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A key challenge in achieving scalable fault tolerance in superconducting quantum processors is
readout fidelity, which lags behind one- and two-qubit gate fidelity. A major limitation in improving
qubit readout is measurement-induced transitions, also referred to as qubit ionization, caused by
multiphoton qubit-resonator excitation occurring at specific photon numbers. Since ionization can
involve highly excited states, it has been predicted that in transmons—the most widely used su-
perconducting qubit—the photon number at which measurement-induced transitions occur is gate
charge dependent. This dependence is expected to persist deep in the transmon regime where the
qubit frequency is gate charge insensitive. We experimentally confirm this prediction by character-
izing measurement-induced transitions with increasing resonator photon population while actively
stabilizing the transmon’s gate charge. Furthermore, because highly excited states are involved,
achieving quantitative agreement between theory and experiment requires accounting for higher-
order harmonics in the transmon Hamiltonian.

Circuit quantum electrodynamics (cQED) with trans-
mon qubits is a leading platform for quantum infor-
mation processing with superconducting circuits, en-
abling dispersive qubit readout via coupling to a read-
out microwave resonator [1–3]. Impressive progress has
been achieved towards high-fidelity and quantum non-
demolition (QND) qubit readout in this architecture, no-
tably thanks to the development of amplifiers operating
near the quantum limit [4–7] and to optimization of the
system parameters [8–14]. A key tenet of the dispersive
readout is that increasing the number of photons probing
the readout resonator should improve the signal-to-noise
ratio (SNR) while preserving QND [1]. However, it is ex-
perimentally observed that increasing the photon number
leads to unwanted qubit transitions, thereby negating the
benefits of using strong readout drives [9, 15–18]. This
limits the rate of information extraction, creating a bot-
tleneck for error correction in superconducting quantum
processors.

Measurement-induced transitions outside of the qubit
computational subspace, into high-energy levels of the
transmon, have been attributed to multiphoton reso-
nances occurring at specific intracavity photon num-
bers [16]. This observation has motivated theoretical
studies that have led to a framework for understanding
this phenomenon—referred to as measurement-induced
transitions (MIST) and ionization in the literature—with
predictions that are in good agreement with experimen-
tal results [16, 18–22]. Crucially, because they involve
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high-energy states of the transmon, these resonances,
and therefore the critical photon number where ioniza-
tion occurs, have been predicted to be gate-charge depen-
dent [20, 22]. This observation stands in contrast to the
transmon’s 0-1 transition frequency whose gate-charge
dependence is exponentially suppressed with increasing
ratio of the qubit’s Josephson energy EJ to charging en-
ergy EC [3]. Moreover, because they affect high-energy
states, higher-order harmonics of the transmon’s Hamil-
tonian [23] are expected to influence its ionization.

In this work, we present experimental observations
confirming the role of gate charge and higher-order har-
monics on measurement-induced state transitions. To
this end, we measure the impact of the resonator photon
population on the qubit state as a function of the aver-
age photon number n̄r and of the qubit frequency ω01,
for two transmons of different EJ/EC ratios. A previ-
ous experiment indirectly probed the gate-charge depen-
dence of ionization by observing shot-to-shot variations
in the critical photon number, variations that were at-
tributed to fluctuations in the gate charge [18]. Here, the
gate charge is actively monitored and stabilized, allow-
ing us to directly confirm the theoretical model discussed
in Ref. [22]. This understanding allows us to identify
robust regions for readout as a function of ng, and will
inform future qubit calibrations, optimal control, and de-
sign strategies.

We use a standard cQED setup consisting of a flux
tunable transmon coupled to a readout resonator mea-
sured in reflection, see Fig. 1(a). The transmon is ca-
pacitively coupled to a line which allows microwave drive
and dc charge bias. We apply a readout drive at the
resonator input port, loading n̄r photons. The reflected
signal undergoes amplification and we report the mea-
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Figure 1. Dispersive readout. (a) Schematics of a qubit-
resonator setup with charge control. The magnetic flux (ϕext)
tunable transmon (orange) is capacitively coupled to a read-
out resonator (green) which is measured in reflection through
a line with a DJJAA amplifier [25]; see Appendix A for full
experimental setup. The qubit is capacitively coupled to a
line that allows changing the charge offset ng. (b) Example
of a 2D scatter plot of the dispersive measurement outcomes
of transmon A, distributed in the IQ quadratures in units of
measured photons

√
n̄m . We continuously pump the readout

resonator at ωd/2π = 6.119 72GHz and integrate the output
every 2 µs. We show the resulting histograms for two different
experiments using two different resonator photon numbers,√
n̄r = 8 and

√
n̄r = 31.

sured I and Q quadratures, see Fig. 1(b). Here and be-
low, this is reported in units of the measurement pho-
ton number n̄m = n̄rκTm/4 during the integration time
Tm [24], where κ is the resonator damping rate. The
measured values cluster around several IQ coordinates,
each corresponding to a transmon state. Deviations from
non-QND behavior are evident from the appearance of
clusters away from the one corresponding to the initial
qubit state, here |0⟩.

To characterize the measurement-induced transitions
as a function of external flux and gate charge offset
we first use a device (device A) with a readout res-
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Figure 2. Flux and Charge Dependence. (a,b) Flux
dependence of the 0-1 and 0-2 transmon transitions for de-
vice A (EJ/EC = 18.5) and device B (EJ/EC = 40.2) at
zero gate charge ng = 0. Energy levels are shown for both
even parity states (full lines) and odd parity states (dashed
lines) assuming symmetric junctions . (c) Charge stabilized
dependence of the Fourier transform of a Ramsey interference
experiment performed at 3.9965 GHz on device A. ∆f giving
the frequency difference to the ramsey pulse. The average f̄01
at 3.9992 GHz is indicated with a dashed line. (d) Left panel:
IQ clouds corresponding to state |2, o⟩ and |2, e⟩ in units of√
n̄m after a 4 µs pulse for device B. We observe direct dis-

persive readout of the parity [29]. Right panel: Imaginary
part for each distribution corresponding to the even and odd
second transmon excited state over one charge period.

onator frequency ωr/2π = 6.12GHz and decay rate
κ/2π = 2.6MHz. The resonator is coupled with strength
g/2π = 13MHz to a transmon qubit of charging en-
ergy EC/2π = 365MHz and maximum Josephson en-
ergy EJ/2π = 6.71GHz at zero flux bias ϕext = 0. With
a maximum EJ/EC ratio of ∼ 18.5, this device is in the
shallow transmon regime with ∼ 9MHz charge dispersion
of the 0-1 transition. Figure 2(a) shows the flux depen-
dence of the transmon’s transition frequencies between
the ground state and the first two excited states. To sta-
bilize the charge offset, we measure Ramsey fringes of the
0-1 transition as a function of the gate charge, revealing
two sinusoids of periodicity 2e; see Fig. 2(c) [26, 27]. The
two measured frequencies result from random quasiparti-
cle tunneling events shifting the response by 1e; see also
the full and dashed lines in Fig. 2(a) labeled even and
odd, respectively [28]. We calibrate ng by measuring the
frequency difference at multiple charge offsets, a process
which takes about 10 s. By repeatedly performing this
active monitoring, we achieve control over ng with 2 %
precision.

