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High-fidelity decoding of quantum error correction codes relies on an accurate experimental model
of the physical errors occurring in the device. Because error probabilities can depend on the context
of the applied operations, the error model is ideally calibrated using the same circuit as is used for the
error correction experiment. Here, we present an experimental approach guided by a novel analytical
formula to characterize the probability of independent errors using correlations in the syndrome data
generated by executing the error correction circuit. Using the method on a distance-three surface
code, we analyze error channels that flip an arbitrary number of syndrome elements, including
Pauli Ŷ errors, hook errors, multi-qubit errors, and leakage, in addition to standard Pauli X̂ and
Ẑ errors. We use the method to find the optimal weights for a minimum-weight perfect matching
decoder without relying on a theoretical error model. Additionally, we investigate whether improved
knowledge of the Pauli Ŷ error channel, based on correlating the X- and Z-type error syndromes, can
be exploited to enhance matching decoding. Furthermore, we find correlated errors that flip many
syndrome elements over up-to-eight cycles, potentially caused by leakage of the data qubits out of
the computational subspace. The presented method provides the tools for accurately calibrating a
broad family of decoders, beyond the minimum-weight perfect matching decoder, without relying
on prior knowledge of the error model.

I. INTRODUCTION

Recent performance advances in quantum computing
with superconducting qubits [1–6], have enabled exper-
imental demonstrations of complex quantum computa-
tions [7–9]. State-of-the-art devices, however, still lack
the performance to solve real-world problems [10]. Quan-
tum error correction (QEC) promises to exponentially re-
duce the effective logical error rate at the cost of a poly-
nomial increase in the number of qubits [11–13], as re-
cently demonstrated experimentally [6, 14, 15]. A widely
pursued route to achieve this error suppression is the use
of stabilizer codes [16], which rely on repeated measure-
ments of a set of mutually commuting stabilizer opera-
tors. Physical errors are accompanied by changes in the
stabilizer values, called the syndrome. The change of log-
ical operator values can be decoded from the syndromes.
While a main challenge in implementing quantum error

∗ Present address: Atlantic Quantum, Cambridge, MA 02139,
USA

† Present address: Department of Physics, Friedrich-Alexander
University Erlangen-Nürnberg (FAU), Erlangen, Germany

‡ Present address: Zurich Instruments, CH-8005 Zurich, Switzer-
land

corrected circuits remains the realization of large-scale
devices with low physical error rates, a topic of rising
relevance is the fast and accurate decoding of error syn-
dromes extracted from large circuits [17]. Decoders for
experimental quantum error correction data have so far
been calibrated by numerically optimizing for maximal
logical fidelity [18, 19], analyzing the correlations between
syndrome elements [3, 4, 9], or by numerically optimizing
to match the higher-order correlations between syndrome
elements [20, 21]. The most performant decoders often
rely either on an accurate error model of the device, or
a large dataset of training data in the case of machine-
learning-based decoders.

In this work, we focus on developing an accurate error
model by analyzing correlations in the experimental syn-
drome data of the target error-correction circuit without
relying on a theoretical device error model or on con-
ducting separate calibration experiments. We present an
analytical method to calculate the probability of any in-
dependent error event that has a unique signature in the
stabilizer measurement outcomes, based on the higher-
order correlations in the experimental syndrome data.
The method allows for the characterization of the full er-
ror model using the same circuit as is used for the QEC
experiment. This error model can be used to optimize the
parameters of various decoding algorithms, which we il-
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lustrate by presenting a correlated minimum-weight per-
fect matching (MWPM) decoder as an example. Specif-
ically, the probabilities of the different error events in-
ferred with our method translate to the weights of the
matching graph. In addition, the full error model can
be used for characterizing device performance under the
same conditions as for the QEC experiment. For exam-
ple, crosstalk or control errors can be identified from a
discrepancy between Pauli X̂ and Ŷ error probabilities,
since simple gate error models that include only dephas-
ing and relaxation processes predict equal physical error
probabilities for X̂ and Ŷ [22]. Correlated errors that flip
syndrome elements over multiple rounds, on the other
hand, can be indicative of qubit leakage [23–25] or er-
ror sources such as high-energy impact events [26] that
are detrimental to the performance of the logical qubit.
We apply the tools we present to experimental data from
a distance-three surface code logical state preservation
experiment performed on the 17-qubit device first intro-
duced in Ref. 4.

The paper is structured as follows. First, we intro-
duce our implementation of the distance-three surface
code and detail how we extract the syndromes for a log-
ical state preservation experiment (Section II). We then
explain how we have implemented one of the most com-
mon decoding algorithms, the minimum-weight perfect
matching decoder, in the experimental demonstration of
quantum error correction with the surface code [4] (Sec-
tion III). Finally, we present the theoretical tools that
allow us to characterize the error model of the device
based on the experimental syndrome data (Section IV).
We find a significant presence of errors that correlate with
leakage of the data qubits out of the computational sub-
space and have signatures that span multiple syndrome
elements over many cycles, which we discuss in detail
in Section V. These results highlight the capability of
our method to determine the error probability associated
with any observed syndrome signature and demonstrate
its utility both in diagnosing device errors and in opti-
mizing decoder parameters.

II. FROM ERRORS TO SYNDROMES

The experimental data we present was taken for a dis-
tance d = 3 surface code [4]. We start by giving a brief
description of the code and setting the terminology for
the rest of the paper. The surface code consists of a d×d
square lattice of data qubits, see red circles in Fig. 1 (a),
which encode a protected quantum state. As a stabilizer
code [16], it protects states that are simultaneous eigen-
states of a set of commuting stabilizer generator opera-
tors (called stabilizers here), each taking the value of ±1.
If we consider a square lattice with the data qubits at the
vertices, the stabilizers of the surface code are the prod-
ucts of Pauli operators of the data qubits on the vertices
of each plaquette. The stabilizers ŜAi alternate in the
lattice between products of Ẑ and X̂, see green and blue

squares in Fig. 1 (a),

ŜXi =
∏

Dj∈N(Xi)

X̂Dj and ŜZi =
∏

Dj∈N(Zi)

ẐDj , (1)

where N(Ai) denotes the set of data qubits on the ver-
tices of the stabilizer plaquette. At the center of each
plaquette, an auxiliary qubit Ai = Xi or Zi is used to
measure the respective stabilizer. Additionally, there are
stabilizers located at the boundary of the surface code
lattice with a support on only two data qubits. In total,
the stabilizers of a distance d surface code are adding up
to (d− 1)2 + 2(d− 1) = d2 − 1 stabilizers. By constrain-
ing the protected state to a mutual eigenstate of all the
stabilizers, the dimension of the protected Hilbert space
is reduced by a factor of two for each of the stabilizers,

down to 2d
2

/2d
2−1 = 2, meaning that the protected sub-

space corresponds to a single logical qubit. The Pauli
operators of the logical qubit are defined as two anticom-
muting operators

ẐL =
∏

Dj∈row

ẐDj and X̂L =
∏

Dj∈column

X̂Dj , (2)

which commute with all the stabilizers, see black lines in
Fig. 1 (a).

The stabilizers are repeatedly measured during the op-
eration of the error correction code, yielding values sAi

m

with m the index of the error correction cycle and Ai
the associated auxiliary qubit. In our implementation,
we use the circuit shown in Fig. 1 (b), which consists of
single-qubit Hadamard gates implemented using π/2 ro-

tations around Ŷ and virtual Ẑ rotations [27], and four
conditional phase flip (CZ) gates [28–30] that map the
parity of the data qubits to the auxiliary qubits, which
are thereafter read out [31]. To reduce the number of
two-qubit gates which are executed in parallel, we apply
the gates for Z-type stabilizers while reading out the X-
type auxiliary qubits and vice versa [4, 32]. Therefore,
the stabilizers of different types are read out at full- and
half-integer values of the cycle index m = 1, 1.5, 2, ...,
respectively. If the stabilizer value is −1 (indicating an
odd parity), the circuit flips the state of the correspond-
ing auxiliary qubit. Since we do not reset the auxiliary
qubits between error correction cycles, the measurement
outcome for an auxiliary qubit associated with a stabi-
lizer value of −1 will alternate between −1 and +1 in con-
secutive cycles. Therefore, we infer the stabilizer value
sAi
m = MAi

m−1M
Ai
m from the change in consecutive read-

out outcomesMAi
m = ±1 rather than by the measurement

outcome in a given cycle.
Because the stabilizers involving X̂ and Ẑ operators

of each data qubit are repeatedly measured, all physi-
cal single-qubit errors are projected onto bit and phase
flips [33, 34]. The bit and phase flips of the physical
qubits will cause some stabilizers to flip and might also
flip the logical operator values X̂L and ẐL, depending
on where the errors occurred. We express the change of
the stabilizer values in terms of the syndrome elements
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FIG. 1. (a) The surface code grid with data qubits in red and auxiliary qubits for Z- and X-type stabilizer measurement in
green and blue, respectively. The physical device used in this work consists of the 17 qubits that are labeled. The support of
the logical X̂L and ẐL operators is indicated with black lines. A compass indicating the orientation of the lattice (pointing
North) is used to define the East and West boundaries (see text). (b) The circuit for two cycles of stabilizer measurements, with
data qubits as red circles and auxiliary qubits as split blue-green circles. The circuit section highlighted with gray background
implements the measurement of a single stabilizer, the building block of the surface code. The propagation of an X̂ error
(orange cross) is indicated with orange (as X̂) and purple (as Ẑ) lines. The readout outcomes that are flipped as a result of the

X̂ error are marked with  . The grayed CZ gates involve qubits that are not explicitly shown in this circuit. (c) Conversion of

the errors shown in (b) into stabilizer values sm and syndrome elements σm. (d) The propagation of a Ẑ error (purple cross)
on an auxiliary qubit during the parity map. (e) Conversion of the error in (d) into stabilizer values and syndrome elements.

