint-state method—Consider a QOC problem for

which we seek to find a set of parameters minimizing
a cost function C(θ; ρ̂ðt0Þ;…; ρ̂ðtnÞ). This function, in
general, depends on both the problem parameters
θ ¼ ðθ1;…; θmÞ and on the density matrix of the system
at a set of times ρ̂ðtiÞ. Gradient-based approaches to
optimize the control parameters rely on computing the
derivative of the cost function with respect to each
parameter dC=dθ. To do so, we apply the adjoint-state
method [33] to open quantum systems. In this context, the
adjoint state is defined as ϕ̂ðtÞ ¼ dC=dρ̂ðtÞ and represents
how a change in the density matrix at time t modifies the
cost function. For open quantum systems under the usual
Born-Markov approximations [47], the evolution of the
density matrix is governed by a Lindblad master equation
(ℏ ¼ 1),

dρ̂
dt

¼ Lρ̂≡ −i½Ĥ; ρ̂� þ
X
k

D½L̂k�ρ̂; ð1Þ

where Ĥ is the system Hamiltonian, L̂k are jump oper-
ators, and D½L̂�ρ̂ ¼ L̂ ρ̂ L̂† − fL̂†L̂; ρ̂g=2. The adjoint state
is then subject to a dual ordinary differential equation [48],

dϕ̂
dt

¼ −L†ϕ̂≡ −i½Ĥ; ϕ̂� −
X
k

D†½L̂k�ϕ̂; ð2Þ

where D†½L̂�ϕ̂ ¼ L̂†ϕ̂ L̂−fL̂†L̂; ϕ̂g=2. This equation can
be integrated numerically over the time interval of interest
½t0; tn� with initial condition ϕ̂ðtnÞ ¼ ∂C=∂ρ̂ðtnÞ computed
analytically if a closed form is available, or directly
through automatic differentiation. Notably, the overall
minus sign in Eq. (2) ensures numerical stability of the
integration by generating contracting dynamics in reverse
time. The derivative of the cost function with respect to the
problem parameters is given by

dC
dθ

¼ ∂C
∂θ

−
Z

t0

tn

∂θTr
h
ϕ̂†ðtÞLðt; θÞρ̂ðtÞ

i
dt: ð3Þ

This integral is straightforward to compute using the
density matrix and adjoint state at each time t∈ ½t0; tn�,
as obtained from Eqs. (1) and (2). In particular, the partial
derivative with respect to θ can be easily computed from
automatic differentiation of the adjoint-state equation by
noting that

∂θTr
h
ϕ̂†Lρ̂

i
¼ −Tr

h
∂θðdϕ̂=dtÞ†ρ̂

i
; ð4Þ

which has the form of a vector-Jacobian product.
The QOC optimization is illustrated in Fig. 1 and

proceeds in two steps. First, the forward pass consists in
using the initial set of parameters (e.g., a sequence of
discrete pulses) to numerically integrate the master equation
from t0 to tn while saving the density matrix at each time ti
of interest. The cost function C(θ; ρ̂ðt0Þ;…; ρ̂ðtnÞ) is then
evaluated. To lower the memory footprint, the cost function
can also be evaluated on the fly during the forward pass such
that only a single density matrix needs to be stored. In a
second step, the backward pass, both the master and adjoint
equations are simultaneously integrated in reverse time,
starting from t ¼ tn. During this process, the integral of
Eq. (3) is iteratively evaluated, such as to obtain the entire
gradients dC=dθ once the backpropagation is finished.
Having access to the gradients of the cost function, we
can now iteratively update the control parameters using
standard optimization algorithms [58–60].
We emphasize how each density matrix (blue) is com-

puted twice: once during the forward pass, and once during
the backward pass. This enables a low-memory footprint for
the overall scheme, with at most a single density matrix and
adjoint state needed to be stored at any given moment. The
memory footprint of the method thus scales as OðN2Þ with
N the Hilbert space dimension. This is in stark contrast with
methods based on automatic differentiation [28], for which
the density matrix needs to be stored at each time point
of the numerical integration, thus scaling as OðnN2Þ, with
n the number of numerical integration steps [32]. Such

