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Despite the high measurement fidelity that can now be reached, the dispersive qubit readout of circuit
quantum electrodynamics is plagued by a loss of its quantum nondemolition character and a decrease in
fidelity with increased measurement strength. In this work, we elucidate the nature of this dynamical
process, which we refer to as transmon ionization. We develop a comprehensive framework which provides
a physical picture of the origin of transmon ionization. This framework consists of three complementary
levels of descriptions: a fully quantized transmon-resonator model, a semiclassical model where the
resonator is treated as a classical drive on the transmon, and a fully classical model. Crucially, all three
approaches preserve the full cosine potential of the transmon and lead to similar predictions. This
framework identifies the multiphoton resonances responsible for transmon ionization. It also allows one to
efficiently compute numerical estimates of the photon number threshold for ionization, which are in
remarkable agreement with recent experimental results. The tools developed within this work are both
conceptually and computationally simple, and we expect them to become an integral part of the theoretical
underpinning of all circuit QED experiments.
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I. INTRODUCTION

Circuit quantum electrodynamics with transmon qubits
is a leading platform for quantum computation [1,2]. A key
feature of this architecture is the dispersive readout, where
the qubit state is inferred from quadrature measurement of a
microwave signal transmitted or reflected from a resonator
coupled to the qubit [3]. In principle, increasing the
amplitude of the measurement drive, or, equivalently, the
average resonator photon population, should lead to an
increase in the measurement’s signal-to-noise ratio (SNR).
Moreover, because the qubit is strongly detuned from the
resonator and, thus, from the readout drive, the process is
expected to be quantum nondemolition (QND) [4].
In practice, however, increasing the readout drive ampli-

tude results in a reduction of the measurement fidelity and
in measurement-induced transitions spoiling the QND
character of the readout. This is a widely observed

phenomenon [5–10]. Although it has been experimentally
possible to optimize the dispersive readout to obtain
high-fidelity state discrimination [5,9,11–15], single-shot
qubit readout now lags in fidelity behind the best one- and
two-qubit gates [16]. Thus, improving qubit readout is an
outstanding challenge for the field. Attempts at understand-
ing the origin of these observations have been made using
perturbative expansions in the qubit-resonator coupling,
qubit anharmonicity, or drive amplitudes while treating the
qubit as a two-level system or a Kerr-nonlinear oscillator
[17–20]. While these approaches highlight important mech-
anisms for qubit decay and excitation in circuitQED, theydo
not explain the observed non-QNDness of the dispersive
readout. This situation is exacerbated by the fact that no clear
parameter dependence for the onset of non-QNDness
emerges from experimental observations. In a different line
of work, the accidental presence of a two-level defect near
the qubit transition frequency was shown to explain some
experimentally observed features [21]. However, this does
not account for the multilevel nature of the measurement-
induced transitions observed in many experiments.
There has recently been a flurry of activity aimed at

understanding the origin of the failure of the dispersive
readout [6,7,22–26]. In particular, numerical simulations of
the dynamics of the dispersive readout have shown that the
measurement drive, although strongly detuned from the
qubit in the dispersive regime, can cause measurement-
induced transitions to highly excited states of the transmon
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at specific resonator photon numbers [22]. In some cases,
this leakage extends to states beyond the transmon’s cosine
potential well, a phenomenon referred to as transmon
ionization. Moreover, Cohen et al. [23] showed that the
chaotic behavior of the driven nonlinear classical pendulum
can be used to gain qualitative understanding of transmon
ionization, an observation which suggests that perturbative
methods may not be sufficient to understand ionization. In
view of the transmon’s negative anharmonicity, the impor-
tance of the qubit-resonator frequency detuning, i.e.,
placing the transmon frequency above or below that of
the resonator, was highlighted in Refs. [7,23].
However, it is unclear how these seemingly disparate

approaches relate to each other and whether they make the
same quantitative or even qualitative predictions. In this
work, we present a comprehensive picture of ionization in
the transmon qubit. To do so, we divide the analysis into
three main levels of approximation, in all cases considering
both negative and positive detunings. We first consider a
fully quantized transmon-resonator model that enables us
to investigate the physical mechanisms leading to ioniza-
tion. We then argue that, under typical conditions, a
simplified semiclassical model where the resonator is
treated as a classical field within Floquet theory reproduces
the features of the full quantum model and is able to
accurately predict ionization. Because it omits the resonator
mode, this model is much more numerically efficient
without losing predictive power. Finally, we demote the
transmon to a fully classical system and use the Bohr-
Sommerfeld quantization rule to make predictions about
ionization. Remarkably, we show that all three models lead
to similar qualitative and quantitative predictions for the
onset of ionization in a wide range of qubit-resonator
detunings and that they agree with experimental results. We
also highlight the importance of gate charge in the onset of
ionization of the computational states, even deep in the
transmon regime [7,23]. Common to all three approaches is
that they consider the full cosine potential of the transmon
rather than the common Kerr nonlinearity approximation.
An important feature emerging from all three methods is

that, in general, there exist several critical photon numbers at
which ionization can occur in principle. These critical points
correspond to resonances that are activated by the strong
resonator field thanks to the Josephson junction’s non-
linearity. We show that not all these resonances play an
equally important role and that some can be safely ignored in
the appropriate conditions. Moreover, we find that the
critical photon numbers relevant to ionization are not simply
related to the critical photon number ncrit of the Jaynes-
Cummings Hamiltonian at which the dispersive approxi-
mation breaks down [4]. Indeed, while the latter indicates
when the qubit-induced nonlinearity becomes important, it
is not a good predictor for the onset of ionization.
Throughout this work, we use the term “ionization” loosely,
that is, even if in some instances the measurement-induced

transitions do not involve states above the cosine potential
well. An alternative term describing the same phenomenol-
ogy is measurement-induced state transitions [6,7].
However, since the physics at play extends well beyond
measurement processes, we have chosen to retain the use of
“ionization” despite its limitations.

