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The fidelity and quantum nondemolition character of the dispersive readout in circuit QED are
limited by unwanted transitions to highly excited states at specific photon numbers in the readout
resonator. This observation can be explained by multiphoton resonances between computational
states and highly excited states in strongly driven nonlinear systems, analogous to multiphoton
ionization in atoms and molecules. In this work, we utilize the multilevel nature of high-EJ/EC

transmons to probe the excited-state dynamics induced by strong drives during readout. With up
to 10 resolvable states, we quantify the critical photon number of ionization, the resulting state after
ionization, and the fraction of the population transferred to highly excited states. Moreover, using
pulse-shaping to control the photon number in the readout resonator in the high-power regime, we
tune the adiabaticity of the transition and verify that transmon ionization is a Landau-Zener-type
transition. Our experimental results agree well with the theoretical prediction from a semiclassical
driven transmon model and may guide future exploration of strongly driven nonlinear oscillators.

I. INTRODUCTION

The ability to perform fast, high-fidelity, quantum non-
demolition (QND) measurements is essential for quantum
error correction and, more generally, for any quantum
circuit that requires mid-circuit measurement. The stan-
dard method to qubit measurement in superconducting
circuits is dispersive readout [1, 2]. In this approach,
a superconducting qubit, e.g., transmon [3] or fluxo-
nium [4], weakly coupled to a far-detuned resonator, in-
duces a state-dependent frequency shift to the resonator.
A qubit measurement is performed by exciting the res-
onator with a readout tone, such that the field in the
resonator entangles with the qubit, resulting in a pro-
jection of the qubit state as the field is detected [5]. In
principle, this process is QND, and the signal-to-noise
ratio within a given time can be improved by increasing
the amplitude of the resonator field. Recent experiments
have achieved over 99% assignment fidelity on transmons
with readout times equal to or less than 100 ns [6–10].
Despite this progress, readout errors continue to be a ma-
jor bottleneck in achieving fault-tolerant quantum com-
putation [11, 12].

An important limitation to dispersive readout in a
transmon is that strong drives can excite the transmon
outside its computational two-level subspace [6, 10, 13–
17] in a process that has been referred to as measurement-
induced state transition (MIST) [14] and transmon ion-
ization [16, 18, 19]. Multiphoton qubit-drive resonances
have been identified as a source of these transitions [14],
and theoretical frameworks capable of predicting their
occurrence have been developed [14, 17, 18, 20–22].
These tools have also been applied to the fluxonium [23–
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25] and to develop methods for mitigating ionization [26–
29]. This phenomenon bears some resemblance to multi-
photon ionization in atoms and molecules, where a strong
laser or microwave field promotes the electron from a
bound state into the continuum [30–35]. In both cases,
the system can be driven into a highly excited state with
delocalized wavefunctions and energies above the confin-
ing potential.

A comprehensive understanding of these multiphoton
processes is a key step in developing strategies to avoid
unwanted transitions in dispersive readout. While ex-
perimental results are consistent with theoretical predic-
tions for the critical photon number of transmon ion-
ization, other features—such as the final state reached
and the occurrence of Landau-Zener dynamics—remain
unverified. It is challenging to observe these phenom-
ena since the control and measurement of typical trans-
mons are often limited to the 4 lowest states, excluding
the highly excited states. In this work, we study these
unexplored features of transmon ionization by directly
measuring its excited-state dynamics using high-EJ/EC

transmons that enable high-fidelity control and readout
of 10 energy eigenstates [36, 37]. In the regime of nega-
tive transmon-resonator detuning, we demonstrate that
the transmon ionization is indeed a pairwise transition
between a qubit state and a highly excited state. We
identify which states are populated, the critical photon
number at which ionization happens, and the amount of
population transfer during ionization. We find that both
semiclassical dynamics simulations and Floquet analysis
are in excellent agreement with our experimental results,
confirming that the semiclassical driven transmon model
can successfully capture the main features of ionization
dynamics. Finally, using pulse-shaping techniques to
control the photon number in the resonator, we tune the
system through the multiphoton resonance condition at
variable speed and verify that the transmon ionization is
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a Landau-Zener-type transition where more population
is ionized during an adiabatic process.

II. IONIZATION OF HIGH-EJ/EC TRANSMONS

The mechanism of transmon ionization can be under-
stood as a multiphoton resonance in a driven transmon.
The drive induces an ac-Stark shift to each transmon
eigenstate, resulting in a resonance when the energy dif-
ference between two shifted transmon states equals an
integer number of the drive photon energy [14, 17, 18, 20–
22]. As a result, a driven transmon can transition from
its computational subspace to a highly excited state at
a specific drive amplitude. In principle, these resonances
can occur between many pairs of transmon states and for
a variety of transmon parameters. In practice, however,
typical transmons that have relatively shallow potential
are often excited to a state close to the top of the poten-
tial, as shown in Fig. 1(a), and such a highly excited state
is harder to address experimentally due to charge noise.
Transmon ionization to highly excited states has thus far
only been observed indirectly as a leakage out of the qubit
subspace. In contrast, the high-EJ/EC transmons in our
experiments have deeper potentials and confine more en-
ergy levels; see the right-hand side of Fig. 1(a). As a
result, at least 10 transmon eigenstates are insensitive to
charge noise and can be controlled and measured [36, 37].
This enables us to directly probe excited-state dynamics
of transmon ionization. In the right of Fig. 1(a), we show
an example level diagram where the transmon levels are
ac-Stark shifted, and n photons in the drive are absorbed
to cause transition between |1⟩ and |7⟩, as will be the case
in Sec. III.

The dynamics of the transmon-resonator system under
an external drive is governed by the Hamiltonian (ℏ =
1) [1, 3]

Ĥ(t) = 4EC(n̂t − ng)
2 −

M∑

m=1

EJm cos(mφ̂t)

+ ωrâ
†â− ig(n̂t − ng)(â− â†)

− iε(t) cos(ωdt)(â− â†).