(f) Examples of error signatures due to common single-qubit Pauli errors. Pauli X̂ and Ẑ errors lead to two nonzero syndrome

elements, categorized into time-like (T), space-like (SX̂|Ẑ), space-time (STX̂), and hook (HX̂) error classes. Pauli Ŷ errors

lead to error signatures with support on up-to-four auxiliary qubits and classified into space-like (SŶ ), space-time (STŶ ), and

hook (HŶ ) error classes. Errors on the boundary of the lattice can have a signature on a single auxiliary qubit only (B) and
readout misclassification errors lead to time-like signatures on syndrome elements two cycles apart (T′).

σAi
m = (1− sAi

m−1s
Ai
m )/2, which have the value σAi

m = 1 or

0, if the value of stabilizer ŜAi at cycle m, changed or did
not change, respectively. The process of deciding, based
on the syndrome elements, whether the logical operator
values have flipped, is called decoding.

To successfully decode errors, we must know which
syndrome elements are flipped by each independent error
process, i.e., the signature of that error, and whether it
flips any of the logical qubit Pauli operators. As an exam-
ple, let us consider a bit flip (X̂) error on one of the data
qubits, indicated by the orange cross in Fig. 1 (b). Note

that this error is equivalent to a phase flip (Ẑ) before
the preceding Hadamard gate on that qubit. The error

propagates to two neighboring auxiliary qubits as phase
flips via the CZ gates, and the phase flips, in turn, change
the outcomes of the following auxiliary qubit readouts.
As the effect of the error remains on the data qubit, the
auxiliary qubits will be flipped in every consecutive cycle,
leading to an alternating pattern of readout outcomes,
see Fig. 1 (c). Converting the flips of readout outcomes
MAi

m to flips of stabilizer values sAi
m and to flips of syn-

drome elements σAi
m , we find that the signature of such an

error includes two syndrome element flips. The events are
detected on neighboring auxiliary qubits during the same

cycle. We label all errors with such signatures SX̂|Ẑ for
errors with space-separated signatures due to X̂ and Ẑ
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errors on data qubits. Another common error is a phase
flip (Ẑ) error on an auxiliary qubit, see the purple cross
in Fig. 1 (d), or equivalently a bit flip error just before,
during, or after readout. In this case, the error flips all
following readout outcomes MAi

m on that auxiliary qubit
Ai, which then results in two consecutive nonzero syn-
drome elements, see Fig. 1 (e). We label all errors with
such signatures as T for errors with time-separated sig-
natures.

A few additional error classes are shown in Fig. 1 (f),
see Appendix A for examples of error propagation. If an
X̂ error occurs on a data qubit between the two CZ gates
of one half-cycle, then the syndrome elements are flipped
on the neighboring auxiliary qubits in consecutive cycles.

We label such errors as STX̂ for errors with a space-time
separated signature. If an X̂ error occurs on an auxiliary
qubit that is used to measure a weight-four Z-type sta-
bilizer at the middle of the parity map, then this error
propagates as phase flip errors to two neighboring data
qubits which perform a gate with that auxiliary qubit
next. Depending on the gate order in the parity map,
these phase flip errors will flip two or four neighboring
syndrome elements of X-type. We label such errors as

HX̂ for X̂-caused hook errors. Bit flip errors on the aux-
iliary qubit at other times during the parity map lead to
a phase flip error on zero, one, three, or four neighbor-
ing data qubits. Because the neighboring qubits are part
of a Z-type stabilizer, and the application of a stabilizer
has no effect on the quantum state, then the error prop-
agating to three or four neighboring qubits is equivalent
to errors on the complementary one or zero neighboring
data qubits. Therefore, these errors are indistinguishable
from phase flip errors on data qubits, which belong to the

SX̂|Ẑ class. Again, due to the X-Z symmetry of the code,
the situation is the same for X̂ errors on X-type auxil-
iary qubits, in which case Z-type syndrome elements are
flipped.

In addition to X̂ and Ẑ errors discussed above, Ŷ er-
rors can also occur at the same circuit locations. These
errors have signatures flipping both Z- and X-type syn-
drome elements. We label the corresponding error classes

as SŶ , STŶ and HŶ . Near the boundary of the surface
code lattice, errors can have signatures that include only
a single syndrome element, which we will label bound-
ary errors B. Finally, we label readout misclassification
errors, for which the auxiliary qubit state is incorrectly
classified, but does not get flipped, as T′ errors. These
errors are equivalent to a correlated bit flip just before
and after a perfect measurement, and they flip two syn-
drome elements on a single auxiliary qubit ∆m = 2 cycles
apart.

We also consider two-qubit Pauli errors, not shown in
Fig. 1 (f), which might arise due to the two-qubit gates.

We distinguish between the MẐẐ class, corresponding
to a correlated phase flip error Ẑ ⊗ Ẑ on the two qubits

involved in a two-qubit gate, and the MX̂Ŷ class, cor-
responding to a correlated bit flip error X̂ ⊗ X̂, X̂ ⊗ Ŷ ,

Ŷ ⊗X̂, or Ŷ ⊗ Ŷ . Other two-qubit Pauli errors are equiv-
alent to a single-qubit Pauli error on one of the qubits
before or after the CZ gate. While we do not expect to

observe correlated bit flips, errors of the MẐẐ class could
occur due to residual interactions between the qubits [35]
or a miscalibrated conditional phase of the CZ gate.

III. MINIMUM-WEIGHT PERFECT
MATCHING DECODER

There are various strategies for decoding the syndrome
data in the surface code [18, 36–40]. Most accurate
results can be achieved by maximum likelihood decod-
ing [41], in which case all possible combinations of phys-
ical errors that are consistent with the observed syn-
drome data are considered. Each set of physical er-
rors requires a corresponding correction of the logical
qubit state, and the decoder picks the correction with
the largest total likelihood. Since the number of physical
error combinations is exponentially large in code size and
number of executed cycles, maximum likelihood decod-
ing is prohibitively expensive for all but the very small-
est of codes [42]. Approximations of likelihood calcula-
tion using tensor networks can reduce complexity [43],
but these methods remain too slow to meet the strin-
gent timing requirements for large-scale error-corrected
logical algorithms for which decoding must be performed
between the application of non-Clifford gates in near-real
time [9, 21, 44].
When looking at one type of auxiliary qubits at a time,

the signature of each physical error is given by at most
two syndrome element flips. Furthermore, a chain of
neighboring errors leads to flipped syndrome elements
only at the ends of the chain, since the syndrome ele-
ment flips in the middle of the chain cancel with each
other. The resulting property that syndrome flips come
in pairs, allows a much more efficient minimum-weight
perfect matching (MWPM) decoder [41, 45] to be used.
In MWPM decoding, all nonzero elements of the syn-
drome are matched in pairs. Once the matching is com-
pleted, a unique logical correction operator can be in-
ferred based on whether or not the logical operator is ex-
pected to be flipped by the error chains in the matched
graph. By assigning a weight to each potential pair of
nonzero elements of the syndrome according to the like-
lihood of its occurrence, the problem of finding the most
likely matching can be converted to finding the minimum
weight matching.
Compared to maximum likelihood decoding, this leads

to two approximations. Foremost, by decoding the Z-
and X-type stabilizers separately, we ignore correlations
between syndrome types, which can contain extra in-
formation in the presence of errors that lead to flips of
both types of stabilizers. Second, we find the most likely
matching, but ignore that several (each individually less
likely) matchings can potentially lead to the same logi-
cal correction. Consequently, the logical correction with
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the highest probability of success might differ from the
correction given by the most likely matching.

Next, we will discuss the detailed procedure of
minimum-weight perfect matching. The first step, which
can be done offline before running the surface code ex-
periment, is to construct an auxiliary qubit graph (also
called a matching graph [46], ancilla graph [47] or decod-
ing graph), where each vertex k corresponds to a syn-
drome element σAi

m of one type (X or Z), and each edge
q = (k, k′) corresponds to a statistically independent and
therefore uncorrelated error process, which flips the con-
nected syndrome elements k and k′, see Fig. 2 (a). In
addition, there are two virtual vertices, which are con-
nected to the syndrome elements that can flip without a
pairing syndrome element at two opposing boundaries of
the surface code lattice. Physically, multiple distinct in-
dependent errors can have the same syndrome signature.
Since we infer probabilities directly from the syndrome
data, these errors are indistinguishable and treated as a
single process to construct the auxiliary-qubit graph. An
error probability pq is associated with each edge of the
auxiliary qubit graph. The edges and their probabilities
amount to the effective error model of the device, which
can be constructed either from an independent physical
error model or based on the correlations in the syndrome
data [48], the latter of which is the main topic of this
work, see Section IV.