II. FULLY QUANTUM MODEL

A. Model

As illustrated in Fig. 1(a), we consider a transmon qubit
capacitively coupled to a resonator described by the
Hamiltonian (ℏ ¼ 1) [1,2]

Ĥtr ¼ ωrâ†âþ Ĥt − igðn̂t − ngÞðâ − â†Þ; ð1Þ

where ωr is the bare resonator frequency, g is the transmon-
resonator coupling strength, and â is the annihilation
operator of the resonator. Moreover,

Ĥt ¼ 4ECðn̂t − ngÞ2 − EJ cos φ̂t ð2Þ

is the transmon Hamiltonian with EC the charging
energy, EJ the Josephson energy, and ng the gate charge.
The operators φ̂t and n̂t are the transmon’s canonically
conjugate phase and charge operators, respectively.
Throughout this work, we assume that the qubit is
operated in the transmon regime, EJ=EC ≫ 1. Note that
we include the often-dropped contribution of the gate
charge to the last term of Ĥtr.
The resonator drive used to measure the qubit takes the

form

ĤdðtÞ ¼ −iεd sinðωdtÞðâ − â†Þ; ð3Þ

with εd the drive amplitude and ωd the drive frequency.
Including single-photon resonator losses, the master equa-
tion for the transmon-resonator density matrix is then [1]

FIG. 1. (a) Schematic of a transmon qubit capacitively coupled
to a driven resonator. (b) Cosine potential well of the transmon
with EJ=EC ¼ 110 and ng ¼ 0, together with the first 13
eigenstates represented in the phase basis. There are about nine
levels in the well. Transmon states at the bottom of the well are
close to eigenstates of the harmonic oscillator, while states above
the well are close to charge states, i.e., standing waves in the
phase basis.
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∂tρ̂ ¼ −i½Ĥtr þ ĤdðtÞ; ρ̂� þ κD½â�ρ̂; ð4Þ

where κ is the resonator decay rate and D½â�ρ̂ ¼ â ρ̂ â† −
fâ†â; ρ̂g=2 is the Lindblad dissipator.
In the absence of drive and qubit-resonator coupling,

we denote the eigenstates of the Hamiltonian by jit; nri,
where it labels the bare transmon eigenstates and nr labels
the bare resonator photon number. The bare energy
associated with jit; nri is Eit þ nrωr, and the transition
frequencies between different states of the transmon are
denoted ωitjt ≡ Ejt − Eit . With this notation, the bare
qubit transition frequency is ωq ¼ E1t

− E0t
. The matrix

elements of the qubit-resonator coupling are proportional
to gitjt ¼ ghitjn̂tjjti.
As is usual for quantum information processing in circuit

QED, throughout this work we assume that the system is
operated in the dispersive limit where jg=Δj ≪ 1, with Δ ¼
ωq − ωr the qubit-resonator detuning. In that regime, the
computational subspace of the qubit is spanned by the
dressed ground state j0t; 0ri and dressed excited state
j1t; 0ri of Ĥtr. Logical operations act on these two dressed
states, and it is those states that are resolved in a dispersive
qubit measurement. A more precise condition for the
dispersive regime to hold is that n̄r=ncrit;it ≪ 1, where n̄r
is the average resonator photon number and ncrit;it is a
photon number at which the transmon-resonator interaction
stops being dispersive for state it (see Appendix A). With
the above notation, the commonly used Jaynes-Cummings
critical photon number is ncrit ≡ ncrit;0t ¼ jΔ=2g0t1t j2 [1,4].
As becomes clear below, the breakdown of the dispersive
approximation during qubit readout does not necessarily
correlate with ionization.
Unless otherwise stated, throughout this work we

fix the transmon parameters to be EJ=EC ¼ 110 with
EC=2π ¼ 220 MHz. This corresponds to a qubit transition
frequency ωq=2π ¼ 6.298 GHz, anharmonicity of magni-
tude α=2π ¼ 240 MHz, and nine or ten levels in the cosine
potential well depending on the value of ng; see Fig. 1(b).
Moreover, we take the coupling to be g=2π ¼ 120 MHz.
Because of the negative sign of the transmon’s anharmo-
nicity, there is a striking difference in the onset of ionization
depending on the sign of the qubit-resonator detuning Δ
[7,23]. In this work, we study both negative and
positive detunings. When considering negative detuning,
the resonator frequency is ωr=2π ¼ 7.5 GHz (Δ=2π ¼
−1.202 GHz, ncrit;0t ¼ 14, ncrit;1t ¼ 10.5), while for positive
detuning we take ωr=2π¼5.3GHz (Δ=2π¼0.998GHz,
ncrit;0t ¼ 9.7, ncrit;1t ¼ 2.9). In Secs. III and IV, the driven
resonator is substituted by a direct drive on the transmon.
There, we take ωd=2π ¼ 7.515 GHz at negative detuning
and ωd=2π ¼ 5.267 GHz at positive detuning. In both
cases, the chosen drive frequency is positioned between
the two pulled resonator frequencies corresponding to the
qubit’s ground and excited states [1].