To confirm the importance of gate charge on ioniza-
tion deeper in the transmon regime, where the compu-
tational states have a much weaker dependence on gate
charge, we also measure a device (device B) with a charg-
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Figure 3. Probability 1−P (0) to find the transmon in an excited state vs. flux and charge offset. (a) For device
A, we continuously populate the resonator with n̄r ≈ 6 photons at frequency ωd/2π = 6.119 72GHz and integrate over 25 µs.
In the central part of the plot we lower the photon number to n̄r ≈ 1.5 to reduce the width of the features. (b) For device B, we
stroboscopically pump the resonator with n̄r ≈ 2 photons at ωd/2π = 7.0535GHz with a 2 µs pulse every 3 µs. In both panels,
the qubit frequency corresponding to ϕext and ng = 0 is indicated by the right axis. We show as side panels selected IQ clouds
for specific values of flux and gate charge to highlight the contrast between negligible (circle) and significant (square) leakage.
The photon number n̄r is calibrated with an ac-Stark shift experiment performed at low power. The multiphoton resonance
conditions ω0j = nωd, labeled as 0 → j, are plotted on top of the experimental results (orange-red lines). The remaining
discrepancies ≲ 100MHz are consistent with frequency shifts expected from sources that are presently not accounted for in
our model, such as junction asymmetry. The dashed lines indicate the theory for inelastic scattering with a spurious mode of
frequency 0.78GHz.

ing energy EC/2π = 217MHz and maximum Josephson
energy EJ/2π = 8.72GHz at zero flux bias ϕext = 0,
yielding EJ(ϕext)/EC ≤ 40.2; see Fig. 2(b). This qubit
is coupled with strength g/2π = 186.5MHz to a readout
resonator of frequency ωr/2π = 7.05GHz and decay rate
κ/2π = 0.92MHz. At this large EJ/EC ratio, the charge
dispersion of ∼ 50 kHz is too small to be resolved through
Ramsey interferometry. To calibrate the gate charge, we
instead rely on the strong hybridization of the readout
mode with the charge-sensitive transmon state |2⟩ [29].
As shown in Fig. 2(d), by monitoring the charge offset
imprinted on the resonator’s dispersive shift for state |2⟩,
we calibrate ng with better than 5% precision.

To map the measurement-induced transitions as a
function of the qubit control parameters, we monitor
the average state of the qubit by probing the response
of the resonator with a maximum of n̄r ∼ 6 photons.
The resulting probability to find the transmon in a state
other than |0⟩, 1−P (0), is reported in Fig. 3. For both
devices we observe flux- and gate-charge-dependent fea-
tures symmetric about ng = 0.25 due to frequent par-
ity switching induced by quasiparticle tunneling events.
These features correspond to regions where transitions
out of the ground state are more pronounced. The re-
sponse of the resonator in the IQ plane on top of (square)
and away from (circle) one of these features are shown

as side panels. Here, the moderate value of n̄r ≲ 6 is
chosen to avoid excessive broadening of the gate-charge-
dependent features in the main panels and, as discussed
below, to limit the qubit’s ac-Stark shift.
To understand the origin of these features, we model

the measurement-induced transitions by treating the field
in the readout resonator as an effective classical drive on
the transmon. This is described by the time-dependent
Hamiltonian [20, 22, 30]

Ĥ(t) = Ĥt+εt(t) cos(ωdt) n̂t, (1)

where Ĥt is the undriven transmon Hamiltonian. Here
we account for higher-order harmonics of the potential
such that Ĥt reads [23]

Ĥt = 4EC(n̂t−ng)2−
∑
m≥1

EJm cos(mφ̂t). (2)

In this expression, n̂t and φ̂t are the transmon charge
and phase operators, respectively, ωd ≈ ωr is the drive
frequency, and εt(t) = 2g

√
n̄r(t) is the effective time-

dependent drive amplitude; see Appendix B. The charg-
ing energy EC and the Josephson energies EJm are fitted
to independently measured transition frequencies at dif-
ferent values of ng; see Appendix C. Higher harmonics
are fitted only for device B, as device A’s sharp ng de-
pendence of critical photon numbers is not probed.
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Figure 4. Probability of leaving the initial state for device B. (a) Experimental pulse sequence. We apply a high-power
200 ns readout pulse with variable amplitude (n̄r,max ∈ [10, 125]), straddled by two low-power 1 µs readout pulses (n̄r,max = 7)
for high-fidelity preparation and readout. An optional π-pulse enables preparation of the excited state. All pulses have frequency
ωd/2π = 7.0535GHz. The insets show the IQ data for the preparation and final measurements for n̄r,max = 50 and ng = 0.
(b) Measurement-induced transition probability as a function of gate charge and maximum average photon number in the
resonator when initializing the qubit in the ground state (left) or excited state (right). The photon number at higher powers
is calibrated by extrapolating a nonlinear semiclassical model of resonator dynamics; see Appendix E. Red circles indicate the
positions of avoided crossings in the Floquet quasienergy spectrum. The dot area is proportional to the gap size ∆ac. (c)
Numerical simulation of the experiment from the semiclassical time dynamics. The color bars are the same for theory and
experiment.

At low photon number n̄r, the qubit’s ac-Stark shift
is small and, following Eq. (1), we expect multiphoton
transitions to occur when ωij ≈ nωd, where ωij = ωj−ωi

with ωi a bare eigenfrequency of Ĥt and n an integer cor-
responding to the number of readout photons involved
in the process. The lines shown in Fig. 3 indicate the
predicted resonance conditions assuming no junction as-
symetry for selected i → j transitions, as specified in
the legend, and show remarkable agreement with the
measured leakage probability. For device A, the fea-
tures close to ϕext/ϕ0 = 0.23 (light orange lines) cor-
respond to a 0 → 2 transition involving a single drive
photon, ω02 ≈ ωd; see Fig. 2(a) where this resonance
and its charge dispersion is also evident. Because this
is a first-order process, non-QND behavior is very pro-
nounced. For this reason, a smaller resonator photon
number (n̄r = 1.5) is used in the vicinity of this resonance
compared to the rest of the plot (n̄r = 6). For device B, a

similar first-order resonance between the transmon states
0 and 3 with strong non-QND behavior is also observed
(light orange lines).

That device also shows a large leakage probability
around ω01/2π = 3.26GHz for all values of ng that does
not directly match a 0 → j multiphoton transition. This
leakage can be explained by inelastic scattering of read-
out photons via a spurious mode at ωs/2π = 0.78GHz in
the qubit environment [31–34], for which the resonance
condition ω02+ωs ≈ ωd is satisfied (black dashed line).
Assuming the existence of a mode at this frequency also
predicts the increased leakage observed around ω05+ωs ≈
2ωd (gray dashed line). Away from the resonances, the
residual transition probability shows a trend towards a
more QND behavior as the qubit-resonator detuning in-
creases, consistent with recent results [35].

At larger resonator photon number, the transmon lev-
els can be significantly ac-Stark shifted such that the
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multiphoton resonance conditions now involve the trans-
mon frequencies dressed by the drive rather than the bare
ones [16, 21, 22]. To measure ionization in this situation,
we follow the measurement protocol shown in Fig. 4(a).
We first prepare the transmon of device B, operated at
the flux sweet spot, in state |0⟩ by postselecting on the
result of a first low-power measurement (n̄r ∼ 7). In
half the realizations, we then apply a π-pulse to prepare
the excited state |1⟩. Next, we populate the resonator
with up to n̄r = 125 photons. Finally, we assess the
non-QND character of this strong drive by performing a
second QND measurement to determine the qubit’s final
state. We assume that the low power pulses are QND
compared to the high power pulse. As can be seen by
comparing the two insets in Fig. 4(a), the strong drive
results in population transfer to excited states.