The second step of the MWPM decoding process is to
construct the syndrome graph, a fully connected graph
where vertices correspond to nonzero syndrome elements
of the auxiliary qubit graph for a given experimental run,
see Fig. 2 (b) for an example. Each edge q in this graph
is assigned a weight wq defined as the negative logarithm
of the total probability that any chain of errors flips only
the syndrome elements connected by that edge. Up to
first order in the error probabilities, wq can be calculated
as [47]

wq ≈ − ln

(∑
R∈R

∏
r∈R

pr

)
, (3)

where R denotes the set of possible paths between the
endpoints of q in the auxiliary qubit graph which do not
go through the boundaries, and r are the edges in one of
those paths R. A low edge weight indicates a high prob-
ability that a chain of errors triggers the corresponding
syndrome pair, while a high weight suggests a low prob-
ability of such an event. These weights can be precal-
culated once before the decoding, at the cost of only a
polynomial overhead in the code distance, as [47]

w = − ln
(
(1−A)

−1 − 1
)
, (4)

where w is a matrix of weights between all the potential
nodes of the syndrome graph, A (adjacency matrix ) is
the matrix of error probabilities in the auxiliary qubit
graph, 1 is the identity matrix, and the logarithm is taken
element-wise.
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FIG. 2. (a) The auxiliary qubit graph for an example exper-
imental run consisting of eight cycles of syndrome extraction.
Vertices correspond to the measured syndrome elements (red
if the syndrome element has a value of 1 and blue otherwise),
while the edge thickness indicates the per-cycle probability of
an independent error that flips the connected syndrome ele-
ments. The widths of the single-ended edges pointing to top-
right and bottom-left indicate boundary error probabilities
and their direction indicates to which boundary the syndrome
element is connected. (b) The syndrome graph. Vertices cor-
respond to the nonzero syndrome elements of the auxiliary
qubit graph, and the thickness and transparency of the edges
indicate the weight for the MWPM decoding. The minimum-
weight matching for this graph is indicated in red with a black
border. Note that in the auxiliary qubit graph thick lines in-
dicate probable errors, but in the syndrome graph, thin lines
indicate low-weight error chains, i.e., probable error chains.
Due to the small distance (d = 3) of the code, the four X-
type auxiliary qubits can be spacially connected in a one-
dimensional chain through data qubits D2, D5, and D8 (see
Fig. 1(a)). This allows the corresponding syndrome graph
to be visualized in a planar layout, with the horizontal axis
representing the spatial dimension and the vertical axis repre-
senting different cycles. For larger code distances, the graph
would require a three-dimensional perspective.

In a logical-state preservation experiment, where the
same stabilizers are measured repeatedly, the system is
expected to exhibit time-translational invariance. Con-
sequently, the error probabilities are expected to remain
constant from cycle to cycle during the middle of the er-
ror correction process, see Appendix B. Thus, one can
calculate the error probabilities as a function of only the
cycle difference ∆m = m′ − m instead of cycles m and
m′,

p(σAi
m ,σAj

m′ )
= p

(∆m)
Ai,Aj . (5)

Note that in the first measurement cycles after the
logical state preparation and in the last measurement
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cycles before the final measurement, the assumed time-
translational invariance of the protocol does not hold.
Therefore, using this approximation of time-invariant er-
ror probabilities can lead to slightly suboptimal perfor-
mance.

For example, for X-type stabilizers in a d = 3 surface
code [4], we can calculate the adjacency matrix for a
maximum cycle difference of ∆mmax = 2 as

A =


A(0) A(1) A(2) 0 0 B
A(−1) A(0) A(1) A(2) 0 B
A(−2) A(−1) A(0) A(1) A(2) B
0 A(−2) A(−1) A(0) A(1) B
0 0 A(−2) A(−1) A(0) B
0 0 0 0 0 0

, (6)

with the cycle-shifted adjacency matrices containg the
probabilities of errors for which the signature spans ∆m
cycles(

A(∆m)
)
i,j

= p
(∆m)
Xi,Xj , and

(
A(0)

)
i,i

= 0 (7)

and the boundary adjacency matrix contains the proba-
bilities of errors with a signature on a single syndrome
element

B =

pX1,BE 0
0 pX2,BW

pX3,BE 0
0 pX4,BW

. (8)

Following the distance-three surface code layout and ori-
entation indicated in Fig. 1(a), we define an east and a
west boundary (BE and BW). To construct the bound-
ary adjacency matrix, note that the stabilizers X1 and X3
connect only to the east boundary (BE via D3, D6, and
D9), and the stabilizers X2 and X4 to the west boundary
(BW via D1, D4, and D7). We have set the correspond-
ing unconnected elements of B to zero. We then apply
Eq. (4) to precalculate the weights for syndrome pairs
up-to-∆mmax cycles apart.

As the final step, we run a minimum-weight perfect
matching algorithm on the syndrome graph [46, 47, 49].
The space-component of each matched edge corresponds
to a set of data qubits where an error has occurred. The
time-component, arising from the space-time and auxil-
iary qubit errors, has no direct effect on the logical op-
erator value. When decoding the X-type syndrome, each
overlap of a data qubit in a matched edge with the logical
X̂L operator corresponds to a flip of X̂L that should be
corrected. Correspondingly, flips of the operator ẐL can
be inferred from the Z-type syndrome data.

Note that recent implementations of minimal-weight
perfect-matching decoders [50, 51] achieve faster run-
times by directly finding the perfect matching on the
sparse auxiliary qubit graph. This approach eliminates
the need to construct the syndrome graph with all-to-all
connected edges and assigned weights [50].

With the goal of further improving the weight-
inference-based MWPM decoding, we investigate the
use of a correlated MWPM decoder (detailed in Ap-
pendix C). This decoder is designed to better correct for

Ŷ errors, which flip both X-type and Z-type syndrome el-
ements and thereby create correlations between the two
syndrome types. For the current distance and error rates
of the device, we do not observe significant performance
improvements, suggesting that the logical error per cycle
is not currently limited by Ŷ errors. Nevertheless, we ex-
pect this approach to become increasingly beneficial at
larger distances [52, 53], see Appendix C for details.

IV. FROM SYNDROME CORRELATIONS TO
ERROR PROBABILITIES

Having a good quantitative knowledge of the experi-
mental errors occuring on a device is of high importance
for high-fidelity decoding, independently of the exact de-
coding algorithm used. While many error processes can
be characterized using independent measurements, the
effective error rates might differ when running the ac-
tual error correction experiment, e.g., due to time-drift
of parameters or unaccounted-for error mechanisms, like
crosstalk. Therefore, we ideally want to construct an er-
ror model for the decoder based on syndrome data pro-
duced by running the same circuit as for the error cor-
rection experiment. In this section, we explain, based on
experimental data, how this can be done.

Using the device presented in Ref. 4 (see also Ap-
pendix D), we prepare the logical state |0⟩L, |1⟩L, |+⟩L
or |−⟩L, acquire 16 cycles of stabilizer measurements,
and finally read out all qubits. For each state, we per-
form 500,000 experimental runs, and remove the ones in
which any of the qubits are measured outside the com-
putational subspace, or the initial state is not the ground
state, leaving us with about 54,000 runs per state. In the
future, leakage reduction units as well as leakage-aware
decoders could be employed to eliminate the need for
post-selection on no-leakage events [23–25, 54, 55]. For
calculating the syndrome elements for the first and last
cycles, we make use of the known initial state of the aux-
iliary qubits, the initial parity of the data qubits, and the
parity of the data qubits from the final readout.

The average per-cycle probability of detecting a non-
zero syndrome element on weight-four and weight-two
stabilizers is ⟨σ⟩ = 0.165(17) and 0.118(6), respectively,
where the uncertainty indicates the standard deviation
across different auxiliary qubits, see Appendix B. To
visualize the correlations between syndrome elements,
characteristic of the error classes discussed in Section II,

we calculate the covariances C
(∆m)
Ai,Aj between syndrome el-

ements on auxiliary qubits Ai and Aj, ∆m cycles apart
as

C
(∆m)
Ai,Aj =

〈
σAi
m σAj

m+∆m

〉
−
〈
σAi
m

〉〈
σAj
m+∆m

〉
. (9)
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The averaging ⟨·⟩ is done first over the experimental runs,
and then over the cycle index m. We omit syndrome el-
ements from the first and the last cycle when calculating
the correlations, since these syndrome elements are mea-
sured based on the initial or final state of the data qubits,
and are not representative of the mean value during the
bulk of the experiment.

For ∆m = 0, we observe the highest covariance be-
tween neighboring auxiliary qubits, see the first off-
diagonal elements of the matrix in Fig. 3 (a). These
correspond to correlated syndrome element flips due to

SX̂|Ẑ and SŶ errors. The second off-diagonal, which has
significant but lower covariance, corresponds to corre-
lated syndrome element flips on next-nearest neighbors,

caused by hook errors such as HX̂ and HŶ . We find neg-
ligible covariance between syndrome elements that are
spatially separated by more than two data qubits (third
off-diagonal), suggesting that errors remain local, as ex-
pected for uncorrelated single-qubit errors. Because we
use a pipelined stabilizer measurement circuit in which
stabilizers of different types are measured sequentially,
the covariance between syndrome elements of different
types of auxiliary qubits is detected at a half-cycle sep-
aration, i.e. ∆m = 0.5. The nonzero covariances occur
between neighboring auxiliary qubits and are caused by

SŶ and STŶ errors. We observe the highest covariance
between syndrome elements on a single auxiliary qubit
between consecutive cycles of error correction ∆m = 1,
which corresponds to T errors. The high covariance is
an indication of the relatively higher probability of T-
class errors, being caused by auxiliary qubit dephasing
and readout errors. The nonzero covariances on the first
off-diagonal are caused by STX̂ and STŶ errors. There
is almost no covariance for ∆m = 1.5, and only diagonal
elements for ∆m = 2. An expected source of errors lead-
ing to ∆m = 2 correlations is readout misclassification
errors T′, where the auxiliary qubit state is misclassified
without changing the qubit state. However, as we discuss
in Section V, most of these correlations are due to errors
that can flip several syndrome elements over many cycles,
possibly related to leakage of the data qubits outside the
computational subspace.