Forward pass

Backward pass

FIG. 1. Adjoint state quantum optimal control. In the forward
pass, the master equation is integrated and checkpointed for
several time points (dark blue). In the backward pass, the density
matrix ρ̂ is recomputed in reverse time (light blue) together with
the adjoint state ϕ̂ (green) and with the gradients (red) of the cost
function C. When a checkpoint is reached, the density matrix is
restored to its forward time trajectory, and the adjoint state
updated with the corresponding cost function gradient.
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memory requirements can quickly become prohibitive, even
for open quantum systems of intermediate sizes N ≳ 100.
Note that this large gain in memory comes at the cost of

trading off some numerical run-time. Overall, the scheme
requires the integration of four differential equations in total
[48], against only two for automatic differentiation. In
addition, the reverse-time integration of Eq. (1) can be
numerically unstable due to the expansive dynamics of the
system. This can however be fully resolved with check-
pointing the quantum states during the forward pass [39],
thus effectively trading back some memory for numerical
stability. In practice, checkpointing at the timescale of the
largest dissipation operator is sufficient to ensure numerical
stability without adding significant complexity.
We have implemented this optimization scheme using

PyTorch [61], taking advantage of its automatic differ-
entiation capabilities and GPU support. This framework
allows us to run optimization problems for an open
quantum system with hundreds of parameters, arbitrary
cost functions, and for Hilbert space dimensions of up to
N ∼ 5000 while running on a single GPU with 24 GB of
memory. Our code is available through the DYNAMIQS

open-source library [49], simplifying replication of this
Letter and its application to various QOC problems. We
now demonstrate the usefulness of this method by opti-
mizing readout and reset of a transmon, two operations that
inherently rely on dissipation.
Transmon model—Let us consider the experimentally

realistic model depicted in Fig. 2(a) of a transmon coupled
to a readout resonator and Purcell filter [50]

dρ̂
dt

¼ −i½Ĥ; ρ̂� þ γD½b̂�ρ̂þ κD½f̂�ρ̂; ð5Þ

with transmon relaxation rate γ and filter relaxation rate κ,
and where

Ĥ ¼ 4ECn̂t −EJ cosðφ̂tÞ þωrâ†âþωff̂
†f̂

− ign̂tðâ− â†Þ− Jðâ− â†Þðf̂ − f̂†Þ
þΩtn̂t sinðωd;ttÞ− iΩfðf̂ − f̂†Þ sinðωd;ftÞ: ð6Þ

The first two terms denote the free transmon Hamiltonian
with charging energy EC and Josephson energy EJ, with n̂t
and φ̂t the charge and phase operators, and with b̂ the
corresponding annihilation operator in the diagonal basis.
The resonator and filter modes are denoted by â and f̂,
with respective frequencies ωr and ωf. These three modes
are capacitively coupled in series with coupling strengths
g ≫ J. The system can be driven using a capacitive
coupling either through the transmon with a microwave
pulse at frequency ωd;t and envelope ΩtðtÞ, or through the
Purcell filter at frequency ωd;f and envelope ΩfðtÞ.
For numerical simulation of this model, we first

diagonalize the free transmon Hamiltonian and identify

the lowest energy eigenstates. We also diagonalize the
resonator-filter subsystem yielding two normal modes,
each coupled to the transmon. Finally, we apply the
rotating-wave approximation on couplings and drives.
This allows for larger numerical time steps by eliminating
fast oscillating dynamics thereby simplifying master
equation integration. However, this also implies that not
all of the chaotic or transmon ionization dynamics are
captured [62–64]. To avoid probing these regimes, we
limit the maximum amplitudes of control drives, e.g., to
200 MHz for transmon readout.
We use typical device parameters corresponding to a

critical photon number of n̄crit ¼ ðΔ=2gÞ2 ¼ 16 [41] and
dispersive rates of χ=2π ¼ 3.8 and 8.1 MHz with the lower
and higher normal modes, respectively. The filter loss rate
is κ=2π ¼ 30 MHz, and the transmon relaxation time is
T1 ¼ 20 μs. The remaining system parameters can be
found in [48].
Transmon readout—The readout of transmon qubits is

realized through the dispersive coupling to a resonator [41].
In this case, the resonator frequency is shifted by the
average occupancy in the transmon, and can be measured
by driving the resonator at its bare frequency and monitor-
ing the output field; see Fig. 2(b). In the presence of a
Purcell filter, either normal mode of the hybridized reso-
nator-filter subsystem can be used for readout [51].
The metric we use to maximize the measurement fidelity

is the SNR. Accounting for optimal weighting functions
[65], it reads [66]

SNRðτmÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ηκ

Z
τm

0

dtjβeðtÞ − βgðtÞj2
s

; ð7Þ

where η∈ ½0; 1� is the measurement efficiency, τm is the
readout integration time, and βe=g ¼ Tr½f̂ρ̂g=e� is the aver-
age field value in the filter mode, with ρ̂g=e the density
matrix obtained after initializing the transmon in the jg=ei
state. To obtain results that can be compared to experi-
ments, we use η ¼ 0.6 [42]. The optimization objective is
to maximize the SNR, and thus maximize the distance
between the pointer states jβe − βgj in the shortest possible
time. Further assuming that the pointer states βg;e are
Gaussian, one can link the SNR and the transmon lifetime
to the readout assignment error [48,52].
To optimize the transmon readout, we discretize the

control pulse envelopes ΩðtÞ with 1 ns time bins and use a
250 MHz Gaussian filter to interpolate between these
pixels during numerical integration and to model realistic
experimental distortions [53]. In addition to the discretized
drive amplitudes, the optimization parameters θ include
the carrier frequency ωd of each drive. Contrary to the
drive amplitudes, the latter are kept constant throughout
the pulse duration, in accordance with typical experiments.
The cost function used to optimize the transmon readout is
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principally composed of the SNR of Eq. (7), with additional
cost terms constraining the control pulses in order to
regularize the optimization and avoid out-of-model dynam-
ics. For example, we limit the number of photons in the
hybridized resonator-filter modes, penalize unwanted tran-
sitions to higher excited transmon states, and limit the
maximal available pulse amplitudes. The full cost function
is detailed in [48]. We perform gradient descent using ADAM

[59] and use the adjoint-state method previously described
to compute gradients.
Figure 2(c) shows the SNR and the assignment error as a

function of the integration time τm obtained by our
approach, and Fig. 2(d) shows the corresponding pulse
envelopes for τm ¼ 40 ns optimizations. As a point of
comparison, we first consider the two nonoptimized
reference pulses labeled “flat” and “two step.” The former
consists of a constant pulse with 2 ns ramp-up and ramp-
down times (dark blue squares), and the latter of a two-step
pulse meant to rapidly populate the readout mode (blue
circles) [42]. In both cases, the amplitude is calibrated to
reach n̄ ¼ n̄crit photons in the steady state. The SNR versus
τm for these two pulses is fitted with the function (full blue
and dark blue lines) [50]

SNRðτmÞ ¼ α
ffiffiffiffiffiffiffi
2ηκ

p
ð ffiffiffiffiffi

τm
p

− ffiffiffiffiffiffiffiffi
τm;0

p Þ; ð8Þ

where α ¼ 2jΩf sinð2ϕÞj=κ is the effective resonator dis-
placement in the steady state, with ϕ ¼ arctanð2χ=κÞ and χ
the dispersive shift obtained from exact diagonalization of
Eq. (6). In this expression,

ffiffiffiffiffiffiffiffi
τm;0

p
accounts for an initial

delay for the resonator to populate, and is numerically fitted
to τm;0 ¼ 19 ns and τm;0 ¼ 13 ns for the flat and two-step
pulses, respectively. As the integration time increases, the
SNR (assignment error) of both reference pulses increases
(decreases) up until the transmon T1 limit is reached (solid
black line). Minimum assignment errors of 2.1 × 10−3 and

1.8 × 10−3 are obtained at 80 and 65 ns, respectively. This is
similar performance to state-of-the-art readout experiments
[42,43,51,67], as expected from our choice of realistic
experimental parameters. Our objective is now to obtain
smaller assignment errors in shorter measurement times.
The light blue symbols in Fig. 2(c) are obtained by

optimizing the pulse envelope and drive frequency using
our QOC approach. The gain is modest and mainly limited
by the dispersive coupling with the transmon. Interestingly,
the optimized pulses follow a two-step-like shape with a
strong initial drive and a weaker subsequent drive; see
Fig. 2(d). We attribute the small oscillations in the envelope
to the rotational gauge freedom of the resonators, which the
optimizer is arbitrarily choosing.
Significant improvements are, however, obtained by

adding a drive on the transmon concurrently to the readout
drive on the resonator. Interestingly, the optimizer converges
on two distinct frequencies for the transmon drive. The first
strategy found by the optimizer is to drive the transmon at a
frequency close to the resonator frequency (green symbols).
In that case, the assignment errors decreases faster with
integration time than with the above approaches, leading to
a minimal assignment error of 1.6 × 10−3 at 60 ns. The
effectiveness of this optimized readout strategy stems from
the fact that driving the qubit at the resonator frequency
creates a longitudinal-like interaction that can be combined
with the usual dispersive interaction to improve readout, as
demonstrated in Refs. [68–70].
The second strategy found by the optimizer employs a