Figure 4(b) shows the measured population transfer
when starting in |0⟩ (left) and |1⟩ (right) as a function of
the gate charge and resonator photon number. We ob-
serve a rich charge-dependent structure, with sharp in-
creases in non-QNDness at specific ng-dependent photon
numbers.

To obtain a quantitative understanding of these ob-
servations, we use Floquet theory to compute the
quasienergy spectrum of Eq. (1) as a function of the am-
plitude of the effective drive εt on the qubit; see Ap-
pendix D. From these quasienergies, which encapsulate
the drive-induced ac-Stark shifts, we identify avoided
crossings corresponding to multiphoton resonances, here
shown as red dots in Fig. 4(b) [22]. The gap ∆ac at
the avoided crossing, which is indicated by the area of
the dots, increases with the amplitude of the effective
drive, reflecting a stronger hybridization of the transmon
with the drive. Importantly, the quantitative agreement
between experimental results and the Floquet calcula-
tions seen in Fig. 4(b) is only obtained when including
higher-order harmonics up to m = 3; see Appendix H.
This is because the observed transitions involve highly
excited states that lie above the top of the cosine po-
tential well. These states are strongly sensitive to the
presence of higher-order harmonics as well as the gate
charge; see Appendix G. However, as discussed in more
detail in Appendix H, this dependence of the critical pho-
ton number on higher-order harmonics does not provide
sufficient information to determine the specific origin of
these harmonics in our experiment.

We note that in Fig. 4(b), the QNDness does not de-
crease monotonically with increasing n̄r,max; in some re-
gions above a resonance, higher QNDness is observed.
This behavior, consistent with the findings of Sank
et al. [16], arises from Landau-Zener transitions that
occur as the system sweeps through multiphoton reso-
nances [19, 22]. The resulting non-QNDness thus de-
pends on both the rate at which a given resonance is
traversed and the size of the associated energy gap ∆ac.

Because larger n̄r,max are associated with a faster cross-
ing of resonances during the transients, a resonance that
leads to non-QND behavior at small n̄r,max may no longer
contribute at larger values. To model these complex
dynamics, we solve the Schrödinger equation with the
Hamiltonian of Eq. (1) and following the same protocol
as the experiment; see Appendix F. The resulting theo-
retical transition probabilities are presented in Fig. 4(c).
Crucially, the numerical calculations account for the rise
and fall of the resonator population (cf. Appendix E),
which results in some resonances being traversed twice.
Despite the simplicity of the model, we find remarkable
agreement between the experimental and theoretical re-
sults, without the use of adjustable parameters.

In summary, we have directly probed the gate charge
dependence of measurement-induced transitions in trans-
mons, confirming recent theoretical predictions [20, 22].
This was made possible by active stabilization of the
gate charge. A key finding is that achieving quantita-
tive agreement between experiment and theory requires
accounting for higher-order harmonics of the transmon
Hamiltonian. Additionally, our results show that the
ring-up and ring-down transients influence measurement-
induced state transitions. Our findings suggest that
charge stabilization can help avoid regions that are most
susceptible to unwanted multiphoton transitions, there-
fore enabling a path towards higher fidelity QND read-
out. These results are broadly applicable to other non-
linear driven superconducting circuits dispersive readout,
such as parametric gates and couplers, qubit reset proto-
cols, and quantum state stabilization schemes.
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M. Oppliger, C. Eichler, and A. Wallraff, Rapid high-
fidelity single-shot dispersive readout of superconducting
qubits, Phys. Rev. Appl. 7, 054020 (2017).

[10] I. Takmakov, P. Winkel, F. Foroughi, L. Planat,
D. Gusenkova, M. Spiecker, D. Rieger, L. Grünhaupt,
A. V. Ustinov, W. Wernsdorfer, I. M. Pop, and N. Roch,
Minimizing the Discrimination Time for Quantum States
of an Artificial Atom, Phys. Rev. Appl. 15, 064029
(2021).

[11] Y. Sunada, S. Kono, J. Ilves, S. Tamate, T. Sugiyama,
Y. Tabuchi, and Y. Nakamura, Fast Readout and Reset
of a Superconducting Qubit Coupled to a Resonator with
an Intrinsic Purcell Filter, Phys. Rev. Appl. 17, 044016
(2022).

[12] F. Swiadek, R. Shillito, P. Magnard, A. Remm,
C. Hellings, N. Lacroix, Q. Ficheux, D. C. Zanuz, G. J.
Norris, A. Blais, S. Krinner, and A. Wallraff, Enhanc-
ing dispersive readout of superconducting qubits through
dynamic control of the dispersive shift: Experiment and
theory, PRX Quantum 5, 040326 (2024).

[13] M. Jerger, F. Motzoi, Y. Gao, C. Dickel, L. Buchmann,
A. Bengtsson, G. Tancredi, C. W. Warren, J. Bylander,
D. DiVincenzo, R. Barends, and P. A. Bushev, Disper-
sive qubit readout with intrinsic resonator reset (2024),
arXiv:2406.04891 [quant-ph].

[14] P. A. Spring, L. Milanovic, Y. Sunada, S. Wang, A. F.
van Loo, S. Tamate, and Y. Nakamura, Fast multiplexed
superconducting qubit readout with intrinsic purcell fil-
tering (2024), arXiv:2409.04967 [quant-ph].

[15] E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly,
R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth,
A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan,
A. Vainsencher, J. Wenner, A. N. Cleland, and J. M.
Martinis, Fast Accurate State Measurement with Super-
conducting Qubits, Phys. Rev. Lett. 112, 190504 (2014).

[16] D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends,
B. Campbell, Y. Chen, B. Chiaro, A. Dunsworth,
A. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Mu-
tus, M. Neeley, C. Neill, P. O’Malley, C. Quintana,
P. Roushan, A. Vainsencher, T. White, J. Wenner, A. N.
Korotkov, and J. M. Martinis, Measurement-induced
state transitions in a superconducting qubit: Beyond
the rotating wave approximation, Phys. Rev. Lett. 117,
190503 (2016).

[17] Z. K. Minev, S. O. Mundhada, S. Shankar, P. Rein-
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SUPPLEMENTAL MATERIAL

Appendix A: Measurement setup

Figure 5 shows the setup used for all the qubit mea-
surements. The samples are measured in a copper waveg-
uide setup similar to Ref. [36], which is then encased in
a shielding barrel with eccosorb glue on a copper cylin-
der, an Aluminium cylinder, and a Cryoperm shield. The
readout line is connected to the bottom of the waveguide,
which acts as a Purcell filter below the cutoff frequency
of 6 GHz. There is then a pin closer to the device which
is used to drive and offset the qubit. Device A exhibits a
strong variation of dephasing time T2 with gate charge,
which is linked to the charge dispersion and noise com-
ing from the qubit drive pin. After shortening the pin
and moving the device away from the qubit drive, the
measurement reported in Fig. 3 was done such that 2e is
around 40 mV and the T2 value vs gate charge indicates
a charge noise of 0.02 in units of 2e. Device B does not
exhibit a variation of T2 with charge but shows an os-
cillation of 2e for 80 mV. We amplify the signal using a
DJJAA amplifier [25] with an amplification between 15
and 20 dB for both devices. The signal is then reampli-
fied at 4K by the HEMT amplifier and at room temper-
ature using an LNF LNF-LNR1 15B SV amplifier. For
device B measurements, a homemade RF filter with a
bandwidth of 30 MHz was added to the readout driv-
ing line to remove some unwanted sidebands of the drive
pulses. The microwave signals are sent and recorded us-
ing a Presto machine, a frequency signal generation and
analysis platform from Intermodulation Products AB.