For calculating the weights for minimum-weight per-
fect matching decoding, we have to convert those covari-
ances into per-cycle error probabilities. An analytical
formula for this, assuming that every error flips at most
two syndrome elements, is presented by Spitz et al. [48].
Here, we have generalized those equations for errors with
signatures that flip an arbitrary number of syndrome ele-
ments. In the general case, the probability pi1,...,in , that
an error that flips n syndrome elements σi1

, . . . , σin
oc-
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FIG. 3. (a) Average (over 16 cycles) covariance between pairs
of syndrome elements as a function of the time-separation ∆m
between them. The syndrome indicated by the column is de-
tected ∆m cycles after the syndrome indicated by the row.
The covarying qubit is indicated on the top or bottom axis
for Z-type and X-type auxiliary qubits, respectively. (b) Total
error probability p of the various error classes extracted from
the experimental (solid gray bar) and simulated (blue wire-
frame) syndrome correlations. The number above the bar
indicates the number of different error signatures that were
considered in that class. The error bars indicate the stan-
dard deviation of the total, calculated as the square root of
the sum of the squared deviations from the mean within that
class. (c) Schematic of the signatures that are considered as
the highly-correlated C error class. That is, any subset of the
highlighted syndrome elements on one auxiliary qubit over
nine cycles or on multiple auxiliary qubits neighboring one
data qubit separated by up to two cycles.

curs, can be calculated as

pi1,...,in =
1

2
− 1

2

∏
{j1,...,jm}⊆
{i1,...,in}

⟨σ̃j1 . . . σ̃jm⟩(−1)m−12−(n−1)

∏
{j1,...,jm}⊃
{i1,...,in}

(1− 2pj1,...,jm)
,

(10)
see Appendix E for the verification of this formula and
how it relates to the formulas introduced in Ref. 48. Here,
we have denoted σ̃i = 1− 2σi for brevity, and the indices
i and j each include both the auxiliary qubit index and
the cycle number at which the syndrome element is mea-
sured. The product in the numerator is taken over all the
subsets {j1, . . . , jm} of arbitrary length m of the set of
syndrome elements {i1, . . . , in}, including the set itself,
whereas the product in the denominator is taken over
the supersets of a different arbitrary length m. We pro-
vide the explicit form of the equation when accounting
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for errors that can trigger up to four syndrome elements
simultaneously in Appendix E.

Next, using Eq. (10), we calculate the probabilities of
errors that trigger various error signatures in the same
dataset as was used to calculate the correlations shown
in Fig. 3 (a). Because each run of the N = 16-cycle-long
experiment produces (d2−1)(2N−1)/2 = 124 syndrome
elements, it is unfeasible to calculate the error proba-
bility for all of the 2124 signatures. We therefore only
consider error signatures that are caused by single-qubit
Pauli errors at any position in the circuit or two-qubit
Pauli errors during a two-qubit gate, as presented in Sec-
tion II. To avoid introducing a bias into the extracted
error probabilities by omitting the renormalization by
pj1,...,jm in the denominator in Eq. (10), we need to make
sure that we include all processes with highly correlated
signatures present in the system, see Appendix F. Fail-
ure to do so may result in nonphysical (negative) error
probabilities beyond statistical fluctuations that require
additional corrections [56]. To address this, we include
two additional error signatures in the analysis that ac-
count for highly correlated errors, which we label C, see
Fig. 3 (c). First, we consider any subset of flipped syn-
drome elements on up to nine consecutive cycles on a
single auxiliary qubit, and second, we consider any sub-
set of syndrome elements on auxiliary qubits neighboring
one data qubit, separated by up to two cycles. The max-
imum cycle separation for both of these signature classes
is limited by the computational power, as the number
of signature subsets grows exponentially with the max-
imum cycle separation. The C error class could be as-
sociated with undetected leakage of the data qubits to
higher transmon states, as we will show in Section V. We
average the probabilities of errors with the same signa-
ture over the cycles (except the first and the last cycle)
to obtain the average probabilities for the 116 error sig-
natures stemming from Pauli errors in the circuit and
4360 error signatures belonging to the C class. The total
probability of an error per cycle from each of the twelve
signature classes is shown in Fig. 3 (b).

We compare the experimental results to a circuit-
level Pauli-error simulation, shown as blue wireframes in
Fig. 3 (b). The simulation assumes uniform error prob-
abilities across the device, with the probability values
based on independent calibration measurements, see Ap-
pendix G for details. Despite this simplification, we ob-
serve overall good agreement between the sum of error
probabilities of each class obtained from simulation and
those extracted from the experiment. The most notable
difference is in the correlated bit flips due to CZ gates,

indicated by the MX̂Ŷ error class. These errors are in-
cluded in the depolarizing error model of the simulation,
but are not as pronounced in the experimental data. In
simulations with a depolarizing Pauli noise model, two-
qubit gate errors have been found to contribute most sig-
nificantly to the logical error probability [31]. However, if
correlated bit flip errors are rare for the experimental im-
plementation of the CZ gate, as we observe in our data,

the effect of two-qubit gate errors on the logical error
probability in experimental realizations might be more
akin to single qubit errors. Note that the simulations
do not include leakage and readout misclassification er-
rors, which could explain some of the residual differences
between simulations and experimental data.
The in-situ error characterization method presented

here is especially useful for stabilizer codes, since it yields
the probabilities of errors with a given signature, which
is exactly the information needed for decoding, without
resorting to simulation of the circuit. Furthermore, the
method allows us to analyze spurious correlations be-
tween syndrome elements not caused by known Pauli er-
rors, and to identify whether they lead to highly corre-
lated errors, which are known to be particularly harmful
in quantum error correction [57, 58].

V. DEVICE DIAGNOSTICS USING ERROR
PROBABILITIES

In this section, we study the per-cycle probabilities of
specific errors with various signatures. The signature of a
circuit-level error in the syndromes depends on the Pauli
error itself (for instance, single-qubit X̂, Ŷ , or Ẑ error)
and on its location in the circuit. In addition, several
combinations of Pauli errors and circuit locations can
lead to the same error signature. Therefore, we start by
categorizing the error signatures according to the num-
ber ν of possible combinations of Pauli errors and circuit
locations that can trigger it. Specifically, we consider 15
two-qubit Pauli errors occurring at any of the 24 two-
qubit gates of a single cycle, amounting to a total of
24 · 15 = 360 possible combinations, see Appendix H.
We omit signatures from the time-like errors class T in
this analysis, since readout errors strongly enhance their
probability. If uniform depolarizing noise at every two-
qubit gate was the only error source, we would expect
the error probability to be directly proportional to the
number of combinations which can trigger that signature.
Overall, we indeed observe a strong correlation between
the probability of an error signature and the number of
combinations of Pauli errors and circuit locations that
can produce it, see Fig. 4 (a). This correlation suggests
that the variation in the probabilities of different error
signatures is largely determined by how frequently errors
that can produce each signature arise in the circuit. The
correlation is also reproduced by the simulation with in-
dependently characterized parameters [blue markers and
line in Fig. 4 (a)].
Another application of the generalized error probabil-

ity extraction method is the identification of crosstalk
and control errors. For some circuit locations, there are
unique signatures for both X̂ and Ŷ errors, belonging to
the classes of space-time errors or hook errors due to X̂

or Ŷ type errors, denoted as STX̂ or HX̂ and STŶ or

HŶ , respectively. Since the physical energy relaxation
and pure dephasing of the qubits is described by an er-
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FIG. 4. (a) The probability p of triggering an error sig-
nature as a function of the number of combinations of Pauli
errors and circuit locations ν, that can cause the signature, ex-
tracted from experimental (black) and simulation (blue) data.
(b) Comparison of error probabilities, pX and pY , for signa-

ture pairs which can only be caused by a X̂ or a Ŷ error,
respectively, at a specific location. Black crosses correspond
to experimental data and blue crosses to simulation. Due to
the symmetry of the physical error mechanisms with respect
to Ẑ rotations, we expect the two probabilities to be iden-
tical, which is indicated by the diagonal gray line. The red
circle highlights error probabilities of D2 during the X-type
parity map, which deviate significantly from the expectation
(see text for details).

ror channel that is symmetric with respect to X̂ and Ŷ ,
we expect the corresponding extracted error probabilities
pX and pY to be equal [22]. We find pX ≈ pY for all error
pairs in simulation and in experiment, see Fig. 4 (b), ex-
cept for errors on D2 during the X-type parity map (black
cross circled in red), for which pX ≈ 2pY . Control errors
arising from miscalibrations that cause systematic under-
or overrotations could explain this discrepancy because
they can increase the likelihood of X̂ errors without in-
creasing the probability of Ŷ errors, causing pX to be
larger than pY . An alternative source for this undesired
rotation could be microwave crosstalk during the X-type
parity map affecting D2. However, this explanation ap-
pears less likely, as an independent characterization of
microwave crosstalk indicates that D2 is not significantly
affected by microwave pulses applied to the drive lines of
other qubits on the device [4, Supplementary Inf.].