Crucially, although we use a fixed set of parameters to
introduce the ionization phenomenology, we verified that
the conclusions we reached remained general over a wide
range of parameters; see, e.g., Secs. II F and V, where we
present sweeps over a wide range of resonator frequencies
and Josephson energies, respectively. We find that once the
sign of the detuning Δ has been fixed, the phenomenology
for a given choice of parameters is easily understood. This
can be traced back to the fact that the properties of the
transmon relevant to ionization, such as its anharmonicity,
the gate charge dispersion of high-energy levels, and the
general structure of the charge operator, are roughly
independent of the ratio EJ=EC. Furthermore, ignoring
quantum fluctuations, a change in the coupling strength g
can be understood as a rescaling of the average resonator
photon number.

B. Branch analysis

To understand how the presence of photons in the
resonator leads to transmon ionization, we can attempt
to label dressed states jit; nri by considering which is the
closest to a given bare transmon state jiti at an arbitrary
photon number jnri. Each set of states associated with that
particular it is then referred to as a branch. While this
identification can easily be done at low photon numbers,
there is no clear such closest state when the photon number
approaches or exceeds ncrit, in which case the dressed states
are highly entangled qubit-resonator states. To build
branches that allow us to gain insight into the dynamics
of the driven system at high photon numbers, we instead
follow Refs. [22,27]. In this approach, we use as our
starting point the eigenstates fjλig of Ĥtr obtained from
numerical diagonalization. For each it, we identify jit; 0ri
to be the low-energy eigenstate with the largest overlap
with jit; 0ri. The branches are built recursively from those
starting points and in parallel: Given jit; nri, the next
eigenstate jit; nr þ 1i added to each branch is the one
which maximizes the overlap

Cit;nr
ðλÞ≡ jhλjâ†jit; nrij2: ð5Þ

At each step, jλi is taken from the set of unassigned states.
In this way, we obtain branches labeled Bit corresponding
to the set of eigenstates fjit; nrig with fixed it and with nr
spanning the full resonator Hilbert space. Thus, when the
dispersive approximation is valid, each such branch can be
pictured as an effective oscillator responding at the pulled
resonator frequency associated with the transmon state
it [22].
The character of the branch eigenstates can be inves-

tigated by tracking their average transmon population
Ntðit; nrÞ≡P

jt;mr
jtjhjt; mrjit; nrij2 and their average res-

onator population Nrðit; nrÞ≡ hit; nrjâ†âjit; nri for every
eigenstate jit; nri. Note that whenever we refer toNt andNr
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of a specific branch, we are implicitly referring to the Nt
and Nr of the eigenstates which make up that branch. From
this point onward, we stop writing the explicit indices
ðit; nrÞ to lighten the notation. At very low photon numbers,
the dispersive approximation holds, and we expect the
states within a given branch Bit to have a transmon
population Nt close to the bare value it. However, plotting
the average transmon and resonator populations parametri-
cally for each branch reveals that this is not always the case;
see Fig. 2(a). Instead, drastic changes in the average
transmon population Nt are sometimes observed at specific
branch-dependent values of Nr, such as a “swapping” of
the branches in which two branches exchange their values
of Nt. These features are a signature of strong hybridization
between transmon states and indicate a complete break-
down of the dispersive approximation. When swapping
occurs between a branch linked to computational states and
a branch that is near the top of the cosine potential, there is
a significant change in the character of the former. It shifts
from being predominantly made up of low-energy, local-
ized bare transmon states to being composed largely of
high-energy, chargelike bare transmon states. Thus, we
generically refer to this process as ionization.
In Refs. [22,29], these drastic changes were shown

to determine dynamical properties of the system in the
presence of a readout drive populating the resonator. Thus,
the branch analysis serves as a diagnosis of the onset of
measurement-induced ionization in the transmon. Because
of computational limitations, however, these works mostly
focused on a single parameter set. As a result, the difference
in the underlying physics at negative and positive detunings
was not explored in great detail, nor was the impact of gate
charge studied. Below, we describe the physical mecha-
nisms relevant for negative transmon-resonator detuning,
followed by the casewhere this detuning is positive. Finally,
we quantify the effect of gate charge on the transitions.

C. Negative detuning ωq < ωr

We consider the case where the qubit frequency is below
the resonator frequency, Δ ¼ ωq − ωr < 0. To proceed, we
note that, by taking matrix elements of the commutation
relation ½Ĥtr; â†� ¼ ωrâ† − igðn̂t − ngÞ and rearranging,
Eq. (5) can be rewritten as [23]

Cit;nr
ðλÞ ¼ g2

jhλjn̂tjit; nrij2
ðEλ − Eit;nr

− ωrÞ2
: ð6Þ

The denominator of this expression conveys that, when
adding a photon to a branch eigenstate makes it nearly
degenerate with another eigenstate, dramatic effects such as
branch swapping can be expected. But when do we expect
dressed states of Ĥtr to be nearly resonant?
Perturbation theory provides an intuitive answer to this

question. Using the usual Schrieffer-Wolff transformation

e−Ŝ with an appropriately chosen Ŝ, one can approximately
diagonalize Ĥtr as [2]

eŜĤtre−Ŝ ≈
X∞
it¼0

½Eit þ Λit þ ðωr þ χitÞâ†â�jitihitj; ð7Þ

FIG. 2. Negative detuning. (a) Average transmon population Nt
of branch eigenstates and (b) modular eigenenergies of branch
eigenstates as a function of the average resonator photon number
Nr of the eigenstates. All results in (a) and (b) are obtained from
full diagonalization of the undrivenHamiltonian Ĥtr for a negative
detuning Δ=2π ¼ −1.202 GHz. In (a) and (b), branches B0t