(1)

In this expression, EJm, EC , n̂t, φ̂t and ng are respec-
tively the Josephson energies, the charging energy, the
charge operator, the phase operator, and the offset charge
of the transmon. Moreover, ωr and â are the bare fre-
quency and annihilation operator of the resonator, while
ε(t) and ωd are the amplitude and frequency of the ca-
pacitive drive on the resonator, respectively. The res-
onator has a linewidth κ. In the dispersive regime, it in-
herits a transmon-state-dependent frequency shift χj as
well as Kerr Kr,|j⟩ and higher-order nonlinearities for any
nonzero coupling strength g [1]. Equation (1) includes
higher harmonics of the Josephson potential that pro-
vide a more accurate description of the transmon spec-
trum [36, 38]. Two high-EJ/EC transmons are used
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FIG. 1. Transmon ionization concepts. (a) The potentials
and eigenstates of transmons. Here, we show examples of two
transmons with ω01/2π = 5GHz and EJ/EC = 100 (left) or
EJ/EC = 270 (right). The target state of ionization for a
typical transmon is often close to (or even above) the top of
its potential. High-EJ/EC transmons have a deeper poten-
tial and confine more energy levels, which makes the highly
excited states accessible during the transmon ionization. The
level diagram depicts a multiphoton resonance. In this exam-
ple, the energy levels of states |1⟩ and |7⟩ are ac-Stark shifted
by the drive to reach the resonance condition ω̃7−ω̃1 = nωd at
a certain drive power, with ωd the drive frequency and n the
number of absorbed photons. Typically, n > 1. (b) Circuit
diagrams. When the transmon is in one of its eigenstates, a
readout pulse with frequency ωd and amplitude ε(t) creates
a coherent state in the resonator. This coherent state can
be effectively modeled as a classical drive applied directly to
the transmon, which can induce transitions between transmon
states. This driven transmon model is used for the numerical
simulations in this work; see Eq. (2).

in this work, QA with EJ1/EC = 275 and QB with
EJ1/EC = 235. For both transmon-resonator pairs, the
qubit frequency is lower than the resonator frequency;
see Appendix A for the full set of parameters.

Because of this choice of qubit-resonator detuning and
the weak transmon-resonator coupling strength g/2π ∼
30MHz, the dispersive shifts are small, and ionization
occurs at large photon numbers in these devices [22]. As
a result, the dimension of the full transmon-resonator
Hilbert space required to model and simulate the exper-
iment is prohibitively large. However, previous works
have shown that the coherent state α(t) in the res-
onator generated by the readout tone approximately re-
sults in an effective classical drive acting on the trans-
mon [17, 20, 22, 39]; see Fig. 1(b). In that case, the
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effective semiclassical Hamiltonian for the transmon is

Ĥsc(t) = 4EC(n̂t − ng)
2 −

M∑

m=1

EJm cos(mφ̂t)

− 2g
√
n̄r(t) sin[ωdt− ϕ(t)](n̂t − ng),

(2)

where the resonator field is written as α(t) =√
n̄r(t)e

iϕ(t) with n̄r(t) = |α(t)|2 being the average pho-
ton number. Transmon ionization occurs at specific val-
ues of n̄r, corresponding to a set of critical photon num-
bers for each transmon eigenstate |j⟩. This model ne-
glects quantum fluctuations in the resonator and, in par-
ticular, measurement-induced dephasing. Nevertheless,
as discussed below, it captures experimental observations
after the results are averaged over gate charge.

III. EXPERIMENTAL IDENTIFICATION OF
TRANSMON IONIZATION

We first show the excited-state populations for the ion-
ization of QA. The sequence of our experiment is shown
in Fig. 2(a). At the beginning of the sequence, the trans-
mon is prepared in one of its eigenstates |j⟩. Then, a
2.2 µs square stimulation pulse is sent to the resonator.
The frequency of this pulse is chosen to be on resonance
with the dressed resonator frequency ωd = ωr,|j⟩ at zero
photon number. The stimulation is followed by a 10µs
(∼ 6.5/κ) ring-down and then the end-sequence mea-
surement. We calibrate the mean photon number n̄r
from the ac-Stark shift (χj+1 −χj)n̄r using a 40 ns spec-
troscopy pulse on the transmon. By changing the timing
of the spectroscopy pulse, the time-dependent n̄r(t) can
be measured; see Fig. 2(b). Because of the relatively
small linewidth κ, the resonator does not reach a steady
state during the stimulation pulse and requires a long
ring-down time. In this experiment, we use this spec-
troscopy sequence to calibrate the conversion between
stimulation amplitude and maximum mean photon num-
ber n̄r,max at low photon number, up to 400 photons, and
extrapolate to higher photon numbers accounting for the
induced Kerr nonlinearity. Details of the conversion and
the effect of nonlinearity are discussed in Appendix B.

In Fig. 2(c), we show the resulting transmon popula-
tions at the end of the sequence for different maximum
mean photon numbers n̄r,max when the transmon is ini-
tially prepared in |1⟩. We observe a series of distinct
drops in the population of |1⟩ at specific photon numbers.
First, at n̄r,max ∼ 170, qubit QA becomes resonant with
a neighboring transmon, leading to an exchange of exci-
tations between the two transmons; see Appendix C for
more details. More interestingly, a signature of ionization
is visible at n̄r,max ∼ 880 where a population drop of |1⟩
coincides with increased populations in several highly ex-
cited states. We attribute the fact that multiple excited
states are populated to energy relaxation that occurs af-
ter ionization. We identify the highest resolvable excited
state with a nonzero population as the ionized state, in
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FIG. 2. Transmon ionization experiments. (a) Pulse se-
quence for the ionization experiments. The transmon is pre-
pared in one of its eigenstates |j⟩ and then evolves under a
2.2 µs stimulation drive on the resonator. After a 10 µs ring-
down, a weak multitone readout pulse is applied to measure
the transmon populations. At low stimulation power, an op-
tional spectroscopy pulse can be used to probe the mean pho-
ton number n̄r. (b) The measured n̄r(t) for an experiment
with n̄r,max ∼ 150. (c) Populations of the transmon under
different stimulation amplitudes when it is prepared in |1⟩.
The vertical dashed line marks the critical photon number at
which the |1⟩ ↔ |7⟩ transition can happen. (d) Populations
of the transmon under different stimulation amplitudes when
initially prepared in |7⟩. The “deionization” shows the same
critical photon number as the upward ionization.

this case, |7⟩. Indeed, we do not observe population in
|8⟩ for this experiment. As will be shown below and in
Sec. IV, state |7⟩ is resonant with other states below 880
photons, which could make the transferred population
further ionize to higher excited states during the ring-
down process. These states are collectively classified as
|9+⟩ and cannot be identified in our experiment.

Having experimentally characterized the transmon
post-ionization state, we now proceed to further inves-
tigate the ionization process. Assuming the |1⟩ → |7⟩
transition occurs due to a multiphoton resonant process,
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the reverse “deionization” process, |7⟩ → |1⟩, should also
be observable at the same resonance condition, i.e., the
same critical photon number. Consistent with this expec-
tation, in Fig. 2(d), we prepare the transmon in |7⟩ and
indeed observe a population transfer from |7⟩ to |1⟩ at
n̄r,max ∼ 880. The state |2⟩ is not populated during this
process, indicating a direct transition from |7⟩ to |1⟩. We
also find a significant population increase in |9+⟩, which
implies strong ionization to higher excited states.

IV. COMPARISONS WITH NUMERICAL
SIMULATIONS

We now compare the experimental results to theory.
The coupled semiclassical equations for the transmon
state |ψ(t)⟩ and the resonator field α(t) in the rotating
frame are

|ψ̇⟩ = −iĤsc(t) |ψ⟩ , (3)

α̇ = −i(ωr − ωd)α− κ

2
α− i

ε(t)

2

+ g(⟨n̂t⟩ − ng)e
iωdt.