Appendix B: Semiclassical model

This section outlines the derivation of Eq. (1). The
static transmon-resonator system Hamiltonian is

Ĥtr = Ĥt+ωrâ
†â−ig(n̂t−ng)(â−â†), (B1)
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Figure 5. Experimental setup

with Ĥt the transmon Hamiltonian given by Eq. (2), n̂t
the transmon charge operator, â the annihilation opera-
tor of the resonator, ωr the bare resonator frequency, and
g the coupling strength. The system parameters are ob-
tained from spectroscopy as detailed in Appendix C. In
the presence of a drive on the resonator, the full Hamil-
tonian is

Ĥ(t) = Ĥtr−iεd sin(ωdt)(â−â†), (B2)

where εd and ωd are the drive amplitude and frequency.
In a frame rotating at frequency ωd and neglecting the
fast-rotating terms, the Hamiltonian is

Ĥ(t) =Ĥt+(ωr−ωd)â
†â−ig(n̂t−ng)(âe−iωdt−â†eiωdt)

−iεd(âe−iωdt−â†eiωdt). (B3)

We apply a displacement transformation on the resonator
which results in the replacement

â −→ â+α(t), (B4)

where α(t) is the coherent state amplitude and the re-
maining â on the right-hand-side denotes quantum fluc-
tuations of the resonator. The semiclassical approxima-
tion neglects the quantum fluctuations, leading to the
driven transmon Hamiltonian

Ĥ(t) = Ĥt+2g
√
n̄r(t) cos[ωdt+ϕ(t)](n̂t−ng). (B5)

Here, n̄r(t) = |α(t)|2 is the average photon number and
ϕ(t) is a slowly oscillating phase of the resonator field.
Since it varies slowly on the timescale of a resonance
crossing, this phase can be neglected—it does not affect
the Landau-Zener dynamics responsible for population
transfer. Neglecting it also makes Eq. (B5) time-periodic.

In the dispersive readout, the resonator field takes a
value αi(t) that is conditional on the transmon state
i. The semiclassical dynamics of αi(t) is determined
by the associated photon-number-dependent pulled res-
onator frequency ω̃r,i(|α|2) for the ith state with the
equation of motion [19]

α̇i = −i[ω̃r,i(|αi|2)−ωd]αi−καi/2−iεd/2. (B6)

We discuss how to extract the functional form of
ω̃r,i(|α|2) in Appendix D. Our dynamical simulations are
performed by first solving Eq. (B6) and then using the
result to solve the Schrödinger equation under Eq. (B2).

Importantly, when part of the qubit population tran-
sitions to another state under a multiphoton resonance,
the system evolves into an entangled transmon-resonator
state that involves multiple αi(t). The resonator state
then becomes highly nonclassical, highlighting a key lim-
itation of the semiclassical treatment. However, the res-
onator evolution can still be approximated by considering
the dynamics of independently driven oscillators, each
associated with a distinct transmon state [19]. There-
fore, even above the ionization critical photon number,
Eq. (B6) accurately describes the dynamics of the res-
onator associated with the ith transmon state. By care-
fully choosing ω̃r,i(|α|2), we compute the resonator dy-
namics associated with the state population that remains
in the initial qubit state throughout the readout process;
see Appendix D. This allows us to investigate the dy-
namics of measurement-induced transitions at multiple
critical photon numbers for a given initial qubit state.

Appendix C: Parameter fit with higher-order
harmonics

The transmon Hamiltonian for a multiharmonic
Josephson potential is given by Eq. (2) in the main text.
It has been shown that higher-order harmonics, EJm for
m > 1, must be considered to accurately describe the
energies and charge dispersion of the transmon states be-
yond the qubit subspace [23].

The parameters (EC , EJ1, EJ2, EJ3, g, ωr) of Eq. (B1)
for device B are fitted to spectroscopy data by minimizing
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the loss function

f =

3∑
i=1

|ωmodel
0i,ng=0−ω

exp
0i,ng=0|/i

+

3∑
i=2

|ωmodel
0i,ng=0.5−ω

exp
0i,ng=0.5|/i

+

1∑
i=0

|ωmodel
r,i −ωexp

r,i | (C1)

using the Sequential Least Squares Programming opti-
mization algorithm. Here, the ω0i are the qubit tran-
sition frequencies between states 0 and i, and ωr,i is
the pulled resonator frequency corresponding to trans-
mon state i. The model frequencies, ωmodel

0i and ωmodel
r,i ,

are obtained from numerical diagonalization of Eq. (B1).
The experimental qubit transition frequencies, ωexp

0i , are
measured in a Ramsey experiment at ng = 0, in which
transition frequencies of both parity are probed due to
rapid quasiparticle tunneling events. The experimental
pulled resonator frequencies, ωexp

r,i , are measured from

the resonator response. The factor 1/i ensures that
a larger weight is given to transitions involving lower-
energy transmon states, since the quantities ωexp

0i /i are all
roughly measured to a precision of ∼ 0.1MHz. Note that
we only include the transition frequency ω10 at ng = 0
in the cost function, owing to its negligible charge dis-
persion. To avoid overfitting, harmonics EJm of order
m ≥ 4 are set to zero, ensuring that the number of fitted
parameters remains smaller than the number of measured
frequencies.

The resulting fit parameters are shown in Table I. The
first row presents the parameters fitted to the multihar-
monic model. The rapid decay of the Josephson energies
with increasing indexm justifies the approximation of ne-
glecting harmonics with m ≥ 4. The second row presents
the parameters fitted to the conventional single-harmonic
transmon model. Significant differences in the fit param-
eters are observed between the two models, notably a
change in EJ/EC from 40.2 to 43.5.

To investigate the origin of the higher-order harmon-
ics in our device, we fit the EJm to a model in which
they arise from a stray inductor with inductive energy
EL in series with the Josephson junction; see the Supple-
mentary Information of Ref. [23, 37]:. In the limit where
EJ/EL ≪ 1, the higher harmonics EJm are then related
to the Josephson and inductive energies by

EJ1 ≈ EJ

[
1−1

8

(EJ

EL

)2

+
1

192

(EJ

EL

)4
]
, (C2a)

EJ2 ≈ EJ

[
−1

4

(EJ

EL

)
+

1

12

(EJ

EL

)3

− 1

96

(EJ

EL

)5
]
, (C2b)

EJ3 ≈ EJ

[
1

8

(EJ

EL

)2

− 9

128

(EJ

EL

)4
]
. (C2c)

Fitting our data to this model yields EJ/2π = 8.693GHz
and EL/2π = 284.2GHz, corresponding to a linear in-
ductance of L = 0.575 nH. We expect a geometric induc-
tance in that order of magnitude for that device geom-
etry (see [23] supplementary). The third row of Table I
shows the values of the higher-order harmonics and of
the other parameters resulting from this fit. We note
that the obtained parameters are in close range to the
multiharmonic model ones, as is further discussed in Ap-
pendix H.