, B1t
,

B7t
,B10t

, andB11t
are highlighted in color (see the legend), and the

others are gray. In (b), energies aremeasured from the qubit ground
state energy and then folded into the interval ½−ωr=2; ωr=2�.
Branch population swapping occurs at avoided crossings in the
modular energy spectrum (dotted vertical lines and inset). (c) Dy-
namics of the driven transmon-resonator system when initializing
in the excited state j1t; 0ri. When the resonator population reaches
hâ†âi ≈ 84, corresponding to the B1t

− B7t
swapping observed in

(a), the population of the state is mostly transferred to branch B7t
,

but a significant part of the population (approximately 7%) stays in
branch B1t

, indicating ionization. At hâ†âi ≈ 140, the population
is then mostly transferred to B10t

, corresponding to the B7t
− B10t

swapping in (a), while residual population in B7t
is ionized. The

inset in (c) shows in log scale the bimodal Fock-state distribution
of the resonator at the final time κt ¼ 2. For dynamics simulations,
we use εd=2π ¼ 180 MHz, ωd=2π ¼ 7.515 GHz, and κ=2π ¼
7.95 MHz (set to match the full χ shift at zero photons). The full-
time dynamics are performed using quantum trajectories [28] with
16 transmon states, 300 resonator states, 200 trajectories, and time
evolving up to κt ¼ 2. The timescale of the simulated dynamics is
shown on the secondary axis above (c).
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where Λit are the Lamb shifts and

χit ¼
X∞
jt¼0

jgitjt j2
�

1

ωr − ωitjt

−
1

ωr þ ωitjt

�
ð8Þ

are the dispersive χ shifts obtained here without the usual
rotating-wave approximation (RWA) on the transmon-
resonator coupling term of Eq. (1) [1]. Importantly, because
of the transmon’s negative anharmonicity, at negative
detuning the transitions between nearest-neighbor higher-
excited states are more off resonant with the resonator, e.g.,
jΔ − αj > jΔj. This trend continues for all transmon
eigenstates it within the cosine potential and ensures the
validity of perturbation theory at low photon numbers.
Given the small change χit to the dispersion of the
resonator, at low photon numbers we then have a direct
mapping between the bare states jit; nri and dressed
states .
To understand how this standard analysis helps explain

the phenomenon of branch swapping, it is instructive to
consider the eigenvalues of Ĥtr modulo ωr. This modular
spectrum is plotted versus resonator photon number in
Fig. 2(b). At low photon numbers, the slope of the modular
branch energy versus Nr for states in the well is χit , which
is positive for states deep in the well and negative for states
near the top of the well. This change in sign can be
understood as a competition between the two terms in
Eq. (8), corresponding to virtual photon absorption and
emission, respectively. The most relevant transitions for
absorption are those for which jt > it, which have a larger
matrix element. By contrast, the most relevant transitions
for emission are those for which jt < it, which are less
detuned due to the negative anharmonicity of the transmon.
Indeed, treating the transmon as a Kerr-nonlinear oscillator
with α ≈ −EC, performing the RWA, and setting nzpf as the
zero-point fluctuations of the charge, the leading absorption
and emission terms are found to be

χit ≈ g2n2zpf

�
it þ 1

−Δþ itEC
−

it
−Δþ ðit − 1ÞEC

�
; ð9Þ

thereby correctly predicting the general trend of χit
decreasing with increasing it for negative detuning.
Crucially, however, this approximation incorrectly predicts
the same sign of χit for all transmon states, highlighting the
importance of keeping the full cosine potential.
At large enough photon numbers, these opposite ac-

Stark shifts can lead to near collisions of the modular
energies between states at the bottom and near the top of the
well, corresponding to near degeneracies Eλ − Eλ0 ≈ 0
mod ωr of the eigenenergies. Nonperturbative corrections
to the eigenstates—which arise due to terms typically
dropped in the derivation of Eq. (7)—turn these near
collisions into avoided crossings (dotted vertical lines);

see Appendix B. These avoided crossings in the
modular spectrum correspond to multiphoton resonances
where k ∼ jEλ − Eλ0 j=ωr photons are absorbed by the
transmon. Accordingly, the states before and after an
avoided crossing swap character: If the energies of
the eigenstates of branches Bit and Bjt collide modulo
ωr, we then have ,
before the avoided crossing and ,

after the avoided crossing. We
emphasize that, since states near the top of the well break
the dipolelike selection rules of the Kerr nonlinearity
approximation, it is not required that multiphoton transi-
tions satisfy the condition jit − jtj ¼ k. Thus, preserving
the full cosine potential well of the transmon is necessary to
accurately predict the strength of the avoided crossing.
These qualitative predictions capture the main features

observed in Figs. 2(a) and 2(b). As expected, at low photon
numbers the modular energies are observed to vary linearly
with photon number. The slope is positive for branches
corresponding to states deep in the well, such as B1t

, while
the slope is negative for branches corresponding to states
near the top, such as B7t

. An avoided crossing is observed
when these two branches eventually meet at Nr ≈ 84; see
the inset in Fig. 2(b). This is precisely where the branches
swap characters; see Fig. 2(a). The same phenomenology
holds for the ground-state branch B0t