(4)

The last term of Eq. (4) describes the backaction of
the transmon on the resonator field and captures all
transmon-induced resonator nonlinearities within the
semiclassical framework. Note that we performed the
rotating-wave approximation on the resonator drive ε(t).
Our model does not include transmon relaxation or the
weak interaction with the neighboring qubit described
above, both of which are observed in the experiment.
However, these processes are expected to be most rele-
vant during the slow ring-down, after the multiphoton
ionization that is of interest to us has already occurred.
Indeed, the relaxation times of the most relevant states
are longer or comparable to the duration (12 µs) of the
pulse sequence. Moreover, we show in Appendix C that
for the high powers at which ionization occurs, popula-
tion transfer to the neighboring qubit is negligible during
the resonator ramp-up.

To highlight the population transfer between the qubit
subspace and higher excited states that occurs during
the pulse sequence, we report the total population in the
qubit subspace P≤1 and the total population in the leak-
age subspace P≥2. We plot these experimentally mea-
sured populations as a function of the maximum mean
photon number n̄r,max in Fig. 3 (dots). We investigate
two specific multiphoton resonances: the |0⟩ ↔ |6⟩ res-
onance in Fig. 3(a, b) and the |1⟩ ↔ |7⟩ resonance in
Fig. 3(d, f).

The theoretical prediction is obtained by numerically
solving the coupled semiclassical system in Eqs. (3)
and (4). The simulations include the ring-down stage
since the residual photons after stimulation can also in-
duce ionization. This is especially true since the res-
onator field varies more slowly during ring-down, increas-
ing the probability of ionization [18, 22]. The simula-
tion is performed using two distinct models of transmons:
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FIG. 3. Comparisons between experiments and numeri-
cal simulations. (a-b) Transmon ionization associated with
the |0⟩ ↔ |6⟩ transition. Two different models, the conven-
tional transmon model (EJ1, dashed lines) and the Josephson
harmonics model (EJ8, solid lines), are used in simulations.
We show the population of the qubit subspace P≤1 and the
populations of the higher excited states P≥2. (c) Normalized
Floquet quasienergies ϵj/ωd for each transmon branch when
ωd = ωr,|0⟩. The |0f ⟩ branch has an avoided crossing with
|6f ⟩, which is also coupled to the higher-excited branch |19f ⟩.
(d-e) Similar to (a-b) but for the |1⟩ ↔ |7⟩ transition. (f)
Normalized Floquet quasienergies ϵj/ωd for each transmon
branch when ωd = ωr,|1⟩. The |1f ⟩ branch has an avoided
crossing with the |18f ⟩ branch. The final state found in the
dynamical simulations and the experiment is |7⟩ instead of
|18⟩. This is due to a weak avoided crossing at lower photon
number, at which most of the population in |18f ⟩ is diabati-
cally transferred to |7f ⟩ during ramp-down. We take ng = 0
in (c) and (f).

the conventional transmon model with a single Joseph-
son harmonic (EJ1 model) and a model that includes 8
Josephson harmonics (EJ8 model). The parameters in
each model are independently fitted from experimentally
measured transmon frequencies [36]. Moreover, because
charge sensitive states of the transmon are involved, the
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simulated transition probabilities are averaged over 21
values of ng in the range [0, 0.5] since we expect our ex-
periments to average over many offset-charge configura-
tions (104 repetitions, 20 minutes total run time for each
initial state). The simulated transmon populations for
the EJ1 and EJ8 models are respectively shown as solid
and dashed lines in Fig. 3(a,b,d,e).

Both the predicted critical photon number and the
amount of population transfer beyond the ionization
point are well captured by the simulation using the EJ8

model, which validates the effectiveness of the aforemen-
tioned semiclassical model. We found that for all pre-
pared initial states, the EJ8 model shows better agree-
ment with experimental data than the EJ1 model. This
is because the resonance conditions for ionization are sen-
sitive to the transmon transition frequencies: Including
additional Josephson harmonics in the transmon Hamil-
tonian plays a key role in accurately predicting the fre-
quency of highly excited states and, thus, the occurrence
of transmon ionization.

The ionization process can also be understood via the
more intuitive and more computationally efficient Flo-
quet branch analysis [22]. Because the average pho-
ton number n̄r(t) and phase ϕ(t) in Eq. (2) vary slowly
on the timescale of the drive period Td = 2π/ωd, the
transmon Hamiltonian is approximately periodic on short
timescales. As a result, ionization is determined by res-
onances in the Floquet spectrum associated with the in-
stantaneously periodic Hamiltonian. To obtain this Flo-
quet spectrum, we choose linearly spaced effective trans-
mon drive amplitudes 2g

√
n̄r in steps of 2π×100 kHz. For

each constant drive amplitude, we calculate the Floquet
modes and quasienergies by solving the eigenvalue prob-
lem of the propagator U(Td, 0) for Eq. (2). At n̄r = 0, the
result coincides with the bare transmon eigenstates and
eigenenergies, from where we sort other Floquet modes
and quasienergies at higher amplitudes into a “Floquet
branch” for each bare transmon state [22].

We show the normalized quasienergies ϵj/ωd of the Flo-
quet branches for ωd = ωr,|0⟩ in Fig. 3(c) and ωd = ωr,|1⟩
in Fig. 3(f), respectively, highlighting in color the most
relevant Floquet branches for the |0⟩ ↔ |6⟩ and |1⟩ ↔ |7⟩
resonances. The Floquet branch for a given initial state
shows avoided crossings with other branches as n̄r in-
creases. These avoided crossings indicate the multipho-
ton transitions responsible for ionization (the quasiener-
gies are defined only modulo ωd). In general, there are
multiple avoided crossings associated with various pairs
of Floquet branches. However, we find that the positions
of the largest avoided crossings, as well as the branches
they involve, are consistent with those observed in the
experiments and the dynamical simulations. Once ion-
ization has occurred at these dominant avoided crossings,
any number of other avoided crossings involving any of
the populated branches can become relevant. This can
occur during both the ramp-up and the ring-down phases
of the readout pulse sequence.