Appendix D: Floquet branch analysis

This section describes the Floquet branch analysis, a
procedure for the identification of the critical photon
numbers at which population is expected to leak outside
the qubit subspace during readout [22].
When κ ≪ ωd, the effective drive amplitude εt(t) =

2g
√
n̄r(t) in Eq. (1) varies on a timescale much longer

than the period of the drive, T = 2π/ωd. Thus,
the Hamiltonian is approximately periodic at any given
time, yielding an instantaneous Floquet spectrum at that
time [38]. Starting from εt = 0 at time t = 0, the drive
amplitude is increased by finite increments δεt. At each
increment, the Floquet modes |ϕ[εt]⟩ and quasienergies
ϵ[εt] are obtained by diagonalizing the one-period prop-
agator over one period of the drive,

Û(t+T, t) |ϕ(t)⟩ = e−iϵT |ϕ(t)⟩ . (D1)

The Floquet branch analysis classifies the modes and
quasienergies into Floquet branches. At zero drive am-
plitude, the Floquet modes are just the bare transmon
states, |ϕi[0]⟩ = |i⟩. The Floquet branch Bi associated
with state |i⟩ is constructed from the bare states as fol-
lows. The drive amplitude is progressively increased in
increments of δεt = 5MHz. For each amplitude εt, the
next Floquet mode |ϕ[εt]⟩ and associated quasienergy
ϵ[εt] of the branch are chosen by maximizing the over-
lap ∣∣〈ϕ[εt]∣∣ϕi[εt−δεt]〉∣∣2. (D2)

The resulting Floquet branches for the multiharmonic
model parameters of device B, see Appendix C, are shown
in Fig. 6. Panel (a) shows the quasienergies of the Flo-
quet branches, and panel (b) shows the average transmon
population of the Floquet modes, Nt,i =

∑
j j|⟨j|ϕi(0)⟩|2.

Both quantities are plotted as a function of the average
photon number n̄r = (εt/2g)

2. At specific photon num-
bers, resonances between the quasienergies of different
branches lead to significant hybridization of the Floquet
modes. This results in avoided crossings of the quasiener-
gies in panel (a) and in a swapping of the transmon popu-
lations of the Floquet branches in panel (b). The avoided
crossings of the ground and excited state branches allow
us to identify the Floquet critical photon numbers for
readout, which are indicated by the dotted vertical lines.
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Model EC/2π (MHz) EJ1/2π (GHz) EJ1/EC EJ2/EJ1 EJ3/EJ1 ωr/2π (GHz) g/2π (MHz)
Multiharmonic 216.6 8.718 40.2 -0.768 % 0.0398 % 7.04767 186.5
Conventional 205.6 8.948 43.5 0 0 7.04765 181.9

Stray inductance 217.4 8.694 40.0 -0.765 % 0.0117 % 7.04805 180.7

Table I. Fitted parameters for device B.
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Figure 6. Floquet branch analysis of device B. (a)
Floquet quasienergies, (b) average population of the Flo-
quet modes, and (c) photon-number-dependent resonator fre-
quency ω̃r,i(n̄r) as a function of the average photon number
n̄r = (εt/2g)

2 for ng = 0.23. The dotted vertical lines indi-
cate multiphoton resonances for the ground (blue) and excited
(red) qubit states. In (c), ω̃diab

r,0 (blue dashed line) and ω̃diab
r,1

(red dashed line) are the pulled resonator frequencies obtained
by diabatically tracking the qubit branches. The dotted black
line indicates the value of ωd. Branches B0, B1, B5, B11, and
B13 are highlighted in color.

Note that multiple critical photon numbers can be ex-
tracted for each qubit state by diabatically tracking the
branches, as explained further below.

Because the increment δεt is chosen to be relatively
small, the tracking emulates an adiabatic increase in the
photon number n̄r as a function of time. Such an adi-
abatic evolution through an avoided crossing results in
full population transfer at that avoided crossing. To
quantitatively understand the effect of the resonances on
measurement-induced transitions, however, it is crucial

to examine how they affect the dynamical processes dur-
ing readout. During this process, the average resonator
photon number n̄r can increase more or less rapidly, as
discussed in Appendix F. At low photon number, the
state population mostly follows the initial branch. When
the photon number reaches an avoided crossing of the
quasienergies, the transmon population splits between
the branches following a Landau-Zener process [39]. The
transition can be more or less diabatic depending on the
rate of change of n̄r [19]. The probability of staying on
the initial branch, and thus of exiting the computational
subspace, is 1−PLZ, where PLZ = exp(−π∆2

ac/2v) is the
Landau-Zener transition probability. Here, ∆ac is the en-
ergy gap at the avoided crossing and v(εt) is the speed of
passage through the resonance [40–43]. Thus, larger gaps
and lower crossing speeds both increase the probability
of the measurement-induced transitions.
Here, we aim to track the qubit population beyond the

first crossing to capture multiple critical photon num-
bers. In Fig. 6(b), for example, the population initialized
in B0 can transition to higher-energy levels at n̄r ≈ 88.
However, if the population diabatically transfers to B11,
which is 0-like after the crossing, the next critical photon
number is found at n̄r ≈ 133 due to an avoided crossing
with B5. To diabatically track the state i and identify
all such critical photon numbers for that initial state, we
start from branch Bi at zero photon number and gradu-
ally increase n̄r. When an avoided crossing between Bi

and another branch Bj is reached, the tracked branch
switches to Bj , which becomes more i-like beyond the
crossing. Then, Bj is tracked until the next avoided
crossing with another branch Bk. The Floquet critical
photon numbers shown in Fig. 4(b) correspond to all pho-
ton numbers at which the tracked branch is changed.

Even though the semiclassical model does not explic-
itly include the resonator, the Floquet analysis never-
theless enables the computation of the pulled resonator
frequencies for each qubit state and for each resonator
photon number. To do so, we assign to each Floquet
branch Bi an effective nonlinear oscillator with photon-
number dependent frequency ω̃r,i(n̄r) given by

ω̃r,i(n̄r) = ωr+ϵi(n̄r+1)−ϵi(n̄r), (D3)

where ϵi(n̄r) is the Floquet quasienergy of branch Bi

computed at the effective drive amplitude εt = 2g
√
n̄r.

The frequencies obtained in this way are very close
to those obtained from the diagonalization of the full
transmon-resonator Hamiltonian [22]. This method thus
accounts for nonlinear effects at high photon numbers



11

while remaining computationally more efficient than full
diagonalization. The effective oscillator frequencies of
the Floquet branches are shown in Fig. 6(c). They
display significant nonlinear photon number dependence
around the critical photon numbers. To dynamically fol-
low the population in the qubit-like branch, we define
ω̃diab
r,i , the effective oscillator frequency obtained by dia-

batically tracking branch Bi as described above. Across
the relevant range in photon number, the pulled res-
onator frequencies ω̃diab

r,0 and ω̃diab
r,1 vary approximately

linearly with n̄r, with slopes K0/2π ≈ −6.6 kHz and
K1/2π ≈ −5.5 kHz corresponding to the resonator self-
Kerr nonlinearities. The diabatic oscillator frequencies
for branches B0 and B1 are shown as dashed colored lines
in panel (c).