Next, we analyze the potential origin of the signature
class of errors that cause longer time correlations, intro-
duced as C. As the first observation, we investigate the
time-like correlations in the experimental syndrome data,
and find that the covariance between syndrome elements
on a single auxiliary qubit ∆m cycles apart decays ex-
ponentially as 0.89∆m, see Fig. 5 (a). Ideally, we expect
the correlations for ∆m > 2 to be zero. The slow decay
could be an indication of leakage of the data qubits [59]
that is not removed by the leakage rejection scheme based
on the final readout of the data qubits. This hypothesis
is supported by the observation that without including
long-time-scale error-class signatures in the analysis, the
error probability for T′ signatures is higher at the be-
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FIG. 5. (a) Covariance between syndrome elements on a sin-
gle auxiliary qubit ∆m cycles apart, averaged over the eight
auxiliary qubits. The error bars indicate one standard devi-
ation over the different qubits. A fit to an exponential decay
model for ∆m > 2 is shown as a black line. (b) Extracted
probability of an error triggering a syndrome configuration
corresponding to measurement misclassification T′ (∆m = 2)
as a function of the number of cycles until the final data qubit
readout. The four data series correspond to using data qubit
leakage rejection or not and including leakage-related syn-
dromes in the analysis or not. The data is averaged over the
auxiliary qubits. (c) Average (over cycles) T′ error probabil-
ity of the eight auxiliary qubits as a function of the indepen-
dently characterized readout misclassification error pmc. The
gray line indicates the expected identity relation pT′ = pmc.

ginning of the experiment when the leaked data qubits
have several cycles to seep [60] back to the computational
subspace before the final readout at the end of the ex-
periment, see black filled dots in Fig. 5 (b). If we do not
reject any runs based on the final data qubit readout,
then the error probability does not depend on the cycle
number and is comparable to the error probability with
leakage rejection close to the first cycle, see open black
circles in Fig. 5 (b). Alternatively, the slow decay could
also be an indication of the probability of bit-flip errors
varying during the data acquisition period, which would
introduce correlations between errors with a large time-
separation, see Appendix I for an example. The vary-
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ing error rate could be caused by the asymmetry of the
energy relaxation channel and readout errors, implying
that the effective bit flip error rate for auxiliary qubits
depends on whether they spend more time in the ground
or excited state, or by changes in the rate of quasiparti-
cle generation and tunneling, for example due to impacts
with cosmic rays [26]. Because quasiparticle tunneling
can also cause leakage [61], then it would be consistent
with the suppression of errors when data qubit leakage
rejection is used, but asymmetry of the energy relaxation
channel alone could not explain our observations.

With the goal of taking into account highly correlated
noise processes of the experiment, we include the C class
signatures in the analysis. Due to the renormalization
term in the denominator of Eq. (10), accounting for these
additional processes gives us a more accurate value for
the probability of T′ errors. With this analysis, we find
that the error probability of readout misclassification er-
rors T′ only weakly depends on the cycle number and
whether data qubit leakage rejection is used or not, see
filled and open purple squares in Fig. 5 (b). Furthermore,
the error probabilities extracted using the improved anal-
ysis are consistent with the separately characterized over-
lap error of auxiliary qubit readout, which is the expected
mechanism for T′ errors, see Fig. 5 (c).

VI. CONCLUSION

An accurate error model of the quantum error correc-
tion circuit is a crucial component for any high-fidelity
decoder. In this work, we explained in detail how the
syndrome is generated under a circuit-level Pauli noise
model. We presented a novel closed-form analytical
method for calculating the error probabilities of errors
with a given signature from the correlations between syn-
drome elements of arbitrary weight. We used these er-
ror probabilities to calculate the weights of a minimum-
weight perfect matching decoder as used in Ref. 4, the
nuances of which we also explained. Furthermore, a cor-
related matching decoder is employed to harness the cor-
relations introduced by Ŷ errors between both syndrome
graphs to increase the decoding performance by a modest
but stable amount. In addition, the error model can be
used to analyze the crosstalk, control, and leakage errors,
measured using the same circuit as is used for executing
the error correction experiment. We identified control er-
rors on one of the data qubits, leading to an imbalance of
X̂ and Ŷ errors. We also identified errors with signatures
spanning multiple syndrome extraction cycles, which are
consistent with undetected leakage on the data qubits or
quasiparticle tunneling.

Although characterizing errors based on syndrome
data taken directly from executing the error-correction
circuit can be a powerful tool, one needs to be aware
of its limitations. First, even though the analytical for-
mula allows to easily calculate the probability of errors
that trigger an arbitrary number of syndrome elements,

it is not feasible to calculate the probabilities for trig-
gering all possible signatures, as the number of signa-
tures is exponentially large in the number of syndrome
elements. Therefore, some errors with non-standard sig-
natures might be excluded from the model. Second, this
method requires many experimental runs of the error-
correction circuit to accurately estimate the syndrome
element correlations used to calculate the error probabil-
ities. Because of the renormalization terms in the denom-
inator of Eq. (10), the more high-weight signatures are
included in the model, the more the uncertainties of er-
rors with lower-weight signatures increase. Furthermore,
if the error model parameters drift during the time it
takes to gather the necessary amount of statistics, then
spurious correlations can appear in the data.
The main advantage of the presented method is that

the error model is extracted from experimental data ob-
tained by executing the same quantum circuit which we
used to run the quantum error correction code. This
allows for the identification of error sources, such as
crosstalk, that may not be captured in isolated charac-
terization experiments. Furthermore, the fact that the
probability of errors with signatures of arbitrary weight
can be calculated is beneficial for identifying error models
which include Ŷ errors. This can be used for improved
decoders that account for correlations between X- and
Z-type stabilizers, which we demonstrated for a modified
version of the matching decoder [62]. The inference of
error processes causing higher-weight signatures can po-
tentially benefit also other decoders, such as belief match-
ing [40] and tensor-network-based [43] decoders. As we
have shown, the method can also be used to character-
ize errors with high-weight signatures, which can cause
systematic deviations in extracted single- and two-qubit
error probabilities if unaccounted for.
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Appendix A: Error Signatures

To see which error signatures are expected due to phys-
ical errors, we place single-qubit X̂ and Ẑ errors between
each pair of neighboring operations in the syndrome ex-
traction circuit, and propagate the errors through the
circuit to see which auxiliary qubit readout outcomes are
flipped due to the error. The set of single-qubit Pauli er-
rors shown in Fig. 6 covers all possible error locations if
we account for the symmetry of the error extraction cir-
cuit with respect to change of the auxiliary qubit types.
The propagation and signatures of single-qubit Ŷ errors

and errors of class MẐẐ and MX̂Ŷ can be constructed
as the sum of the propagations of the constituent X̂ and
Ẑ errors.

Appendix B: Syndrome Probability vs Cycle

To motivate the assumption of cycle-independent er-
ror rates, we calculate the mean syndrome element val-
ues for each stabilizer and each cycle, see Fig. 7. The
stabilizers matching the type of the prepared state are
measured on whole-integer cycles, while the other stabi-
lizers are read out on half-integer cycles in the piplined
surface code circuit. The syndrome elements at the mid-
dle of the experiment are calculated based on auxiliary
qubit measurements flip over two error correction cycles
and are therefore sensitive to physical errors happening
during two error correction cycles. On the other hand,
the first and last syndrome elements for the stabilizer
type of the prepared logical operator (ẐL or X̂L) make
use of data qubit readout results to calculate the value of
one of the stabilizers and is sensitive to errors during a
single round of error correction. Therefore the syndrome
elements and error probabilities at the time boundaries

are expected to have a different mean value. Overall, we
find that the mean syndrome element values are increas-
ing very slightly over the course of the 16 experimental
cycles.

Appendix C: Correlated MWPM Decoding

In this Appendix, we present a correlated MWPM de-
coder, with the goal of improving the weight-inference-
based MWPM decoding described in the main text. We
refer to the latter approach here as ‘standard’ or uncor-
related MWPM. The correlated MWPM decoder is de-
signed to better correct for Ŷ errors, which flip both X-
type and Z-type syndrome elements and thereby create
correlations between the two syndrome types. The idea
of harnessing the correlation of both syndrome types and
performing a correlated decoding has been explored in
complementary works such as [38–40, 52, 62–66]. Our
strategy for making use of the correlations between syn-
drome types is to iterate between decoding the two syn-
drome types, updating the weights based on the results
from the other decoding graph.
For syndrome matching, we can only utilize errors with

signature weight of at most two. Including higher-order
error signatures in the decoding graph would turn it into
a hyper-graph (where edges can connect more than two
vertices), on which finding the minimum matching is no

longer efficient. A Ŷ error can have a signature of weight
two, three, or four when considering the joint syndrome,
but not more than weight two on either syndrome type.
Therefore in the standard MWPM, the high-weight syn-
dromes of Ŷ errors are split and a matching can be per-
formed at the expense of treating single Ŷ errors as two
uncorrelated X̂ and Ẑ errors. In the correlated MWPM,
we first decode one syndrome graph in the standard way.
Using the information about the decoded errors, we up-
date the other auxiliary qubit graph with the conditional
error probabilities, given the decoded errors on the first
graph.
As an example, consider an error signature flipping

three syndrome elements – two Z-type and one X-type.
Let us assume the X-type syndrome decoding is per-
formed first with non-modified weights. Then the de-
duced correction will serve as a flag for the Z-type syn-
drome decoding to consider the conditional probability
of having a Ŷ error given a Ẑ error instead of the joint
X̂ error probability. For the conditional probability, the
leading-order contribution consists of taking the Ŷ error
probability divided by the probability of finding the lo-
cal X-type syndrome which was corrected in the previous
Z-type syndrome decoding, see Eq. (C2).
Based on this procedure, we can alternate the decoding

of both syndrome types while updating the weights until
neither decoding outcome changes any more or until a
predetermined maximum number of decoding rounds is
performed. In practice, we only find minor changes to
the decoded logical fidelity after the first iteration. We
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FIG. 6. Examples of syndrome generation due to a physical X̂ (orange cross) and Ẑ (purple cross) errors at all possible circuit
locations. Multiple crosses in the same panel indicate equivalent errors. The squares indicate Hadamard gates, vertical lines
CZ gates and rectangles readouts. Orange and purple lines indicate the propagation of X̂ and Ẑ flips through the circuit. At
the right hand side of each panel, the readout, stabilizer and syndrome element flips are indicated in orange, pink, and purple,

respectively. Errors on data qubits with signatures of class SX̂|Ẑ and STX̂ are shown in panels (a) and (b), respectively. Errors

on auxiliary qubits with T, empty, SX̂|Ẑ , HX̂ , SX̂|Ẑ , and empty signature are shown in panels (c) to (h), respectively.
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FIG. 7. Mean syndrome element ⟨σm⟩ of each qubit as a
function of the measurement cycle number m when preparing
an eigenstate of the (a) ẐL and (b) X̂L operators.

therefore restrict ourselves to one iteration of the weight
update. In addition, to control the statistical uncertainty
of the new weight, we don’t fully replace the weight, but
take a weighted average between the old and the new
value instead. We find the highest logical fidelity for a
weight of γ = 0.09, where γ = 0 and γ = 1 correspond
to keeping the old weight and fully replacing the weight,
respectively. This implies that for too large values of γ
the modification of the weights to include the possibility
of Ŷ errors also breaks the correct decoding for some
instances, see Appendix C 3 for details. We suspect that
statistical uncertainties of the inferred weights are at the
origin of this problem.