V. LANDAU-ZENER TRANSITIONS

The avoided crossings in the Floquet quasienergies sug-
gest that transmon ionization is a Landau-Zener-type
transition [18, 22]. A Landau-Zener process describes the
dynamics of a two-level system evolving under a time-
dependent Hamiltonian, where an external control field
sweeps the system through an avoided crossing in its
spectrum [40, 41]. For transmon ionization, the photon
number n̄r plays the role of this control field, and the
adiabaticity of the transition is determined by the speed
at which n̄r crosses the critical photon number [18, 22].
If the transmon is prepared in an eigenstate and tra-
verses an avoided crossing diabatically, ionization does
not occur. Conversely, an adiabatic passage results in
ionization.
In the experiments shown in Fig. 2, the resonator never

reached a steady state, and the adiabaticity was not
carefully controlled by the square stimulation pulse. To
remedy this, we investigate the Landau-Zener physics of
transmon ionization using pulse-shaping techniques ap-
plied to transmon QB , which has 9 resolvable states. We
control the dynamics of the photon number using two
different sequences, which we refer to as the steady-state
sequence and the Landau-Zener sequence. The measured
photon numbers (dots) and the numerical predictions
(line) for the two sequences are shown in Fig. 4(a), where
all parameters used in the numerical simulations are ex-
tracted from independent measurements. Details of the
pulse calibration can be found in Appendix D.
In the steady-state sequence, the transmon is initially

prepared in |0⟩, followed by a stimulation pulse with three
segments; see the top panel of Fig. 4(a). The first seg-
ment is a 40 ns ramp-up to rapidly bring the resonator
from the vacuum state to the desired photon number n̄r,s.
The second segment holds the resonator in its steady
state with variable duration ts. The third segment is
a 40 ns ramp-down to actively empty the resonator. The
frequency of the stimulation pulse is detuned from ωr,|0⟩
by the expected Kerr shift n̄r,sKr,|0⟩ to compensate for
the Kerr effect in the steady state. The short ramping
time ensures strong diabaticity during ramping, making
the transmon ionization most likely to happen during the
steady-state segment. We end the sequence with a 6 µs
free ring-down time to fully empty the resonator, followed
by a measurement.
The results of the steady-state experiment for differ-

ent durations ts and photon numbers n̄r,s are shown
in Fig. 4(b). At low photon numbers, the system re-
mains below the critical photon number, and the trans-
mon stays in its initial state |0⟩. At n̄r,s ≈ 1500, however,
the transmon ionizes, with a longer ts resulting in a lower
ground-state population. Following the same method as
in Sec. III, we identify the state |6⟩ as one of the post-
ionization states, and the transmon is further ionized to
higher excited states; see Appendix E. Above the criti-
cal photon number, there exists a range of photon num-
bers where the transition is suppressed again. This is
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FIG. 4. Landau-Zener transitions. (a) The measured photon numbers (red dots) of the steady-state sequence (top) and
Landau-Zener sequence (bottom) for different steady-state times ts. The data agree well with the numerical prediction (red
lines), which uses parameters extracted from independent measurements. The transmon is prepared in |0⟩ at the beginning of
the sequence. The insets show the envelopes of the shaped stimulation pulses, each of which includes three segments: ramp-up,
steady state, and ramp-down. In the Landau-Zener sequence, the amplitude during ts is intentionally increased above the
amplitude used for the steady-state sequence to drive the resonator from n̄r,i to n̄r,f . The pulse is followed by a 6 µs ring-
down and an end-sequence measurement. We show three sequences with different Landau-Zener speeds identified by different
symbols in the bottom panel. (b) The measured population of |0⟩ from the end-sequence measurement for different steady-
state durations ts and photon numbers n̄r,s. We observe a critical photon number for transmon ionization at around 1500
photons (see inset). Above 3000 photons, more resonances appear, while our pulse-shaping method fails to stabilize the photon
number due to the higher-order nonlinearities of the resonator. (c) The measured populations of Landau-Zener experiments
with different Landau-Zener speeds. The slope dn̄r(t)/dt is controlled by changing the duration ts with fixed n̄r,i = 1300,
n̄r,f = 1700 (circles), or by changing the difference n̄r,f − n̄r,i with fixed ts = 10µs. The horizontal gray dashed line shows the
remaining ground-state population P0 measured in the steady-state experiment, which has n̄r,f − n̄r,i = 0. The gray shaded
area shows the range of theoretical predictions for 51 evenly spaced values of offset charge ng. An adiabatic process results in
more ionized population.

because the system diabatically crosses the resonance at
n̄r,s ≈ 1500 during the ramping segments while remain-
ing far from other avoided crossings responsible for ion-
ization during the steady-state segment. A similar phe-
nomenon was observed in Ref. [14]. At n̄r,s > 3000, there
is again a reduction in the ground-state population. This
occurs because the higher-order nonlinearities of the res-
onator become too strong for our pulse to stabilize the
photon number for a long time while more avoided cross-
ings appear. As a result, the resonator photon number
sweeps through strong resonances, and most of the pop-
ulation eventually transfers from |0⟩ to higher excited
states.

Having identified the critical photon number for ioniza-
tion, we next perform Landau-Zener experiments. The
Landau-Zener sequence differs from the steady-state se-
quence in two ways; see the bottom panel of Fig. 4(a).
First, after rapidly filling n̄r,i photons into the resonator,
the pulse amplitude of the steady-state segment is ad-
justed so that the photon number n̄r(t) increases from
n̄r,i to n̄r,f during the time ts. As a result, the slope
dn̄r(t)/dt near the avoided crossing can be controlled by
changing either ts or n̄r,f − n̄r,i. Second, for each slope,
the pulse frequency is numerically optimized to compen-
sate for the average Kerr effect during all segments; see
Appendix D4. The Landau-Zener speed near the avoided
crossing is thus determined by the slope dn̄r(t)/dt close to

the critical photon number n̄r ≈ 1500, with a flat (steep)
slope corresponding to an adiabatic (diabatic) process.
To reach a wide range of Landau-Zener speeds, we use
two different parameterizations of the slope. In the dia-
batic region, we fix n̄r,i = 1300 and n̄r,f = 1700, while
sweeping the duration ts from 40 ns to 13 µs. In the adi-
abatic regime, we fix ts = 10µs and sweep the difference
n̄r,f − n̄r,i while keeping the mean photon number con-
stant, (n̄r,f + n̄r,i)/2 = 1500. The measured final popula-
tions of state |0⟩, state |6⟩, and the combined populations
of states |8⟩ or higher are shown in Fig. 4(c) for both the
diabatic region (circles) and the adiabatic region (dia-
monds). More details about the Landau-Zener sequence
and its parameterizations can be found in Appendix D4.