, which swaps with the
chargelike branch B11t

after an avoided crossing at a higher
photon numberNr ≈ 165. An avoided crossing between B7t

and B10t
is also observed at Nr ≈ 140. Importantly, not all

near degeneracies lead to swapping, such as when B0t
and

B7t
cross at around Nr ≈ 23. This is simply a consequence

of the magnitude of the relevant matrix elements: At this
low photon number, it is not possible to efficiently couple
the dressed 0t and 7t states of the transmon via the qubit-
resonator coupling; see Appendix B for details. Note that
ionization here happens at a photon number that is much
larger than the Jaynes-Cummings critical photon number.
We stress that, although the above leading-order pertur-

bative approach used to interpret Fig. 2 is qualitatively
correct, to obtain quantitative predictions one must resort to
full numerics. For instance, at large enough photon num-
bers, the self-Kerr of the dressed resonator becomes
relevant and must be taken into account when trying to
predict the positions of the avoided crossings. In addition,
ionization of the ground and excited branches can occur
with chargelike states. Indeed, given that n̂t can efficiently
couple states near the top of the well to each other and even
to chargelike states outside the cosine potential via a single
photon [23], the modular spectrum of these highly excited
states can vary wildly as a function of photon number, thus
bringing them in and out of resonance with the computa-
tional states. The strong charge dispersion of the transmon
states near and above the top of the cosine potential well
then implies that ng plays a crucial role in determining at
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which photon number ionization occurs [7,23]. See
Sec. II E for more details on these considerations.
It is important to emphasize that, in the language of the

branch analysis, ionization occurs when the population
remains in the ground- or excited-state branch after the
swapping; consider, e.g., the red line in Fig. 2(a), which
jumps from Nt ∼ 1 to Nt ∼ 7 at the avoided crossing. This
corresponds to an adiabatic transition to a highly excited
transmon state. By contrast, purely diabaticlike transitions
between branches do not cause ionization. In practice, the
character of the transition can be mixed between these two
types of processes. As an illustration, by starting in j1t; 0ri,
time evolving via Eq. (4), and plotting the average
population of the branches PBit

ðtÞ≡ hPnr jit; nrihit; nrji
as in Fig. 2(c), we see a nearly full diabatic population
transfer from B1t

to B7t
at hâ†âi ≈ 84, with the bare

transmon population (not shown) rising only to
Nt ≈ 2.25. The approximately 7% of the population that
remains in B1t

after the swapping roughly translates to an
equally large probability of ionization. Ionizing by remain-
ing in the ground- or excited-state branch after the crossing
implies a change in the resonator pull, which will in this
instance be closer to χ7t than to χ1t . As discussed in
Ref. [22], this, in turn, implies that the resonator undergoes
a different phase-space trajectory, leading to the bimodal
distribution of Fock states seen in the inset in Fig. 2(c).
The importanceofmultiphoton resonances as amechanism

causing drive-induced transitions in the transmon has pre-
viously been discussed in the literature. Sank et al. [6] show
that resonances between different excitation-conserving sub-
spaces of the Jaynes-Cummings Hamiltonian mediated by
several photons can lead to transmon transitions. The theo-
retical model developed in that work, which identifies multi-
photon resonances using an approach related to the branch
analysis of Fig. 2, was able to explain experimentally
observed features. Interestingly, ionization was observed to
occur at a photon number significantly larger than the Jaynes-
Cummings critical photon number, as is expected from the
above discussion.Moreover, that experiment also shows that,
while readout-induced transitions occur at specific photon
numbers, it is possible to operate the readout at still larger
photon numbers. This highlights that, as discussed above,
resonances that are traversed diabatically do not lead to
ionization. The importance of these resonances was also
recognized in the context of the resonator-induced phase gate
in Ref. [30].
Moreover, Xiao et al. [24] use a diagrammatic method to

compute effective Hamiltonians for a driven transmon in
the absence of a resonator. This approach allows them to
identify the multiphoton processes that are responsible for
drive-induced transmon transitions. In the next section, we
show that the model of a directly driven transmon can
capture ionization due to a readout drive. The branch
analysis brings these pictures together and provides a
simple way to predict where resonances occur. It also

captures resonances that cannot be obtained via perturba-
tive arguments. This occurs, for instance, when invoking
the RWA for higher-energy states of the cosine potential,
which would lead one to incorrectly predict the photon
number at which ionization occurs; see Sec. II E.
We can now succinctly summarize the three key ingre-

dients leading to ionization of the qubit ground and excited
states at negative detuning.

(i) At low photon numbers, χit is positive for states deep
in the well, leading to an increase in the energy with
photon number. In contrast, transmon states near the
top of the cosine potential are pushed down in
energy with increasing photon number. Chargelike
states above the well can also be pushed down in
energy in a manner which is highly sensitive to the
gate charge.

(ii) These opposite behaviors result in near degeneracies
and, thus, in avoided crossings between the two sets
of states at some large-enough photon number,
leading to swapping of the transmon branches.

(iii) The resulting hybridization of the transmon’s com-
putational states with states closer to the top of the
well or above the well leads to transmon ionization
at specific resonator photon numbers.