Overall, we observe a slight improvement in decod-
ing performance when using the correlated MWPM de-
coding protocol compared to the standard approach, al-
though the difference is not statistically significant (see
Fig. 8). We expect this method to deliver more sub-
stantial performance gains at larger code distances. In
that regime, the decoder’s enhanced ability to accurately
account for Ŷ errors allows for more informed decisions
among a broader set of correction options, thereby po-
tentially reducing logical error rates. This expectation is
supported by simulations [52] and has been experimen-
tally validated in Ref. 53 using data from Ref. 21.

In the subsections below, we provide further back-
ground on the principles of correlated MWPM using il-
lustrative examples and elaborate on our implementation
of the decoder.
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FIG. 8. Comparison of the MWPM decoding fidelity of the
ẐL basis with initial state |0⟩L using the standard weights
(std, black) of syndrome weight up to two, not taking into

account Ŷ errors and the modified weight (mod, red) where
the decoding is repeated once and weights are updated using
conditional probabilities based on the inferred Ŷ error sig-
natures. For better visibility, the error bars are scaled by a
factor 10. The inset shows the differences in fidelity of the
two MWPM decoding variants. The employed weights were
calculated based on the same data used for calculating the
shown fidelities.

1. Illustration of the probability update

To give an example of how probabilities can be updated
during the correlated matching, we consider a simplified
setting where symmetric depolarising errors are placed on
data qubits with probabilities pX = pZ = pY = p/3 be-
fore a perfect syndrome readout. Accordingly, all edges
in both the X-type and the Z-type decoding subgraphs
are given a weight of w = − ln 2p/3. Now we assume

that a physical Ŷ error occurred and that we perform the
matching on the X-type syndrome subgraph first with the
initial weights. The decoding yields the correct result of
applying Ẑ as a correction. We can now reevaluate the
probability of having had a X̂ error for the Z-type syn-
drome decoding problem. This new probability is given
by the conditional probability of having X̂ conditioned
on having found Ẑ

p(X̂|Ẑ) =
p(X̂ ∧ Ẑ)

p(Ẑ)
=

pY +O(p2)

pY + pZ +O(p2)
=

1

2
+O(p).

(C1)

Consequently, the probability of having an X̂ error at the
specific location that was heralded by the decoding of the
X-type syndrome increases the probability from 2p/3 to
≈ 1/2. Here the value of 1/2 is the coin flip probability

between having found a genuine Ẑ error or a Ŷ error
which in turn would carry the Ẑ error in addition to X̂.
As a next step the decoding of the Z-type syndrome can
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be performed on a graph where all edges but one carry
the weight w = − ln 2p/3 and the edge that corresponds

to a X̂ correction has a weight of w = − ln 1/2, due to
the adapted probability.

2. Correlated decoding under circuit level noise

For circuit-level noise and inferred error probabilities,
we update a dressed probability by replacing it with
the conditional probability for having an effective X̂
(Ẑ) error. This update is conditioned on finding the

complementary effective Ẑ (X̂) error from the previ-
ous decoding outcome. The concrete update signature
and conditional probabilities depend on the circuitry and
how Ŷ errors propagate. To illustrate this with an ex-
ample, we assume circuit-level Ŷ errors with probabil-
ity pY

(σZ,Ai
m ,σZ,Aj

m′ ,σX,Ak

m′′ )
that trigger the Z-type stabilizers

(Ai, Aj) at times (m,m′) and the X-type stabilizer Ak

at time m′′. These elementary errors are additional to
genuine X̂ and Ẑ errors that have a signature one syn-
drome type. For simplicity, we are going to use the no-
tation α = (Ai,m) to indicate the space-time coordinate
of a syndrome element. We denominate the correspond-
ing elementary error as Ŷv which causes the syndrome
signature v = (σZ

α , σ
Z
β , σ

X
γ ) and occurs by probability

pY
(σZ

α ,σZ
β ,σX

γ )
. We assume now a setting where we perform

an initial uncorrelated MWPM decoding on the X-type
syndrome graph by which the matching suggests that
a Ẑv error has happened. Such interpretation between
matching and error suggestion relies on the notion of el-
ementary errors. For the latter we assume that an edge
which is included in the matching attributes a most likely
error on the data qubits that can be taken as the correc-
tion. Considering the concrete matching example, the
flip of the single syndrome element σX

γ is matched to a

boundary, which corresponds to an Ẑ error at a loca-
tion specified by v. Having obtained this information,
we would like to properly adapt the error probability
p̃X
(σZ

α ,σZ
β )

of a X̂ type likeliest error that is attributed to

the edge (α, β). The weight of this edge would be up-
dated for a round of correlated bit flip decoding. This
is done by replacing p̃X

(σZ
α ,σZ

β )
with the conditional prob-

ability of finding a X̂v error given a Ẑv error is present
(known from decoding)

p(X̂v|Ẑv) =
p(X̂v ∧ Ẑv)

p(Ẑv)
≈

pY
(σZ

α ,σZ
β ,σX

γ )∑
α′,β′ pY(σZ

α′ ,σ
Z
β′ ,σ

X
γ )

+ p̃Z
σX
γ

.

(C2)
It is important to stress that this update only takes

place if and only if the matching correction, here Ẑv, is
suggested by the complementary decoder. To explain
the conditional probability of Eq. (C2), firstly we note
that it is a leading order approximation in terms of the
error rate. The numerator is given by the probability

of having both an X̂ and a Ẑ error at the appropriate
spacetime coordinate. To leading order, this corresponds
to the inferred Ŷ error probability. In the next order
terms like pX · pZ would contribute as well but are
omitted in this work. In the denominator of Eq. (C2)
we find the leading order probability of exhibiting an
Ẑai error, which can emerge due to a proper Ẑ error

with probability p̃ZσX
γ

or by means of a Ŷ error. With

regard to the latter, there might exist a set of Ŷ errors
which are degenerate with respect to the signature
on the X-type syndrome. That is, there are multiple
Ŷ errors that cause the same X-type syndrome but
different Z-type syndromes. Over the corresponding
probabilities, we perform a summation

∑
α′,β′ . The

adaption of the weight in this manner can be done for
the Z-type syndrome decoding as well given a previous
X-type syndrome decoding serving as the flag for it to
be applied. The weight update in this way can also be
applied for Ŷ error propagations that have weight-two
or weight-four signatures on the joint syndrome. The
correct weight update depends on these propagations
which in turn are dictated by the stabilizer readout
circuitry.

3. Application to the experimental data and
interpolation approach

We perform weight updates that are compatible with
the syndrome signatures of all possible Ŷ error propaga-
tions based on the circuitry in Appendix H. Note that
the syndrome according to a Ŷ error propagation needs
not to be contained in one measurement cycle but can
also span between two consecutive rounds of stabilizer
readout depending on the gate order. As mentioned in
the main text, given an update rule, the decoding of both
sub-graphs can be repeated until no change in the decod-
ing is observed. Practically, it is sufficient to only repeat
the decoding once, taking the modified weights for the ex-
perimental data analyzed in this work. The conditional
probability, used for modifying the error probabilities,
comes with a statistical error as it is a function of quanti-
ties inferred from the experimentally observed syndrome
statistics. This uncertainty is genuinely larger than the
uncertainty of the unaltered probability. We observe that
this can have a deteriorating effect on the decoding re-
sult. Therefore, we relax the update of the probability
by interpolating between the old and the new error prob-
ability. For the previous example update, that means to
replace the standard weight by

w′
(σZ

α ,σZ
β ) =− (1− γ) ln(p̃X(σZ

α ,σZ
β )) (C3)

− γ ln

 pY
(σZ

α ,σZ
β ,σX

γ )∑
α′,β′ pY(σZ

α′ ,σ
Z
β′ ,σ

X
γ )

+ p̃Z
σX
γ

,
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FIG. 9. The relative improvement in fidelity of repeating the
MWPM once after updating the weights as a function of the
number of error correction cycles N and the update strength
γ for (a) the experimental data and (b) simulated data under
depolarizing circuit level noise. The relative improvement is
defined as Fmod−Fstd

F , where F = Fmod+Fstd
2

is the average
fidelity.

where γ ∈ [0, 1] is an interpolation parameter which we
set to 0.09 for the decoding results shown in Fig. 8. We
observe that for larger values of γ the fidelity is not
constantly improved for each number of measurement
rounds, see Fig. 9 (a). Already for values slightly above
γ = 0.09 the decoding performance worsens for small and
larger number of rounds. For only few syndrome read-
outs, this decreased fidelity persists also for larger values
of γ. As this maximal γ value for obtaining a good per-
formance in decoding is relatively low, we conjecture that
at this level of statistical fluctuations of the weights, the
influence of these fluctuations outweigh the improvement
of including Ŷ error information such that minimizing
the uncertainty is prioritized to improve the decoding.