The general trend of our experimental results matches
the expectation of Landau-Zener physics, where a more
adiabatic transition causes more population to be ion-
ized. The remaining population P0 in the adiabatic re-
gion approaches the result measured in the steady-state
experiment, shown as the gray dashed line in Fig. 4(c).
To obtain a quantitative comparison between the ex-
periment and the theory, we use Floquet branch anal-
ysis. Similar to the method used in Sec. IV, we first
calculate the Floquet spectrum at different photon num-
bers and sort them into Floquet branches. The related
avoided crossings are identified by diabatically following
the ground-state Floquet branch up to n̄r = 2100. We
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then select the avoided crossing with the largest gap ∆ac

and compute the Landau-Zener diabatic transition prob-
ability PLZ = exp(−π∆2

ac/2v). Here, the speed v de-
scribes the rate of change of the gap near the avoided
crossing and can be obtained from the Floquet branches
and the experimentally measured dn̄r(t)/dt [22]. This
transition probability corresponds to the ground-state
population P0 after the sequence. Because the Flo-
quet spectrum depends on the offset charge ng, the gray
shaded area in Fig. 4(c) shows a range of probabilities
calculated by choosing 51 different values of ng. We find
that the theoretical prediction reproduces the experimen-
tal trend very well, especially in the diabatic region. In
the adiabatic region, the theoretical prediction increas-
ingly deviates from the observed values as the Landau-
Zener speed is lowered, because the time spent near the
avoided crossing becomes increasingly comparable to the
relaxation time of the excited states involved in ioniza-
tion. The fully coherent Landau-Zener formula is thus
not expected to accurately describe the transferred pop-
ulation.

VI. DISCUSSION AND OUTLOOK

The transmon ionization is a key bottleneck for
achieving fast, high-fidelity, high-QNDness measure-
ment, which is necessary for many tasks in quan-
tum information processing. In this work, we studied
the excited-state dynamics of ionization in high-EJ/EC

transmons. The deep potentials of such transmons en-
able control and readout of a large number of excited
states, which allows us to observe the rich dynamics of
ionization. As an example, for our parameters, we iden-
tify |7⟩ as one of the target states when the transmon
is prepared in |1⟩. This identification is further verified
by investigating the reverse “deionization” process from
|7⟩ to |1⟩. The photon numbers at which the transitions
happen are consistent with each other, indicating the res-
onant nature of such processes.

Our work further validates the effectiveness of the
driven transmon model and Floquet analysis. The com-
parison between the experimental results and the dynam-
ical simulations shows excellent agreement for both the
critical photon numbers and the ionized population. The
Schrödinger equation simulation captures the majority
of the experimental features. Additional effects, such as
measurement-induced decay and dephasing, require ad-
ditional consideration, which we leave for future work.
Our results also highlight the importance of Josephson
harmonics for an accurate prediction of the transmon
spectrum. Combined with computationally efficient Flo-
quet analysis, ionization could be mitigated by optimiz-
ing the transmon and resonator parameters, such as the
transition frequencies and the coupling strength, so that
the threshold of ionization is increased. This threshold
informs the maximum allowable photon number during
readout, as shown in Ref. [26], which helps avoid un-

wanted transitions.
The Landau-Zener physics is another strong evidence

of the two-level resonance. Using a pulse-shaping
method, we demonstrate precise control of the photon
number in the resonator, which allows us to pass through
an avoided crossing over a wide range of adiabaticity.
Our experimental results agree with the theoretical pre-
diction that a more adiabatic process yields more popula-
tion transfer. An intriguing question to answer in the fu-
ture is whether a high-power QND readout is achievable
by crossing the resonance diabatically. Moreover, the re-
ported population in Fig. 4(c) corresponds to the transi-
tion probability for a single passage through the avoided
crossing, and it could be possible to observe Landau-
Zener-Stückelberg interference upon a double passage in
future work.
Although ionization is often discussed in the context of

qubit readout, related challenges can become more sig-
nificant when using a transmon as a high-dimensional
qudit [36, 37], since higher excited states introduce addi-
tional resonance conditions in the spectrum. An example
is shown in Fig. 2(d), where population transfer between
|7⟩ and |9+⟩ occurs earlier than between |7⟩ and |1⟩. In
addition, multitone readout—typically required for qu-
dits [36, 42]—leads to more complex ionization dynamics
that cannot be captured by modeling the transmon as be-
ing driven by a single periodic tone. These observations
highlight the need for careful consideration of readout
pulse parameters in qudit applications.
The ability to control higher-energy levels of the

transmon may also help in the investigation of ioniza-
tion in alternative readout approaches, such as longi-
tudinal readout [29, 43] and balanced cross-Kerr read-
out [28]. Moreover, although this work focuses on
measurement-induced effects, similar effects are expected
to arise in other contexts where the essential ingredi-
ents for ionization are present—namely, strong drives and
nonlinearity— such as parametric gates, qubit reset, and
quantum state stabilization. Since these scenarios often
involve transmon-like circuits, we expect that our work
will provide new insights into the effect of strong drives
on superconducting quantum circuits beyond readout.
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Appendix A: Device parameters

The device parameters used in this work are shown in
Table I. The two transmons used here are relabeled from
the Q5 and Q4 in Ref. [36]. The control and stimula-
tion pulses are generated using 16-bit DACs in the Qblox
QCM-RF module, and the readout signals are generated
and detected using the Qblox QRM-RF module.

Appendix B: Calibration of n̄r,max for the square
stimulation pulse

In Sec. III of the main text, we show the transmon
populations as a function of the maximum photon num-
ber reached during the sequence. In practice, the ex-
periments were performed by sweeping the instrument
amplitude. For a small range of values, this amplitude
is typically proportional to the drive amplitude ε on the
resonator. For a classical linear resonator initialized in
the vacuum state and evolving under a resonant drive,
the mean intra-resonator photon number n̄r(t) at a given
time t is

n̄r(t) =
( ε
κ

)2

(1− e−κt/2)2, (B1)

where κ is the decay rate of the resonator. Equation (B1)
suggests the quadratic relationship n̄r ∝ ε2 for a fix time
t. However, the actual photon number may deviate from
this quadratic behavior due to the Kerr effect.

To find the accurate maximum mean photon number
n̄r,max, we first fit the conversion between the instrument
amplitude and the measured n̄r,max at low power. We
then extrapolate the photon numbers at higher power

0.0 0.1 0.2 0.3 0.4
Instrument amplitude (arb. units)
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n̄ r
,m

ax

|0〉
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|6〉
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FIG. 5. Measured n̄r,max and the extrapolation results for
initially prepared states |0⟩, |1⟩, |6⟩, and |7⟩.

based on the driven Kerr resonator model explained
in Appendix D. The fitting and extrapolations are re-
peated for different initial states |j⟩ because the effective
κ weakly depends on the state of the transmon [1]. The
extrapolation results are shown in Fig. 5(a), where the
Kerr coefficient Kr,|j⟩ is calculated from numerical diag-
onalization of the Hamiltonian.

Appendix C: Interaction with neighbor transmon
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FIG. 6. Eigenstate populations of QB for the experimental
pulse sequence used in Fig. 2(c) of the main text and in
Fig. 5(b).