The choice to follow the resonator dynamics associ-
ated with the qubit-like branch stands on the assumption
that most of the state population does not suffer from
measurement-induced transitions and therefore remains
in the initial branch for the whole readout duration.
However, this approximation does not always hold. For
example, at large photon numbers, measurement-induced
transitions can sometimes lead to population transfers
exceeding 50% due to the presence of large avoided cross-
ing gaps in the quasienergy spectrum. Despite this lim-
itation, this choice allows us to model the resonator
dynamics for the remaining qubit population, ensuring
accurate modeling of the measurement-induced transi-
tions even beyond the first threshold. Hence, the time-
dynamics simulations correctly identify many photon
numbers at which we observe drops in the experimental
qubit state survival probability. However, with this ap-
proach, we expect the modeling of the resonator dynam-
ics to be inaccurate for the state population transferred
to high-energy states, for which the photon-number de-
pendent frequency ω̃r,i can be significantly off-resonant
from that of the qubit-like branch, ω̃diab

r,i . Therefore, we
do not expect the simulations to quantitatively repro-
duce the population transfer from higher-energy states
to the qubit-like state during the resonator ramp-down.
In Fig. 4, discrepancies between the qubit state survival
probability for the experimental data in panel (b) and the
time-dynamics simulations in panel (c) are attributed to
this source of error.

Appendix E: Nonlinear photon number calibration

Here, we describe the procedure used to calibrate the
photon number of device B as a function of the exper-
imentally applied voltage. At low photon numbers, the
qubit frequency is ac-Stark shifted proportionally to the
average resonator photon number n̄r,

ω̃q(n̄r) = ωq+χn̄r. (E1)

Here, χ = χ1−χ0 is the full dispersive shift, with χ0 and
χ1 the dispersive shifts for the ground and excited states,
respectively. In this linear regime, the extracted shifted

0 3 6 9
Voltage (mV)

3.602

3.604

q/2
 (G

H
z) (a)

0.00

0.25n r

(b)

Theory
Exp.

0 1
d/2  (MHz)

0.00 0.05 0.10
Voltage (V)

0

50

100

150

n r
,m

ax

(c)

|0
|1

0 5 10
t

0

80

n r
(t)

0 10 20
d/2  (MHz)

Figure 7. Photon number calibration for device B. (a)
Experimentally measured qubit frequencies as a function of
applied voltage (purple dots). The background shows the
measured spectroscopic response for each voltage. (b) Steady-
state photon number extracted from Eq. (E1) as a function of
voltage in the linear regime (purple dots), and computed by
solving Eq. (B6) as a function of the resonator drive ampli-
tude εd (light blue line). The curves are made to correspond
by rescaling the applied voltage, yielding a linear relation be-
tween the voltage and εd. (c) Maximum average photon num-
ber obtained by solving Eq. (B6) as a function of applied volt-
age for a pulse duration of 200 ns when the qubit is initialized
in the ground state (blue) or excited state (red). The inset
shows the time evolution of n̄r for εd/2π = 15MHz. The solid
lines show the evolution of the photon number when the drive
is turned off after 200 ns (dotted vertical line) for the qubit
initialized in the ground state (blue) or excited state (red).
The dashed lines show the evolution of the photon number if
the drive is not turned off after 200 ns.

frequencies ω̃q can be converted into a photon number
using the measured χ shift and Eq. (E1). This in turn
allows us to convert the applied voltage into a photon
number through the observed relationship between ω̃q

and the voltage. Figure 7(a) shows the experimentally
measured qubit frequency as a function of the applied
voltage (purple dots). The values of χ0 and χ1 are mea-
sured separately and subtracted to yield the total dis-
persive shift χ/2π = −2.5MHz. This value yields the
relationship between photon number and applied voltage
shown as the purple dots in Fig. 7(b).

At larger photon numbers, the linear calibration is not
expected to be accurate [44]. To calibrate the photon
number in the nonlinear regime, we account for the non-
linear dispersion extracted in Appendix D (here domi-
nated by the resonator self-Kerr). We first use the cali-
bration in the linear regime to establish the relationship
of the resonator drive εd to the experimentally applied
voltage. To do so, we compute the steady-state photon
number when the qubit is in the ground state, n̄r ≡ |α0|2,
as a function of the drive amplitude εd. We do this by
solving Eq. (B6) using the (diabatic) nonlinear dispersion
ω̃diab
r,0 (n̄r) for i = 0 and the experimental drive frequency
ωd. The result is shown in Fig. 7(b). By merely rescaling
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the experimentally applied voltage by a constant factor,
we are able to match the experimentally calibrated pho-
ton numbers (purple dots) to the theoretical values (blue
line) in the linear regime. This establishes that the rela-
tionship between the voltage and εd is linear. This linear
relation is expected to hold because the nonlinearity of
the measurement chain is expected to be hold within the
explored voltages.

Using the characterized linear relationship between the
applied voltage and εd, we solve Eq. (B6) to yield the
average photon number at any given integration time.
Figure 7(c) shows the maximum photon number for a
pulse duration of 200 ns as a function of the applied
voltage. The blue line shows the result when the qubit is
initialized in the ground state with dispersion ω̃diab

r,0 (n̄r),
and the red line shows the result when the qubit is ini-
tialized in the excited state with dispersion ω̃diab

r,1 (n̄r).
The upper axis shows the corresponding drive ampli-
tude εd. At large voltages, the resonator photon num-
ber reaches considerably larger values when the qubit is
in the ground state. This occurs because the drive fre-
quency ωd is set between the pulled resonator frequen-
cies for the two qubit states and because the self-Kerr
nonlinearity is negative. For that reason, the frequency
ω̃diab
r,0 (n̄r) becomes more resonant with ωd at large photon

numbers; see Fig. 6(c). By contrast, ω̃diab
r,1 (n̄r) becomes

more off-resonant with ωd at large photon numbers. The
inset of Fig. 7(c) shows the time-dependent photon num-
ber for εd/2π = 15MHz when the qubit is initialized in
the ground state (blue line) or in the excited state (red
line). The vertical dotted line indicates the experimen-
tal pulse duration t = 200 ns. We also show what the
evolution of the photon number would be for the ground
state (dashed blue line) and for the excited state (dashed
red line) if the drive were not turned off beyond 200 ns.
Since κ ∼ |ωdiab

r,i −ωd| for both initial qubit states, the
oscillator is in the underdamped regime and the pho-
ton number oscillates in time. Nevertheless, there are no
oscillations in the photon number within the experimen-
tal readout pulse duration of 200 ns. We note that this
regime is different from the one investigated in Ref. [22],
where it was assumed that κ ≫ |ωdiab

r,i −ωd|. Calibrating
the photon number in the appropriate regime is crucial
to accurately model the resonator dynamics and identify
the critical photon number.

Finally, we note that we only calibrate the photon
number for one value of ng since the diabatic disper-
sions ω̃diab

r,i (n̄r) is largely insensitive to ng for the com-
putational states. These dispersions also ignore the ef-
fect of the ng-sensitive multiphoton resonances (see Ap-
pendix D). Therefore, we expect the calibration to be
approximately the same for all ng.