4. Influence of statistical fluctuations

To investigate the effect of the statistical error on the
decoding performance qualitatively, we re-run the mod-
ified and unmodified decoding on a simulated dataset
with larger size and therefore lower statistical fluctua-
tions compared with the experimental data. We perform
simulations of the distance-three surface code with iden-
tical circuitry under depolarizing circuit-level noise. For
this model, each circuit element exhibits a depolarizing
error with probability p after the execution of the circuit
element. Of course, such simplistic one-parameter noise
model is not intended to fully capture the actual experi-
ment of Ref. 4 but shall only serve as a tool to understand
the effect of statistical fluctuations of the weights on the
decoding performance. We perform such simulation for
a fixed error rate of p = 10−3 and a sample size that has
about 12 times more syndrome readouts as compared to
the experimental data. These readouts distribute into
106 shots per bin of number of readout rounds. Note that
in the experimental data, especially for a larger number
of readout rounds, the data sets are much smaller.

We expect a lowered statistical uncertainty for this nu-
merically generated dataset compared with the exper-
imental data, and we infer weights from the sampled
data and perform both the uncorrelated and the modified
MWPM. We indeed find that now much larger values of
γ correspond to a consistent performance increase. We
find that this improvement of the modified over the un-
correlated MWPM decoder only breaks down for values
as large as γ > 0.8, see Fig. 9 (b), instead of γ > 0.09 as
for the experimental data. Another intriguing difference
for the behavior of the relative improvement comparing
experimental and simulated data is the smoothness that
can be observed in the latter.

To investigate this further, we also simulate the
surface-17 code under a heterogeneous error model where
the error rates for two qubit gates and single qubit gates
are drawn from normal distributions N (1.5%,∆·1%) and
N (0.09%,∆ · 0.04%), respectively. The variable ∆ scales
the width of the normal distribution from which the er-
ror rates are drawn. The numerical values mimic now
for ∆ = 1 the noise level in the experiment (compare to
Ref. 4). Note that the error rate for each gate is only
drawn once and then kept fix for all gate executions.
The underlying idea for simulating a heterogeneous error
model is that the resulting inferred weights will break
degeneracies in the matching problem that would only
be broken in correlated matching if one considered a ho-
mogenous error model where all error rates are identical.
Following this line of reasoning, a more realistic and het-
erogeneous error model might reduce the improvement of
the correlated matching. The parameter ∆ can be used
to control the degree of heterogeneity of the error model.
In Fig. 10 the relative improvement is plotted for a fixed
number of 16 stabilizer measurements by varied ∆ and
interpolation strength γ. The dataset size of this simula-
tion is chosen as for the homogeneous error model simu-
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FIG. 10. The relative improvement in fidelity of correlated
MWPM compared to uncorrelated MWPM for simulated data
with a heterogeneous error model. The scale of fluctuations
of gate error rates ∆ is shown on the vertical axis, while the
strength of the weight update interpolation γ is shown on the
horizontal axis.

lation. Each value of ∆ corresponds to a new set of sim-
ulated data. It is observable that for smaller ∆, stronger
updates should be performed. Overall, we recover the
non-smooth behavior of the improvement metric, which
we also found for the experimental data in Fig. 9 (a) as
a result of increased statistical fluctuations.

Appendix D: Quantum Device

The quantum processor is fabricated from a 150-nm-
thin niobium film on a silicon substrate, from which
the transmon islands, resonators and control lines are
patterned using optical lithography. To realize copla-
nar waveguide crossovers and to connect different parts
of the ground plane, we fabricate airbridges from an
aluminum-titanium-aluminum trilayer. The Josephson
junctions are fabricated from aluminum using electron
beam lithography and shadow evaporation. Each of the
17 qubits (yellow) has an individual microwave drive
line (pink) and flux line (green), see Fig. 11. The
qubits are capacitively coupled via a coplanar waveguides
(cyan) to achieve an average qubit-qubit coupling rate of
J/2π ≈ 6MHz and a mean interaction time for a dy-
namic flux pulse based CZ gate [30] of 68 ns. For disper-
sive readout, we couple the qubits to readout resonators
(red), which are coupled to four frequency-multiplexed
feedlines (purple) via individual Purcell filters (blue) to
suppress qubit decay and readout crosstalk [67]. The
qubit and resonator frequencies, anharmonicities and co-
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FIG. 11. False-color optical micrograph of the 17-qubit
quantum processor used in this work. See text for details
about the device. Figure adapted from Ref. 4.

herence properties are given in Table I. The readout res-
onator frequencies (6.769GHz to 7.554GHz) are above
the auxiliary qubits, which are biased to their upper flux-
insensitive frequencies (5.885GHz to 6.192GHz), and the
data qubits biased to their lower flux-insensitive frequen-
cies (3.740GHz to 4.143GHz). The exception to the
above is the auxiliary qubit X1, which is biased to its
lower flux-insensitive frequency to avoid interactions with
a strongly coupled defect near its nominal bias frequency.
We find a mean single qubit gate error of 0.09(4)% in
randomized benchmarking [68], and a mean CZ gate er-
ror of 1.5(10)% in interleaved randomized benchmark-
ing [69, 70].

Appendix E: Correlations to Cycle Error
Probabilities

We postulate that the probability pi1,...,in , that an
error that flips n syndrome elements i1 to in occurs,
can be calculated from the observed correlations between
the measured syndrome elements according to Eq. (10),
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TABLE I. Qubit parameters, coherence properties and single-qubit performance for the nine data qubits (top) and the eight
auxiliary qubits (bottom). We also provide, for relevant quantities, the averaged value across the device in column Q.

Parameter D1 D2 D3 D4 D5 D6 D7 D8 D9

Qubit idle frequency, ωQ/2π (GHz) 3.885 3.994 3.952 3.878 3.895 3.740 4.056 3.993 4.143
Qubit anharmonicity, α/2π (MHz) -184 -183 -183 -184 -186 -184 -181 -183 -181
Lifetime, T1 (µs) 31.1 29.0 69.9 55.5 32.7 59.1 33.2 25.8 30.3
Ramsey decay time, T ∗

2 (µs) 36.9 14.3 36.3 87.5 45.7 16.8 47.6 37.8 46.5
Echo decay time, T e

2 (µs) 47.2 48.6 46.5 87.8 54.2 24.1 49.9 45.9 51.7
Readout frequency, ωRO/2π (GHz) 6.769 6.979 6.880 7.120 7.180 7.032 6.910 7.075 6.868
Qb. freq. during RO, ω′

Q/2π (GHz) 5.321 4.750 5.275 4.250 4.420 5.130 4.395 3.993 5.000
Qubit-RO res. coupling, gQ,RR/2π (MHz) 244 269 241 241 238 244 267 265 260
Single-qubit RB error, ϵ1Q (%) 0.06 0.07 0.04 0.04 0.06 0.06 0.04 0.08 0.06

Two-state readout error, ϵ
(2)
RO (%) 0.7 0.6 0.5 2.7 1.9 1.0 2.0 0.8 0.4

Three-state readout error, ϵ
(3)
RO (%) 6.2 1.7 8.0 5.4 3.0 2.4 3.4 4.1 1.1

Parameter X1 X2 X3 X4 Z1 Z2 Z3 Z4 Q

Qubit idle frequency, ωQ/2π (GHz) 4.429 5.885 6.022 6.049 6.328 6.192 5.956 6.037 4.849
Qubit anharmonicity, α/2π (MHz) -181 -174 -170 -170 -163 -168 -171 -170 -177
Lifetime, T1 (µs) 17.8 15.3 18.6 16.3 21.3 45.4 29.1 19.2 32.3
Ramsey decay time, T ∗

2 (µs) 21.6 20.3 21.9 27.8 37.8 34.2 49.8 25.8 35.8
Echo decay time, T e

2 (µs) 30.1 30.3 15.6 31.2 38.7 27.6 52.7 36.2 42.3
Readout frequency, ωRO/2π (GHz) 7.372 7.554 7.258 7.461 7.316 7.502 7.200 7.412 7.170
Qb. freq. during RO, ω′

Q/2π (GHz) 5.900 5.885 6.022 6.049 6.328 6.192 5.956 6.037 5.347
Qubit-RO res. coupling, gQ−RR/2π (MHz) 167 168 167 168 171 170 167 171 213
Single-qubit RB error, ϵ1Q (%) 0.16 0.13 0.17 0.14 0.10 0.09 0.07 0.16 0.09

Two-state readout error, ϵ
(2)
RO (%) 0.8 1.2 0.9 0.6 0.9 0.5 0.5 0.6 1.0

Three-state readout error, ϵ
(3)
RO (%) 1.3 3.2 3.5 1.5 2.1 1.6 5.2 1.3 3.2

which we repeat here for the reader’s convenience

pi1,...,in =
1

2
− 1

2

∏
{j1,...,jm}⊆
{i1,...,in}

⟨σ̃j1 . . . σ̃jm⟩(−1)m−12−(n−1)

∏
{j1,...,jm}⊃
{i1,...,in}

(1− 2pj1,...,jm)
.