D. Positive detuning ωq > ωr

In contrast to negative detuningwhere branch swapping is
observed, at moderate positive qubit-resonator detuning we
insteadobserve that the transmonpopulations of the branches
within the cosine potential well coalesce as the resonator
photon number is increased; see Fig. 3(a). Much of the
phenomenology associated with this observation stems from
the fact that the transmon’s negative anharmonicity leads to
transitions between neighboring states in the well becoming
more resonant with the resonator frequency when climbing
the cosine potential. As a result, because of the small
anharmonicity of the transmon and for typical large values
of g in circuit QED, generically one of the transmon
transitions within the well is such that jEitþ1−Eit−ωrj∼g.
For that transition, the dispersive approximation breaks
down even at zero resonator photon population. In the
Kerr-nonlinear oscillator approximation for the transmon,
where ωit;itþ1 ∼ ωq − itα, this one-photon resonance occurs
for the transmon level i⋆t ∼ round½ðωq − ωrÞ=α� [7].
For example, with the parameters in Fig. 3, we have that

Eitþ1 − Eit > ωr if it ≤ 3;

Eitþ1 − Eit ≈ ωr if it ¼ 4;

Eitþ1 − Eit < ωr if it ≥ 5; ð10Þ

so that i⋆t ¼ 4 is the state for which the dispersive approxi-
mation first fails, Ei⋆t þ1 − Ei⋆t − ωr ∼ g. This is confirmed
by examining the modular energies of the branches eigen-
states; see Fig. 3(b). Unlike the prediction made by the
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dispersive approximation in Eq. (7), E4t;nr
does not vary

linearly at small photon numbers (pink line), indicating a
strong mixing of the bare state j4t; nri with other

neighboring bare transmon states. This strong hybridization
results in the delocalization of4t at very lowphoton numbers,
as shown in Fig. 3(e). Increasing the photon number,
hybridization of i⋆t with neighboring states leads to level
repulsion and, in turn, to collisions with other branches.
At the moderate positive detuning considered here, this

hybridization is further accentuated by near resonances
(modulo ωr) between pairs of states in the well. For the
parameters in Fig. 3, this is the case of the pair of states 1t
and 7t, for which E7t

− E1t
− 6ωr ∼ g, and of 0t and 8t, for

which E8t
− E0t

− 8ωr ∼ g. These transitions require multi-
ple intermediate virtual transitions and are, thus, suppressed
at very low photon numbers; see in Fig. 3(b) the almost
resonant modular energies of the eigenstates of branches
B1t

and B7t
running parallel up to Nr ≈ 7. However,

because the coupling matrix element is proportional to
g

ffiffiffiffiffi
nr

p
, their hybridization becomes possible at increased

photon numbers; see Figs. 3(c), 3(d), 3(f), and 3(g). The
early breakdown of the dispersive approximation for i⋆t ,
followed by the activation of near resonances, is the cause
of the observed bunching of the branch population at
Nt ∼ i⋆t . This process starts with states closest to i⋆t and,
pair by pair, is followed by states connected by a multi-
photon transition and that are symmetric about i⋆t . This
phenomenology explains why branch bunching and the
associated ionization typically occur at a lower photon
number for the transmon’s excited state than for its ground
state; see Fig. 3(a). It also explains why, at moderate
detuning, ionization typically occurs at much lower photon
numbers for positive detuning than for negative detuning.
Figure 3(h) shows the average population of the branches

when starting in j1t; 0ri and evolving using Eq. (4). Around
hN̂riðtÞ ≈ 7, which coincides with branches B1t

and B7t

bunching around Nr ≈ 7 in Fig. 3(a), a fraction of the
population is transferred from branch B1t

to B7t
. However,

even at the relatively high speed at which the resonance is
traversed, most of the population remains in branch 1t due
to the large width of the avoided crossing, resulting in near-
complete ionization. The resonator population drops after
the crossing due to the drive becoming significantly off
resonant with the pulled resonator frequency associated
with the ionized state.
In Ref. [7], this physics was shown to be captured within

a semiclassical model in the RWA. In the fully quantum
model we use here, this can be understood by projecting the
qubit-resonator Hamiltonian Ĥ0 in Eq. (1) on a subspace
with N excitations. After performing a RWA, dropping ng
from the coupling term, and moving to a frame rotating at
ωr for the qubit and the resonator, this leads to

ĤN
0 ¼

X
itþnr¼N

ðEit − itωrÞjit;nrihit;nrj

− i
X

itþnr¼N

�
gitþ1;it

ffiffiffiffiffi
nr

p jitþ1;nr−1ihit;nrjþH:c:
�
.

ð11Þ

FIG. 3. Positive detuning. (a) Average transmon population Nt
of branch eigenstates, (b) modular eigenenergies of branch
eigenstates, and (c)–(g) projection of the branch eigenstates on
the transmon eigenbasis as a function of the average resonator
photon number Nr of the eigenstates. All results in (a)–(g) are
obtained from full diagonalization of the undriven Hamiltonian Ĥtr
for a positive detuningΔ=2π ¼ 0.998 GHz. In (a) and (b), branches
B0t

, B1t
, B4t

, B7t
, and B8t

are highlighted in color (see the legend),
and the others are gray. In (b), energies are measured from the
qubit ground state energy and then folded into the interval
½−ωr=2; ωr=2�. In (c)–(g), the projections of 8t, 7t, 4t, 1t, and
0t are plotted on a logarithmic color bar scale with the same color
coding.Branchpopulationbunching is observed about state i⋆t ¼ 4.
The dotted vertical lines indicate the photon numbers at which the
population bunching in B0t

and B1t
dramatically increases. The

dashed vertical lines are offset from the dotted lines by N photons,
with N being the number of photons needed to energetically
connect the pairs of states that hybridize during bunching.
(h) Dynamically simulated populations of branches B1t