In Fig. 2 of the main text and in Fig. 5(b), we see
a drop in the population of state |1⟩ at n̄r,max ∼ 170.
We find that it is due to a resonant population swap
between QA and QB , with QB remaining idle during
this experiment. The two transmons are fabricated on
the same chip and designed to have negligible coupling
with each other. However, when QA is prepared in |1⟩
and ac-Stark-shifted by −43MHz, it becomes resonant
with the neighbor transmon QB , which has the frequency
ω01 = 2π × 4.8380GHz at that thermal cycle. This res-
onance induces a |10⟩ ↔ |01⟩ swap that causes a pop-
ulation drop in QA. In Fig. 6, we show the measured
populations of QB under different stimulation powers on
QA using the same experimental sequence as in Fig. 2.
The readout pulse on QB is added immediately after the
stimulation on QA to probe transitions that occur during
the ramp-up. This also has the benefit of reducing the
effect of decay. We find a population peak at around 170
photons, which confirms the occurrence of the resonant
swap. This mechanism is further confirmed by the ab-
sence of population transfer when preparing the ground
state, in which case the swap between the qubits is not
energetically possible. Finally, Fig. 6 also shows that the
probability of a swap during stimulation becomes small
at large photon numbers. This is because the associ-
ated resonance is crossed much more rapidly, reducing
the probability of a Landau-Zener transition. Thus, at
large drive powers, any significant population transfer to
Q4 must occur during the ring-down.
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TABLE I. Device parameters.

Device QA QB

Usage Sects. III and IV Sec. V
First anharmonicity α1/2π = f12 − f01 (MHz) -104 -104

0-1 transition frequency ω01/2π (GHz) 4.8817 4.8334
1-2 transition frequency ω12/2π (GHz) 4.7778 4.7198
2-3 transition frequency ω23/2π (GHz) 4.6694 4.6007
3-4 transition frequency ω34/2π (GHz) 4.5557 4.4754
4-5 transition frequency ω45/2π (GHz) 4.4361 4.3428
5-6 transition frequency ω56/2π (GHz) 4.3098 4.2015
6-7 transition frequency ω67/2π (GHz) 4.1753 4.0497
7-8 transition frequency ω78/2π (GHz) 4.0310 3.8848
8-9 transition frequency ω89/2π (GHz) 3.8746 -

Resonator frequency when transmon is at |0⟩ ωr,|0⟩/2π (GHz) 6.470366 6.415708
Dispersive shift (ωr,|1⟩ − ωr,|0⟩)/2π (kHz) -249 -205

Resonator linewidth κ/2π (kHz) 105 127
Josephson energy EJ1/h (GHz) a 29.7 26.8
Charging energy EC/h (GHz) a 0.108 0.116

EJ1/EC
a 275 235

Transmon-resonator coupling strength g/2π (MHz) a 31.0 26.5

a Parameters here is estimated by EJ8 model.

Appendix D: Pulse-shaping and calibration for the
steady-state and Landau-Zener experiments

The steady-state experiment and the Landau-Zener ex-
periment discussed in Sec. V require precise control over
the state of the resonator. In this section, we explain
our pulse-shaping method and give examples of numeri-
cal simulations and experimental calibration results.

1. Classical resonator model

Consider a classical driven and damped Kerr resonator
in a frame rotating at the drive frequency ωd. The equa-
tion of motion of its field α(t) is

α̇(t) = i∆α(t)− iKr|α(t)|2α(t)−
κ

2
α(t)

− i
ε(t)

2
e−iϕd ,

(D1)

where ∆ ≡ ωd−ωr is the drive-resonator detuning, Kr is
the Kerr coefficient of the resonator, and ε(t) and ϕd are
the amplitude and phase of the drive, respectively. When
dispersively coupled to a transmon, the Kerr value is neg-
ative due to the negative anharmonicity of the transmon.

2. Linear resonator and three-segment pulse

For a linear resonator (Kr = 0) under a constant res-
onant drive [ε(t) = ε, ∆ = 0], the solution of Eq. (D1)
is

α(t) = Ce−κt/2 − ie−iϕd
ε

κ
, (D2)

where C is an integral constant depending on the initial
condition. If the resonator starts in the vacuum state,
α(0) = 0, then

α(t) = −ie−iϕd
ε

κ
(1− e−κt/2), (D3)

and the mean photon number reduces to Eq. (B1) with
steady-state value n̄r = |α(t)|2 = ε2/κ2. Because it will
be useful below, we note that Eq. (D3) is expressed as
a real function of time multiplied by a time-independent
global phase.
Our goal is to construct a shaped pulse to drive the

resonator such that: (a) the resonator is ramped up to
its steady state as fast as possible, (b) the steady state
is then stabilized for a long time, and (c) the resonator
is rapidly ramped down to the vacuum state at the end.
We denote the ramp-up, steady state, and ramp-down
times as t↑, ts, and t↓, during which the drive ampli-
tudes ε↑, εs, and ε↓ are applied, respectively. The drive
amplitudes remain constant inside each segment and thus
form a step-wise pulse as shown in the inset of Fig. 4(a)
in the main text. We emphasize that the sequence is
followed by an additional free ring-down with time trd,
which is different from the active ramp-down segment
above. This ring-down is added to further ensure the
resonator is empty before the final measurement.
To reach the steady state photon number ε2s/κ

2 in a
given time t↑, the following equality must be satisfied

n̄r(t↑) =
(ε↑
κ

)2

(1− e−κt↑/2)2 =
ε2s
κ2
. (D4)

If the phase of the pulse is the same for all segments,
then Eq. (D4) gives the relation

ε↑
εs

=
1

1− e−κt↑/2
> 1. (D5)
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FIG. 7. Numerical simulation of the detuned three-segment
pulses. (a) ∆ = Krn̄r,s. (b) ∆ = 0.93 × Krn̄r,s. (c) ∆ =
1.07×Krn̄r,s.

As an example, the resonator R4 used in this work has
κ = 2π × 127 kHz, which requires an amplitude ratio
ε↑/εs ≈ 63.3 for a ramp-up time t↑ = 40ns.
Similarly, the ramp-down amplitude ε↓ should satisfy

ε↓
εs

=
e−κt↓/2

e−κt↓/2 − 1

= 1− ε↑
εs

< 0, if t↑ = t↓.

(D6)

3. Kerr resonator and detuning

The pulse introduced in Appendix D2 can stabilize
linear resonators because the drive term in Eq. (D1) bal-
ances the damping term. However, the Kerr effect in-
duces field-dependent rotations in the phase plane, such
that an initially resonant pulse becomes off-resonant as
the field builds up. To balance this effect, we detune
the pulse by ∆ = Krn̄r,s such that it is resonant for
the desired steady-state photon number n̄r,s. With this
choice, the first two terms on the right of Eq. (D1) can-
cel each other, approximating a linear resonator in the
steady state.