transmon drive at the (ac-Stark shifted) jei-jfi transition
frequency (red symbols). Given that the cavity response
differs more significantly between the transmon states jgi
and jfi than between jgi and jei [50], transferring pop-
ulation into the jfi state leads to a significant improvement
of the assignment error, which reaches 1.0 × 10−3 in 40 ns.
Interestingly, this shelving approach has already been used
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FIG. 2. (a) Lumped-element model of a transmon coupled to a readout resonator and Purcell filter. The transmon and filter are driven,
and the filter output field is measured through its transmission line. (b) Dispersive readout of a transmon. The mean field in the filter
depends on the transmon state. The SNR of the readout increases with the integrated difference of mean fields. (c) SNR and assignment
error of the transmon readout for several drive envelopes: a flat envelope, a 4 ns two-step envelope [42], and optimized envelopes (QOC)
with optional additional drives on the transmon at frequencies ωd;t ≃ ωr (green) and ωd;t ≃ ωef (red). The flat and two-step data points
are fitted according to Eq. (8). The black line shows the T1 limit given by τm=2T1. (d) Reference and optimized pulse envelopes at 40 ns
of integration time.
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to improve readout in circuit QED [71–74]. There, a π pulse
between jei and jfi is applied to the transmon followed by
the measurement drive. In contrast, the optimized strategy
found here applies the π pulsewhile the cavity is loadedwith
measurement photons leading to a considerable reduction in
themeasurement time; see Fig. 2(d). This is possible because
the optimizer accounts for the time-dependent ac-Stark shift.
The optimized π pulse features an envelope akin to
Derivative Removal by Adiabatic Gate (DRAG) [75] and
achieves a gate fidelity over 99% in less than 10 ns, even
while the readoutmode is being strongly driven. Importantly,
we note that this approach could achieve significantly higher
fidelities by increasing themodest transmon lifetime of20 μs
used here, as shown by the high SNR in Fig. 2(c).
Transmon reset—As a second demonstration of the

adjoint-state method, we consider the optimization of the
f0-g1 reset of a transmon [44,45,54]. This is an all-
microwave reset protocol based on a Raman transition
between states jf00i and jg01i. For the ket jijki, jii stands
for the qubit state and jjki the resonator-filter normal
modes. Given the large photon loss rate of the filter, the
state jg01i quickly decays to jg00i, thus ensuring a fast
reset of the transmon jfi state. An additional drive at the
jei-jfi transition frequency allows us to reset both jei and
jfi states of the transmon. We use the adjoint-state method
to find optimal controls for both the f0-g1 and e-f drives
simultaneously, in a similar fashion to optimizing the
readout. The cost function is now principally maximizing
the transmon population in the jg00i state at the end of the
protocol, along with smaller contributions for regularizing
the pulses; see Ref. [48] for details.
The results of the reset optimization are summarized in

Fig. 3. The three panels show the residual excitation out of
jg00i against the reset time for a reference flat pulse (blue)
and an optimized pulse (red) for different initial transmon
states. The reference pulse is composed of two constant
drives at the f0-g1 and e-f transitions, where amplitudes

and frequencies are calibrated numerically in a similar
fashion to what is done in experiments; see Ref. [48].
The QOC pulse is obtained by optimizing the carrier
frequency and envelopes of both drives, for several total
reset times. The optimized pulses show significant improve-
ment over the reference, with a residual excitation of less
than 0.05% at 100 ns (200 ns) for the jei (jfi) state
preparation. Note that this delay in the jfi reset time is due
to a larger relative weight for the reset of jei chosen in the
cost function and could be adjusted to achieve the most
experimentally relevant reset scheme. This represents a
notable improvement over the reference pulses, which reach
a steady state after more than 300 ns with larger residual
excitations of about 0.07%. Our results also favorably
compare to state-of-the-art experimental realizations of this
protocol that reach 1.7% residual excitations in 100 ns [43],
or 0.3% in 300 ns [45].
Conclusion—We obtained a fully general framework to

optimize open quantum system dynamics in large Hilbert
spaces by combining the adjoint-state method and reverse-
time backpropagation. We have demonstrated the applicabil-
ity of this method to complex open-system optimization
problems using the example of superconducting transmon
readout and reset. We stress that our method can readily be
applied to optimizing a wide range of quantum control
problems where the dissipative dynamics play a significant
role such as reservoir (dissipation) engineering [76,77],
autonomous QEC [78,79], leakage-reduction units [80],
quantum cooling, and more. We encourage readers to apply
this framework on their own optimal control problems using
the open-source library DYNAMIQS [49].
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