Appendix F: Dynamics of the driven transmon

In this section, we describe the time dynamics simula-
tions of the driven transmon used to study the dynamics

of qubit ionization in device B. The transmon state is first
initialized in the ground or excited state, |ψ(t0)⟩ = |i⟩
with |i⟩ = |0⟩ or |1⟩, respectively. It is then evolved by
solving the Schrödinger equation for the effective time-
dependent Hamiltonian in Eq. (1), with solution at time

t given by |ψi(t)⟩ = Û(t, t0) |i⟩. The time-dependent av-
erage photon number n̄r(t) = |αi(t)|2, which determines

the effective drive amplitude εt(t) = 2g
√
n̄r(t) in Eq. (1),

is computed from Eq. (B6) with initial qubit state i. The
resonator drive εd is switched on at the initial time, lead-
ing to a gradual increase of n̄r(t). The drive is then
turned off after 200 ns, after which the resonator gradu-
ally empties on a timescale of 1µs ≈ 6/κ. We compute
the Floquet basis |ϕi[εt(t)]⟩ associated with the instanta-
neous value of εt(t). The projection of the time-evolved
state on that instantaneous Floquet basis then gives the
time-dependent probability P (j|i) of transitioning from
the initial ith branch to the final jth branch:

P (j|i) = |⟨ϕj [εt(t)]|ψi(t)⟩|2. (F1)

In particular, the quantity 1−P (i|i) describes the final
population transfer out of the initial Floquet branch at
the final time t = 1.2µs and is thus a proxy for the exper-
imentally observed probability of measurement-induced
transitions (assuming that the two low-power readout
pulses cause negligible state transitions).
Whenever the photon number n̄r approaches an

avoided crossing in the Floquet quasienergies, the popu-
lation generically splits between the two associated Flo-
quet branches. These populations subsequently interfere
in a way that affects the population transfer at the fi-
nal time. Experimentally, however, rapid decoherence
of such superpositions is expected since the resonator
pulls ω̃r of the Floquet branches are substantially dif-
ferent; see Fig. 6(c). Any fluctuation in the photon num-
ber due to, e.g., quantum fluctuations, leads to fluctua-
tions in the quasienergy difference between the branches
and thus to dephasing. The aforementioned interference
effects, which are a feature of our fully coherent semi-
classical model, are thus not expected to be observed in
practice. To roughly mimic this unavoidable dephasing
between Floquet branches, the coherences in the Floquet
basis are manually set to zero at the end of the ramp up
at t = 200 ns. The diagonal elements of this decohered
state are then evolved separately and coherently during
the ramp down. The final transition probability is recon-
structed by summing the transition probabilities for all
possibilities:

P (i|i) =
∑
j

Pdown(i|j)Pup(j|i). (F2)

Here, Pup(j|i) = |⟨ϕj [εt(tup)]|ψi(tup)⟩|2 is the population
transferred from the prepared ith transmon state to the
jth Floquet mode after a ramp-up of tup = 200 ns. The

quantity Pdown(i|j) = |⟨ϕi[εt(tf )]|Û(tf , tup)|ϕj [εt(tup)]⟩|2
is the transition probability from the state initialized in
the jth Floquet mode at the time tup back to the ith
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Figure 8. Measurement-induced transitions without
coherence collapse in the semiclassical dynamics.The
transition probability is shown as a function of gate charge
and average photon number when initializing the qubit in (a)
the ground state and (b) the excited state. The inset high-
lights the presence of fast oscillations in the transition prob-
ability.

Floquet mode at the end of the ramp-down at the final
time tf = 1.2 µs. In the bottom row of Fig. 4(b) of the
main text, we plot the quantity 1−P (i|i) computed from
Eq. (F2) for various values of the drive amplitude εd and
of the offset charge ng.

To illustrate this point, Fig. 8 shows the probability
of state transition at the final time without the artificial
collapse of the coherence starting in (a) the ground state
and (b) the excited state. While the results first appear
to be very coarse, the inset reveals the presence of very
sharp oscillations as a function of both ng and n̄r. The
absence of oscillations in the experimental data is further
confirmed by the results of the quantum simulations out-
lined below. However, we do not present the full sweep
over the gate charge and drive power due to the signifi-
cant time and computational resource requirements.

To highlight the dynamical nature of the transition
process, we plot the transition probability as a function
of time in Fig. 9(a) for different values of ng; the gate
charge; see the solid lines. Figure 9(b) shows the average
photon number as a function of time, with the horizon-
tal dashed lines showing the critical photon numbers ob-
tained from the Floquet analysis for the same values of ng
as in (a). The results highlight the importance of consid-
ering the effect of both the photon number ramp-up and
ramp-down on the final transition probability, with sharp
variations of the probability observed when the critical
photon number is reached during both phases. The qubit
population transitions at later or earlier times depending
on the charge value, which is due to resonances occurring
at critical photon numbers that depend on ng. Note that
the probabilities always peak near 50% at the critical
photon numbers, as the Floquet modes are in an equal
superposition of the qubit states at that point.

In addition to comparing with the experimental data,
we further validate the accuracy of the predictions of the
semiclassical model by computing the time dynamics of
the full quantum model described by Eq. (B1), which
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Figure 9. Temporal profile of measurement-induced
transitions in simulations of device B. (a) Probability
to transition out of the qubit excited state branch as a func-
tion of time when solving the dynamics of the semiclassical
model (solid lines) and of the quantum model (dashed lines)
for three different values of the gate charge. (b) Average
photon number calculated from the semiclassical model for a
drive amplitude εd/2π = 16MHz turned on for 200 ns when
initializing the qubit in the excited state. The dashed lines
correspond to the Floquet critical photon numbers for the
same values of the gate charge as in (a).

evolves under the following Lindblad master equation,

∂tρ̂ = −i[Ĥtr−iεd sin(ωdt)(â−â†), ρ̂]+κD[â]ρ̂. (F3)

Here, εd and ωd are the drive amplitude and frequency,
κ is the single-photon loss rate of the resonator, and
D[â]ρ̂ is the usual Lindblad dissipator. The simulated
Hilbert space is large because of the high resonator pho-
ton number and the necessity of considering many trans-
mon states above the cosine potential, which makes the
simulations computationally intensive and limits the abil-
ity to perform extensive parameter sweeps. Rather than
simulating the full evolution, we evolve individual real-
izations of 500 quantum trajectories, which significantly
accelerates the calculations. Instead of sweeping over the
entire parameter range, we only investigate the dynamics
for εd/2π = 16MHz and the same three values of gate
charge used in Fig. 9(a). The state is initialized in the
dressed excited qubit state at zero photon number.
At each moment, we project the evolved state onto

the set of states defined by the diabatic tracking of the
full quantum branch B1, which is constructed using the
branch analysis formalism of Ref. [19]. This quantity
defines the probability that the population remains in
the initial state at each moment, in a similar spirit to
the quantity defined in Eq. (F1) for the semiclassical dy-
namics. The results are shown as a function of time in
Fig. 9(a) for ng = {0.42, 0.45, 0.48}. In all three cases,
the quantum time-dynamics shows that a sharp increase
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in state transition probability occurs at the same pho-
ton numbers and times as in the semiclassical model.
Furthermore, both models show the effect of the pho-
ton number ramp-up and ramp-down on state transi-
tions, with an increase in population transfer observed
around the critical photon number during both phases.
Note that the increase of the transition probability is
smoother for the quantum model than the semiclassical
one due to the quantum photon number fluctuations in
the resonator. Furthermore, relatively good agreement
in the final transition probability is observed between
the quantum and semiclassical models. The agreement
between the results of both models validates the use of
the semiclassical model to predict both the onset and the
probability of demolition, with the added benefit of being
much more computationally efficient.