As a result of the Kerr effect, the resonant frequency
ωr(nr(t)) changes during the ramp-up and ramp-down
segments, which makes the phase and amplitude of the
field deviate from those expected in the linear case.
In principle, such deviations can be removed through
chirped pulses where the detuning ∆ is updated during
the ramping, or through calibrating the phase and am-
plitude of the resulting state after ramping and adjusting
the drive accordingly. For simplicity, we keep the same
detuning and phase throughout all segments and miti-
gate the aforementioned problem by reducing the ramp-
ing times t↑ and t↓. From Eq. (D5), a shorter ramp-
ing time requires a stronger amplitude, and the resulting

pulse will have a broader spectrum, which makes it pos-
sible for the pulse to remain near-resonant despite the
Kerr effect. We choose a 40 ns ramping time, which gives
1/t↑ = 25MHz. This is much larger than the frequency
shift |ωr(nr = 3000) − ωr(nr = 0)|/2π ≈ 357 kHz. Here,
we take the same time length for ramp-up and ramp-
down, t↑ = t↓. We note there are also drawbacks of
large amplitude ratio ε↑/εs, which may cause relatively
stronger pulse distortion and also have higher require-
ments for the resolution of the microwave instrument,
such as DACs.

We show numerical simulations of the steady-state
pulses in Fig. 7 using experimental parameters. In ad-
dition to the case where ∆ = Kn̄r,s, we also show the
results for an under-detuned pulse and an over-detuned
pulse, which would be the case for possible miscalibra-
tion of the Kerr coefficient or the photon numbers. We
find that the under-detuned pulse has better tolerance
to such miscalibration, whereas the over-detuned pulse
could easily fail to stabilize the photon numbers.

4. Pulse in Landau-Zener sequence

In previous sections, we explained the method to con-
struct the pulse in our steady-state experiments. In our
Landau-Zener experiments, we want to control the res-
onator such that the average photon number changes
from n̄r,i to n̄r,f in a given time ts. Here, we choose the
ramping amplitudes such that they correspond to the
ramp-up amplitude ε↑ in a steady-state sequence with
n̄r,s = n̄r,i and the ramp-down amplitude ε↓ in a steady-
state sequence with n̄r,s = n̄r,f . We leave the amplitude
of the quasi-steady-state segment εs and the detuning ∆
as two free parameters in a numerical optimization for the
target pulses. The cost function is designed to minimize
the difference between numerical results and the desired
average photon numbers, which are n̄r,i, n̄r,f , and 0 at
times t = t↑, t = t↑ + ts, and t = t↑ + ts + t↓. For
relatively short ts, this method results in monotonically
increasing photon number during the quasi-steady-state
segment, the derivative of which can be easily extracted.

In the main text, we mention that the Landau-Zener
speed is controlled by the slope of the photon number
dn̄r(t)/dt. Two different parameterizations are used to
adjust the slope, as each of them can only reach a limited
range of Landau-Zener speeds. The time-varying param-
eterization, where we fix n̄r,i = 1300 and n̄r,i = 1700
and then change the time ts, fails when ts becomes com-
parable to the relaxation time. As a result, the adia-
batic region cannot be reached. On the other hand, the
number-varying parameterization, where we fix the time
ts = 10 µs, the sum n̄r,i + n̄r,f = 3000, and then change
the difference n̄r,f−n̄r,i, has a maximum allowable differ-
ence |n̄r,f−n̄r,i| < 3000 and thus a limited diabaticity. It
is the combination of the two parameterizations that en-
ables us to explore a wide range of Landau-Zener speeds.
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FIG. 8. Calibration results of R4, which is the resonator used in Fig. 4. (a) Measured resonator frequency and extrapolation
at different amplitudes. (b) Free decay measurement to extract the linewidth κ of the resonator. (c) Steady-state experiment
with ∆ = 0 to extract the Kerr Kr of the resonator. (d) Steady-state experiment with theoretical (blue dots) and calibrated (red
dots) ramping amplitude ratio for compensating possible miscalibration and power compression of the experimental apparatus.
(e) The measured and fitted relation between the instrument amplitude and the steady-state photon number n̄r,s. (f) The
analytically calculated and numerically simulated relation between the drive amplitude εs and the steady-state photon number
n̄r,s.

5. Calibration procedures

In this section, we describe the calibration procedures
for the steady-state sequence and the Landau-Zener se-
quence. We show the results for R4, the readout res-
onator coupled to QB , and we focus on the case where
QB is prepared in |0⟩ at the beginning of the sequence.

The first step to calibrate the shaped pulse is to mea-
sure the resonator frequency at the single-photon level.
We perform resonator spectroscopy for various drive am-
plitudes and fit each spectroscopy result to a Lorentzian
function to extract a frequency [36]. The single-photon
frequency is then extracted by fitting these frequencies to
a quadratic function of the amplitude and then extrap-
olating to zero amplitude, as shown in Fig. 8(a). The
resonator spectroscopy is also used to extract the disper-
sive shift χ01 ≡ ωr,|1⟩ − ωr,|0⟩ = 2π ×−205 kHz.
Due to the finite duration of the spectroscopy pulse,

the fitted quality factor may have systematic errors. In
such cases, a free decay experiment is preferable to ex-
tract the linewidth κ of the resonator. At any time t,
we use transmon spectroscopy to measure the ac-Stark
shift δac(t) of the |0⟩ ↔ |1⟩ transition frequency of the
coupled transmon. These ac-Stark shifts are then fitted
to an exponential function, as shown in Fig. 8(b), which
gives κ|0⟩ = 2π × 127 kHz.
Using the fitted linewidth, we can calculate the ramp-

ing amplitude ratio in Eq. (D5). The Kerr coefficient
is then measured by applying the three-segment pulse.
Here, we set ∆ = 0 without any prior knowledge of the

value of the Kerr coefficient, and the photon number n̄r
is not stabilized. In that case, the Kerr effect manifests
through the time-dependence of n̄r(t). We calculate the
measured photon number using

n̄r(t) = δac(t)/χ01, (D7)

The results are fitted to the numerical simulation of the
three-segment pulse, where the Kerr value Kr, the effec-
tive drive amplitude εs, and the detuning ∆ are treated
as fitting parameters, as shown in Fig. 8(c). We leave
the detuning ∆ as a free parameter to further correct the
single-photon frequency extrapolated from Fig. 8(a). As
a result, we find Kr,|0⟩ = 2π ×−119Hz.
After calibrating ωr, κ, Kr, and εs, we have the min-

imal parameters to run the steady-state experiment: we
can set ∆ = Kr(εs/κ)

2 and choose the ramping ampli-
tude ratio based on Eq. (D5). The result is shown as
blue dots in Fig. 8(d). Although the photon number is
stable for a long time, it does not reach its steady state
immediately after the ramp-up segment because the ac-
tual amplitude ratio required to be applied on the de-
vice may deviate from the theoretical value ε↑/εs ≈ 63.3
that we set to the instrument. Such deviation may come
from miscalibration of the linewidth κ or the power com-
pression of the instrument. We correct it by empirically
adjusting the amplitude ratio to ε↑/εs = 68.5, and the
result is shown as red dots in Fig. 8(d).
Another consequence of power compression is that the

effective drive amplitude εs is not proportional to the in-
strument amplitude. We perform the steady-state exper-



12

iment at different instrument amplitudes and extract the
corresponding steady-state photon numbers n̄r,s. The re-
sults are fitted to a phenomenological model y(x) = Axm,
and we get m ≈ 1.776 ̸= 2, as shown in Fig. 8(e).
This relation gives us the conversion between the instru-
ment amplitude and the n̄r,s reported in Fig. 4(b). We
also calculate a similar conversion between the steady-
state photon number n̄r,s and the drive amplitude εs on
the resonator using numerical simulation, as shown in
Fig. 8(f). The results agree well with analytical predic-
tion n̄r,s = ε2s/κ

2.