(10 repeated)
Again, we use the notation σ̃i = 1 − 2σi = ±1 for the
syndrome element at node i, for brevity.
Assuming that there are no errors with signatures on

more than two syndrome elements, we recover the for-

mulas derived in [48]

pij =
1

2
− 1

2

√
⟨σ̃i⟩⟨σ̃j⟩
⟨σ̃iσ̃j⟩

=
1

2
−

√
1

4
+

⟨σi⟩⟨σj⟩ − ⟨σiσj⟩
1− 2⟨σi ⊕ σj⟩

,

(E1a)

pi =
1

2
− 1

2

⟨σ̃i⟩∏
j ̸=i(1− 2pij)

=
1

2
− 1/2− ⟨σi⟩∏

j ̸=i(1− 2pij)
,

(E1b)

with ⊕ representing addition modulo two.
Similarly, assuming no errors with signatures on more

than four syndrome elements, we get the explicit formulas

pijkl =
1

2
− 1

2
8

√
⟨σ̃i⟩⟨σ̃j⟩⟨σ̃k⟩⟨σ̃l⟩⟨σ̃iσ̃j σ̃k⟩⟨σ̃iσ̃j σ̃l⟩⟨σ̃iσ̃kσ̃l⟩⟨σ̃j σ̃kσ̃l⟩
⟨σ̃iσ̃j⟩⟨σ̃iσ̃k⟩⟨σ̃iσ̃l⟩⟨σ̃j σ̃k⟩⟨σ̃j σ̃l⟩⟨σ̃kσ̃l⟩⟨σ̃iσ̃j σ̃kσ̃l⟩

, (E2a)

pijk =
1

2
− 1

2
4

√
⟨σ̃i⟩⟨σ̃j⟩⟨σ̃k⟩⟨σ̃iσ̃j σ̃k⟩
⟨σ̃iσ̃j⟩⟨σ̃iσ̃k⟩⟨σ̃j σ̃k⟩

∏
l/∈{i,j,k}

1

1− 2pijkl
, (E2b)

pij =
1

2
− 1

2

√
⟨σ̃i⟩⟨σ̃j⟩
⟨σ̃iσ̃j⟩

∏
k/∈{i,j}

 1

1− 2pijk

∏
l/∈{i,j,k}

1

1− 2pijkl

, (E2c)

pi =
1

2
− 1

2
⟨σ̃i⟩

∏
j ̸=i

 1

1− 2pij

∏
k/∈{i,j}

 1

1− 2pijk

∏
l/∈{i,j,k}

1

1− 2pijkl

. (E2d)
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We have explicitly derived Eq. (10) for errors triggering
up to six syndromes by solving the equations

σ̃i1 = Fi1

∏
i2 ̸=i1

(
Fi1,i2

∏
i3 /∈{i1,i2}

(
Fi1,i2,i3

∏
i4 /∈{i1,i2,i3}

(
Fi1,i2,i3,i4

∏
i5 /∈{i1,i2,i3,i4}

(
Fi1,i2,i3,i4,i5

∏
i6 /∈{i1,i2,i3,i4,i5}

Fi1,i2,i3,i4,i5,i6

))))
, (E3)

where Fi1,...,in = ±1 represents the underlying random
variable that indicates whether the error that flips syn-
drome elements {i1, . . . , in} has happened (−1) or not
(+1). The value of Fi1,...,in does not depend on the
order of its indices, and no two indices should have
the same value. We further assume that the error
processes are independent, that is ⟨Fi1,...,inFj1,...,jm⟩ =
⟨Fi1,...,in⟩⟨Fj1,...,jm⟩ if {i1, . . . , in} ≠ {j1, . . . , jm}, and
that the probability of each error happening is given by
pi1,...,in = (1− ⟨Fi1,...,in⟩)/2.
We also numerically validated Eq. (10) on artificial

datasets, where correlated errors triggering up to twelve
syndromes exist, see Fig. 12.

Appendix F: Bias in Cycle Error Calculation

We present an example of how not accounting for
highly correlated error signatures can bias the extracted
probabilities of errors with lower-weight signatures. Let
us consider three syndrome elements σ1, σ2, and σ3,
which are affected by three independent error processes.
The first process flips the syndrome element σ1 with
probability p1 = 3%, the second flips both syndrome el-
ements σ1 and σ2 with probability p12 = 2.5%, and the
third process flips all syndrome elements with probabil-
ity p123 = 1%. The expectation values for the correla-
tions between syndrome elements are given in Table II. If
we use Eq. (10) to calculate the error probabilities from
the correlations, we recover the original probabilities p1,
p12 and p123. However, if we use the simplified formula
Eq. (E1) that does not account for the highly correlated
error process p123, we get erroneous probabilities p̌, see
Table III. We see that two-way correlations are overesti-
mated by roughly p123, because the three-way error pro-
cess flips all pairs of syndromes. However, the single-
syndrome-flipping error probabilities are underestimated
by p123, because the two-way error probabilities that are
effectively subtracted by the denominator in Eq. (E1b)
were overestimated. We see that in some cases (p̌2 and
p̌3), the extracted probabilities can even appear negative
if some error channels are not accounted for.
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FIG. 12. Error probability as calculated according to Eq. (10)
as a function of the true simulated error probability for 83
random error channels with signatures on up to 12 nodes.
The simulation was done with 100000 shots and took about
30 minutes on a laptop computer.

TABLE II. Syndrome correlations for the three-node example.

Correlation Equation Num.

⟨σ̃1⟩ (1− 2p1)(1− 2p12)(1− 2p123) 0.875
⟨σ̃2⟩ (1− 2p12)(1− 2p123) 0.931
⟨σ̃3⟩ 1− 2p123 0.980
⟨σ̃1σ̃2⟩ 1− 2p1 0.940
⟨σ̃2σ̃3⟩ 1− 2p12 0.950
⟨σ̃1σ̃3⟩ (1− 2p1)(1− 2p12) 0.893
⟨σ̃1σ̃2σ̃3⟩ (1− 2p1)(1− 2p123) 0.921

Appendix G: Simulation Model

To obtain the simulation data shown in Fig. 3 (b),
we conduct a Clifford simulation using the PECOS [71]
package, where we implement the circuit presented in
Appendix H. Single- and two-qubit depolarizing noise is
implemented by applying a random single- or two-qubit
Pauli operator to the state with probability p. We use
a uniform noise model, where operations on each qubit
are subject to the same error probabilities. We apply
single-qubit depolarizing noise during each idling step of

duration tIDL with probability pIDL = (1 − e−tIDL/T )/4,
where T = 35µs is approximately the mean T1 and T2

time of all the qubits. For single-qubit gates, we ap-
ply a single-qubit depolarizing channel with probability
p1Q = 0.0009. That is the average of single-qubit gate er-
rors from randomized benchmarking. Similarly, for two-
qubit gates, we apply a two-qubit depolarizing channel
with probability p2Q = 0.015, the average gate error from
interleaved randomized benchmarking, see Appendix D.
Finally, to model readout errors, we apply a X̂ gate be-
fore each readout with probability pRO = 0.0116, which
corresponds approximately to the average two-state read-

out error ϵ
(2)
RO, see Table I.
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TABLE III. Error probabilities p̌ inferred using Eq. (E1) for
the three-node example.

Inferred
probability Equation Num. Error

p̌1 (p1 − p123)/(1− 2p123) 0.020 −0.010
p̌2 −p123/(1− 2p123) −0.010 −0.010
p̌3 −p123/(1− 2p123) −0.010 −0.010
p̌12 p12 + p123 − 2p12p123 0.034 0.010
p̌23 p123 0.010 0.010
p̌13 p123 0.010 0.010

Appendix H: Full Circuit Diagram

A diagram of an example circuit four-cycle-long logical
state preservation experiment for the |+⟩L state is shown
in Fig. 13. The experimental data presented in this work
was acquired using an equivalent 16-cycle-long circuit,
preparing either |0⟩L, |1⟩L, |+⟩L, or |−⟩L. During the
first stabilizer measurement cycle, we omit measuring the
X-type (Z-type) stabilizers when preparing an eigenstate

of the X̂L (ẐL) operator.

Appendix I: Example analysis of varying error rates

As the simplest example that shows how the changes
in the underlying error rates of the system during the
data aquisition time can lead to apparent correlated er-
rors, we consider the following system. There are two
syndrome elements which independently flip with some
probability. In the first scenario, let the error probability
be constantly p throughout the data-gathering time. In
this case, the syndrome correlations are

⟨σ̃1⟩ = ⟨σ̃2⟩ = 1− 2p, (I1a)

⟨σ̃1σ̃2⟩ = (1− 2p)2, (I1b)

and the error probabilities extracted using Eq. (10) are

p12 =
1

2
− 1

2

√
⟨σ̃1⟩⟨σ̃2⟩
⟨σ̃1σ̃2⟩

= 0, (I2a)

p1 =
1

2
− 1

2
⟨σ̃1⟩ = p, (I2b)

p2 =
1

2
− 1

2
⟨σ̃2⟩ = p. (I2c)

In a second scenario, we set the the individual er-
ror probabilities to zero for the first half of the data-
gathering and to 2p for the second half, yielding syn-
drome correlations

⟨σ̃1⟩ = ⟨σ̃2⟩ = 1/2 + (1− 4p)/2 = 1− 2p, (I3a)

⟨σ̃1σ̃2⟩ = 1/2 + (1− 4p)2/2 = (1− 2p)2 + 4p2.
(I3b)

We now find a nonzero probability for an error simulta-
neously flipping the two syndrome elements:

p12 =
1

2
− 1

2

√
⟨σ̃1⟩⟨σ̃2⟩
⟨σ̃1σ̃2⟩

=

1

2
− 1

2

√
(1− 2p)2

(1− 2p)2 + 4p2
̸= 0, (I4a)

p1 =
1

2
− 1

2

⟨σ̃1⟩
1− 2p12

̸= p, (I4b)

p2 =
1

2
− 1

2

⟨σ̃2⟩
1− 2p12

̸= p. (I4c)

In this extreme example, where the errors are fully off
for half of the experiment, the apparent correlated error
probability is equal to p2 in the limit of small p. For
a smaller change in the error rates of ε, that is, error
probabilities (1− ε)p for half of the data gathering time
and (1 + ε)p for the second half, we would find a corre-
lated error probability proportional to ε2p2. Due to the
quadratic scaling in both ε and p, the effect is significant
only for large changes in the error rates.
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single qubit rotations around Ŷ , with the filling indicating the rotation angle: left half filled is −π/2, right half filled is π/2,

and fully filled is π. Orange vertical lines indicate virtual π-rotations around Ẑ, which are implemented by flipping the phase
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