Appendix G: Impacts of charge-sensitive states on
measurement-induced transitions

In this section, we investigate the role of high-
energy states in the charge dependence of measurement-
induced transitions. The charge dispersion of the trans-
mon increases exponentially with the level index [3].
This impacts the resonances that involve these excited
states. Figure 10(a) shows the gate-charge dependence
of the Floquet critical photon numbers for measurement-
induced transitions from the qubit ground state to ex-
cited states i in device B. All resonances involve very
high-energy states, such as 8, 9, and 11. These states lie
above the cosine potential well and exhibit charge disper-
sion on the order of 1GHz. As expected, the higher the
level index, the stronger the dependence on ng, with the
resonance involving 11 showing the most pronounced de-
pendence. To emphasize the role of higher-energy states
in the charge-dependence of state transitions, Fig. 10(b)
shows the quasienergy spectrum for ng = 0.01 (solid
lines) and ng = 0.11 (dashed lines). At low photon num-
ber, the quasienergy of branch B0 does not show a de-
pendence on ng due to the negligible charge dispersion of
the ground state level in the transmon regime, which is
clearly not the case for B8 and B9. When ng = 0.01, a
crossing between B0 and B9 is observed around n̄r ≈ 95.
However, when ng = 0.11, an earlier crossing with B8

takes place at n̄r ≈ 40, while the resonance with B9

does not exist. The resonance between B0 and B8 is also
present when ng = 0.01, but at a smaller photon number
n̄r ≈ 10. The interaction strength in this case is not suf-
ficient to induce significant hybridization of the states,
which prevents the formation of an avoided crossing for
the selected drive increment δεt = 5MHz.
Even deeper in the transmon regime, the onset of

measurement-induced transitions is expected to remain
charge-dependent. Indeed, while the charge sensitivity
of the qubit states decreases exponentially with EJ/EC ,
the higher-energy levels involved in the resonances do
not benefit from this protection. Figure 11(a) shows the
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Figure 10. Investigation of the role of higher-energy
states in measurement-induced transitions in device
B. (a) Floquet critical photon numbers for resonances be-
tween the ground state and excited states as a function of
gate charge. Branches involved in the resonances are identi-
fied on the plot. (b) Quasienergy of branches B0, B8 and B9

taken at ng = 0.01 (solid lines) and ng = 0.11 (dashed lines)
as a function of average photon number. The vertical lines in
(a) serve to guide the eye.

charge-dependent Floquet critical photon numbers as a
function of readout frequency for a deep transmon with
EJ/EC = 100. The critical photon numbers are shown
as colored dots for both the ground and excited states,
with the colors indicated six different values of the gate
charge. The area of the dots is proportional to the size
of the quasienergy gap. Strong dependence of the po-
sition of the resonances on the gate charge is observed.
In some range of ωd, the critical photon numbers are
on average larger. However, there are still resonances oc-
curring at lower photon numbers for specific values of ng,
even though we consider only six values of ng. Therefore,
selecting a readout frequency for which variations of the
charge do not limit the average onset of measurement-
induced transitions is very difficult, if not impossible. In
contrast, Fig. 11(b) shows the same critical photon num-
bers as in Fig. 11(a), but for a single value of the charge,
ng = 0. In this case, the distribution of the resonances
is much less dense, and one can easily identify values of
ωd for which the onset of transitions is pushed to large
photon numbers. This suggests that the critical photon
numbers can on average be increased with charge stabi-
lization even deep in the transmon regime, which could
prove beneficial to dispersive readout performance.
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Figure 11. Measurement-induced transitions in
the deep transmon regime with EJ/EC = 100 and
ωq/2π = 3.61GHz. Floquet critical photon numbers in-
volving the qubit computational states as a function of ωd for
(a) 6 different values of offset charge linearly spaced between
ng = 0 and ng = 0.5 (see legend) and (b) for ng = 0 only. I
changed the plot here. Let me know what you prefer between
image deep transmon and image deep transmon 2.

Appendix H: Comparison of the results with and
without inclusion of higher-order harmonics

As discussed in Appendix C, we fit both the conven-
tional transmon model and the higher-order harmonics
model to the measured spectroscopy data of device B.
To avoid over fitting only the first and second transmon
transitions are fitted to the conventional model. More-
over, the time dynamics of the semiclassical model is
computed using the parameters fitted to both the con-
ventional transmon and higher-order harmonics models.
The comparison is shown in Fig. 12 for the ground state
(left column) and the excited state (right column). Pan-
els (a-b) reproduce the results presented in the main text,
see Fig. 4(b), namely the experimental data and the semi-
classical time-dynamics results with the parameters fit-
ted to the higher-harmonics model. Panel (c) shows the
semiclassical time-dynamics results for the conventional

model parameters. The latter do not align with the ex-
perimental data shown in (a). For example, significa-
tive transitions out of the qubit ground state is expected
around ng ≈ 0 at low photon numbers, which is not ob-
served in the experimental data.
To make this comparison clearer, the Floquet criti-

cal photon numbers computed from the two sets of pa-
rameters are displayed above the experimental data in
panel (a). Significant mismatch is observed between
the offset-charge dependent features in the experimen-
tal data and the critical photon numbers for the conven-
tional transmon model (black circles). This is in sharp
contrast with the excellent agreement between the ex-
perimental features and the critical photon numbers for
the higher-harmonics model (red circles). The dispar-
ity between the theoretical predictions of the two mod-
els can be explained by the significant variation in the
ratio EJ1/EC , as was discussed in Ref. [23]. This ra-
tio has a considerable impact on the energy and dis-
persion of the transmon’s high-energy states involved in
measurement-induced transitions. These results support
the presence of higher-order harmonics in the transmon
Hamiltonian and highlight the need to carefully model
the high-energy sector of the transmon, and potentially of
other Josephson-junction based qubits, in order to accu-
rately reproduce the onset of measurement-induced state
transitions.
We note that the results of the time dynamics using the

parameters from the series inductance fit, which are listed
in the third row of Table I, are very similar to those shown
in Fig. 12(b). This is due to the fact that the parame-
ters are in close range to those obtained from the higher-
harmonics fit, see the first row of Table I. The largest
relative variation of the parameters resides in the third-
order harmonics, EJ3. However, with EJ3/EJ < 0.1%,
even relatively large variations of this parameter does not
significantly impact neither the onset nor probability of
demolition. Since the experimental results can be accu-
rately reproduced with two sets of parameters that fall
within the physical bounds of both the high-transparency
channels in the junction [23] and the series inductance
models with a realistic value of L = 0.575 nH [23], our
analysis does not provide further insight into the phys-
ical origin of the higher-order harmonics in the Hamil-
tonian. However, in the case of transmons with larger
harmonics [23], investigating the charge-dependent onset
of demolition could be used as a means of scanning the
high-energy spectrum of the transmon. In this case, com-
paring the experimental results to the theoretical predic-
tions from the different model could help elucidate the
origin of these harmonics.
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Figure 12. Impact of higher-order harmonics in the modeling of device B on the transitions. Measurement-induced
transitions for the ground state (left column) and the excited state (right column) as a function of offset charge and maximal
readout photon number. (a) Experimental data is shown in the background, with circles on top indicating the positions of
avoided crossings in the Floquet quasienergy spectrum for the higher-harmonics model (red) and the conventional transmon
model (black). The dot area is proportional to the gap size ∆ac. (b-c) Semiclassical time dynamics results using the Hamiltonian
parameters fitted to (b) the higher-harmonics model and (c) the conventional transmon model.
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