(red line)
and B7t

(light blue line) of the driven transmon-resonator system
when initializing in the excited state j1t; 0ri. Dynamics simulations
are done similarly to Fig. 2(c) but with εd=2π¼93MHz, ωd=2π ¼
5.267 GHz, κ=2π ¼ 11.98 MHz, and 120 resonator states.
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This is analogous to a 1D lattice with nearest-neighbor
hopping amplitudes gitþ1;it

ffiffiffiffiffi
nr

p
. As expected from Eq. (10),

the bare energies of the sites jit; nri on this lattice form an
inverted parabola with ji⋆t ; N − i⋆t i at the top; see Fig. 4(a)
[7]. For the parameters in Fig. 3, the states j3t; N − 3ti,
j4t; N − 4ti, and j5t; N − 5ti near the top of the parabola are
near degenerate and are connected by a single lattice hop.
Therefore, they rapidly hybridize, leading to the almost
immediate state bunching seen at low photon numbers in
Fig. 3(a). Hybridization between the other pairs of near-
degenerate states located on each side of the lattice
becomes relevant once the photon number has increased
enough to make the hopping amplitude sufficiently large
to allow virtual transitions between those two remote
states. At that point, the wave functions of that pair of
states become delocalized along the 1D lattice, and they
join the layer of bunched states. This occurs pair by pair
until the photon number is large enough for the ground
state sitting at the bottom of the cosine potential well to
finally enter the bunching layer together with its partner
state; see Fig. 3(a).
This 1D model, however, is not sufficient to

explain the situation at larger positive detuning; compare
Fig. 3(a) to Fig. 5 obtained for Δ=2π ¼ 1.998 GHz
(ωr=2π ¼ 4.3 GHz). The discrepancy is easily understood.
Indeed, because the index i⋆t of the transmon level sitting at
the top of the inverted parabola increases with the detuning,
at large detuning states it < i⋆t no longer have quaside-
generate partners on the lattice; see Fig. 4(b). The absence
of these multiphoton resonances tends to push ionization to
larger photon numbers.

Moreover, for a small resonator frequency compared to
the qubit frequency, more than k photons may be needed
to connect a state jit; nri associated with a transmon
state deep in the well to a state jit þ k; nr − ki closer
to the top of the well. Therefore, considering only the
projection on a subspace with a fixed number of exci-
tations is no longer sufficient, signaling the breakdown of
the RWA. More generally, Eq. (11) does not capture the
full matrix elements of the transmon charge operator
when states near or above the top of the cosine potential
well are involved (see below).
As a result, while a bunching layer can still exist, at large

positive detuning, branch swapping associated with multi-
photon transitions of the type discussed in Sec. II C is also
observed.This is shown inFig. 5,where this occurs for both
the ground- and excited-state branches. At large photon
numbers, the increase with

ffiffiffiffiffi
nr

p
of the coupling matrix

elements is eventually sufficient to overcome the large
energy separations. This leads to significant hybridization,
causing the branches to merge with the bunching layer.
To summarize this section, the key ingredients leading to

ionization at positive detuning are as follows.
(i) Because of the transmon’s negative anharmonicity,

there generically exists a transmon state i⋆t for which
the dispersive approximation breaks down at a very
low photon number. This results in rapid hybridi-
zation of the transmon states and to branch bunching
close to Nt ∼ i⋆t . This branch bunching is, in turn, a
signature of ionization.

(ii) Branch bunching is precipitated by pairwise multi-
photon resonances that become relevant as the photon
number increases. This is captured within the
RWA [7].

(iii) At larger positive detuning, the RWA fails and
weaker processes become dominant. As a result,
multiphoton resonances involving the computa-
tional states are less likely. Generally, the photon
number threshold for ionization increases with the
detuning.

FIG. 5. Positive detuning. Average transmon population Nt of
branch eigenstates as a function of the average resonator photon
number Nr of the eigenstates for a larger positive detuning
Δ=2π ¼ 1.998 GHz, corresponding to i⋆t ¼ 8. All other param-
eters are the same as in Fig. 2. Branches B0t

and B1t
are

highlighted in color (see the legend), and the others are gray.

FIG. 4. Positive detuning. Bare energies ω0tit − itωr of the sites
jit; N − iti in the N-excitation subspace of Ĥ0 in the RWA, here
illustrated for N ¼ 12. (a) Parameters are as in Fig. 3, but with
g ¼ 0 and ng ¼ 0.25. The site j4t; N − 4ti sits at the top of the
inverted parabola. The arrows represent multiphoton processes
connecting near-degenerate sites at the two extremities of the
lattice. The solid vertical lines represent the charge dispersion of
level it. The dotted vertical line at 2EJ=ωp ∼ 7.4 indicates a lower
bound for the number of states in the cosine potential well. Here,
ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ECEJ
p

is the plasma frequency. (b) The same parameters
except for a larger positive detuning Δ=2π ¼ 1.998 GHz
(ωr=2π ¼ 4.3 GHz).
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E. Gate charge dependence

An important feature of the transmon is the exponentially
small charge dispersion of its computational states with
increasing EJ=EC [2]. This charge dispersion, however,
rapidly increases for states near and above the top of the
cosine potential well; see the solid vertical lines in Fig. 4. If
the ionizing multiphoton resonances hybridize the compu-
tational states with these charge-sensitive states, the ion-
ization threshold will depend on gate charge. This effect is
magnified by the fact that single-photon resonances
between charge-sensitive states near the top of the well
can occur at specific values of the gate charge. The modular
energies of these single-photon-hybridized states vary
wildly with photon number, pushing them in and out of
resonance with the computational states as gate charge is
varied. Single-photon resonances at the top of the well are
facilitated by the fact that matrix elements such as
hitjn̂tjit þ 3ti, which are essentially zero for computational
states, can be large near the top of the well, thus opening up
more resonance pathways. When moving away from the
symmetry points ng ¼ 0 and 0.5, other matrix elements
such as hitjn̂tjit þ 2ti also become large. For all these
reasons, both the large charge dispersion and the influence
of the gate charge on the matrix elements significantly
impact the photon number at which ionization of the
transmon computational states occurs, even deep in the
transmon regime.
This is illustrated in Fig. 6, which shows the transmon