6. Errors in calibration of photon numbers

In the calibration procedures discussed in Ap-
pendix D5, the photon numbers are extracted using
Eq. (D7). This relation is based on the dispersive Hamil-
tonian. For a multilevel system coupled to a single-mode
harmonic oscillator, the dispersive Hamiltonian up to
sixth order in perturbation is (ℏ = 1)

Ĥdisp =
∑

j

ωj |j⟩ ⟨j|+ ωrâ
†â

+
∑

j

χj â
†â |j⟩ ⟨j|+

∑

j

ηj
2
â†â†ââ |j⟩ ⟨j|

+
∑

j

µj

6
â†â†â†âââ |j⟩ ⟨j| .

(D8)

Below, we discuss possible errors when using this equa-
tion.

a. Kerr effect

The dispersive Hamiltonian in Eq. (D8) is often trun-
cated to the second order, with the dispersive shift de-
fined as χ01 = χ1 − χ0. However, at large photon num-
bers, the state-dependent four-wave mixing Kerr ηj and
six-wave mixing Kerr µj also have non-negligible contri-
butions to the dispersive shift. In other words, the de-
nominator of Eq. (D7) depends on photon number, and
the relation between photon number and ac-Stark shift
is therefore not linear at large photon numbers.

To estimate the possible errors from these higher-order
effects, we calculate the ac-Stark shift δac using ηj and
µj extracted from numerical diagonalization with the pa-
rameters shown in Table I. The results are shown in
Fig. 9. We find that at 1500 photons, the critical photon
number in Fig. 4 of the main text, there could be an
underestimation of the photon number of about 100 to
200 photons for a given δac.
Because of the existence of µj and other higher-order

Kerr effects, our choice of detuning for the steady-state
experiments, ∆ = Krn̄r,s as explained in Appendix D3,
fails to stabilize the resonator state at higher photon

numbers. An ideal choice of detuning should take into ac-
count the nonlinear relation between the dispersive shift
and the photon number.

b. Averaged photon numbers

Suppose we truncate Eq. (D8) to second order and
treat the transmon as a two-level system. In the rotating
frame, the Hamiltonian of the system under the spec-
troscopy pulse can then be simplified to

Ĥspec(t) =
1

2
[∆− χ01nr(t)]σz +

1

2
Ω(t)σx. (D9)

Here, ∆ ≡ ωd − ω01 is the detuning of the spectroscopy
pulse to the qubit frequency, and Ω(t) is the pulse en-
velope. In the above expression, we have performed the
rotating-wave approximation (RWA). The ac-Stark shift
δac(t) is measured from the excited population P|1⟩ after
a spectroscopy pulse of duration T . As a result, the mea-
sured δac(t) reflects the averaged photon number over the
time window of the spectroscopy pulse. To see this, we
perturbatively calculate the dynamics of the system un-
der Eq. (D9) using average Hamiltonian theory [44]. In
this framework, the propagator U is given by

U(T, 0) = e−iH̄specT ,

H̄spec = H̄(1)
spec + H̄(2)

spec + ...,
(D10)

where the time-averaged Hamiltonian H̄spec is expanded
at each order in the drive amplitude Ω(t). Suppose the
system is prepared in the ground state |0⟩ before the
spectroscopy. The excitation probability to lowest-order
in Ω(t) is

P|1⟩ = | ⟨1| e−iH̄(1)
specT |0⟩ |2

= 4θ2sinc2
(
1

2

√
θ2 + T 2(∆− χ01n̄r)2

)
.

(D11)

Here, we introduced the rotation angle θ ≡
∫ T

0
Ω(t)dt and

the time-averaged photon number n̄r ≡ 1/T
∫ T

0
n(t)dt.
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−200

−100
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FIG. 9. Estimated ac-Stark shift as a function of photon
number for different orders in perturbation theory.
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The spectroscopic response peaks at ∆ = χ01n̄r, which
is proportional to the time-averaged photon number in-
stead of the instantaneous photon number. Hence, when
we fit the Kerr value Kr in Fig. 8(c), the numerical simu-
lation results are uniformly averaged over a time window
with duration T . Going to higher orders in perturbation,
however, the excitation probability P|1⟩ depends on the
specific shape of Ω(t). This leads to errors in the fitted
Kerr value.

We also note that the resonator state generated by
a classical drive is usually not a Fock state. The pho-
ton number discussed here should thus be thought of
as a weighted average over different Fock states. In the
number-splitting regime where the coupling between the
transmon and the resonator is strong, χ01 > 1/T , there
is more than one peak in the spectroscopic response [45].

Appendix E: Identification of final states in the
steady-state experiment

In Sec. V, we mentioned that |6⟩ is one of the final
states in the steady-state experiment. Here we give more
details about this identification.
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ϵ j
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FIG. 10. Identification of final states in the steady-state ex-
periment. (a) A linecut of the steady-state experiment results
shown in Fig. 4(b) at 1500 photons. (b) Normalized Floquet
quasieneregies ϵj/ωd for QB . We take ng = 0.

As shown in Fig. 10(a), we found apparent population
increase in |6⟩, leaving |7⟩ nearly unaffected. The large
population observed in states |8⟩ or higher suggests that
the population in state |6⟩ is then further transferred to
higher excited states. These observations are consistent
with the Floquet analysis shown in Fig. 10(b). Following
the branch |0f ⟩, we encounter two nearby avoided cross-
ings around n̄r ∼ 1800, involving both branches |6f ⟩ and
|14f ⟩. During the long steady-state segment, the popula-
tion can be transferred to either of these branches. The
|6f ⟩ and |14f ⟩ branches also show an avoided crossing at
much lower photon number (n̄r ∼ 100). As a result, in
the experiment, the diabatic ramp-down segment leads
to the population in branch |14f ⟩ being assigned as |6⟩
and to the population in branch |6f ⟩ being assigned as
|8+⟩.

Notice that the critical photon number shown in
Fig. 10 is slightly larger than the measured results (∼
1500 photons) in Fig. 4. This is likely due to the effect
of higher-order nonlinear terms that are accounted for in
the Floquet branch analysis but not in our experimental
calibration; see Appendix D6 a.
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