branch population versus resonator photon number at
negative detuning and for two values of the gate charge.
For ng ¼ 0 [Fig. 6(a)], branches B7t

and B1t
form an

avoided crossing at around Nr ≈ 84, resulting in the
observed branch swapping. In contrast, for ng ¼ 0.3
[Fig. 6(b)], because the charge operator can now connect
states of the same parity, branch B11t

hybridizes early with
B9t

, and, in turn, branch B9t
hybridizes with B7t

and then
with B16t

. The result is a delayed ionization of B1t
through

hybridization with B16t
at around Nr ≈ 107. Dependence

on gate charge is observed at positive detuning for similar
reasons. The importance of gate charge on the driven
transmon was also pointed out in Refs. [7,23]. We note
that this gate charge dependence highlights the impor-
tance of preserving the full cosine potential of the trans-
mon to study ionization. Indeed, expanding the potential
to arbitrary large order allows one to gauge away the gate
charge, eliminating gate charge dependence of the eigens-
pectrum [2].

F. Critical photon number

Using the fully quantum branch analysis, we now
introduce critical photon numbers nqcrit;it at which ionization
of the transmon state it is expected to occur. These critical
numbers are defined as the minimum photon number Nr at
which the average transmon population reaches Nt ¼ 2 for
the ground-state branch and Nt ¼ 3 for the excited-state
branch. These choices capture large changes caused by
resonances but avoid registering the slow and smooth
increase in Nt with photon number that is observed before
ionization; see, e.g., the red lines in Fig. 6. Given the
sensitivity of ionization to gate charge, the critical photon
numbers we report are averaged over 100 realizations of ng
uniformly distributed between 0 and 0.5.
Figure 7 shows the resulting ng-averaged critical photon

number n̄qcrit;it as a function of the qubit-resonator detuning
(pink line). The top panels correspond to the ground state
and the bottom panels to the excited state. We exclude a
range of detunings around Δ ¼ 0 where the dispersive
approximation does not hold (dashed region). The shaded
pink area shows the distribution of nqcrit;0t and nqcrit;1t
between the tenth and 90th percentiles for the realizations
of ng, emphasizing the strong dependence of ionization
on gate charge. The dashed blue line is the usual
Jaynes-Cummings critical photon number ncrit;it related
to the breakdown of the dispersive approximation (see
Appendix A). Apart from a few values of ng, the onset of
ionization is well above ncrit;it . This observation is in
agreement with Refs. [11,13], where a ≳99% dispersive
readout fidelity was obtained at an average photon number
larger than ncrit.
For comparison, the background shows the average

transmon population obtained from numerical integration
of Schrödinger’s equation for a driven transmon, a quantity
that is more numerically intensive to obtain than the critical
photon numbers (pink line) but more closely resembling
experiments. These time-dynamics simulations do not

FIG. 6. Negative detuning. Average transmon population Nt of
branch eigenstates as a function of the average resonator photon
number Nr of the eigenstates for two different gates charge values
(a) ng ¼ 0 and (b) ng ¼ 0.3. All other parameters are the same as
in Fig. 2. Branches B1t

, B7t
, B9t

, B11t
, and B16t

are highlighted in
color (see the legend), and the others are gray. Ionization of the
excited state is pushed back from Nr ≈ 84 at ng ¼ 0 to Nr ≈ 107

at ng ¼ 0.3.
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include a resonator mode. In Sec. III, we indeed show that,
with the appropriate choice of time-dependent drive ampli-
tude, the dynamics of a driven transmon captures the
essential physics of the fully quantum model. Because
of the strong dependence on ng, the results are also
averaged over 100 realizations of the gate charge. The
agreement between the critical photon numbers extracted
from the branch analysis and the sharp increase in the
average population of the simulated driven transmon is
excellent, confirming that the nqcrit;it are useful and numeri-
cally simple to compute proxies for the onset of ionization.

The critical photon numbers nqcrit;it exhibit a complex
behavior as a function of detuning which can be
understood from the phenomenology discussed in
the previous sections. Focusing first on the case of
negative detuning, we first observe the expected overall
increase of nqcrit;it with jΔj due to the decrease of the χit
shifts. As these shifts become smaller in magnitude, the
slope of the modular energies decreases, pushing the
energy collisions responsible for branch swapping to
larger photon numbers and, consequently, increasing
nqcrit;0t and nqcrit;1t . On the other hand, the large detun-
ing-dependent dips are due to branch swapping caused by
avoided crossings between the ground-state branch
[Fig. 7(a)] or excited-state branch [Fig. 7(c)] and other
branches. Increasing the detuning has the effect of
sweeping through these resonances, resulting in the
observed dips. For example, the three large dips in
Fig. 7(a) arise from resonances in the modular spectrum
between the ground-state branch and (from small to
large negative detuning) branches B7t

, B6t
, and B5t

; see
Appendix B for details.
At positive detuning, we also observe the expected

overall increase of the critical photon numbers with
detuning. On top of this behavior are sharp dips resulting
from multiphoton resonances between the ground state
[Fig. 7(b)] or excited state [Fig. 7(d)] and a quasiresonant
partner state in the inverted potential in Fig. 4(a). At larger
detuning, the ground and excited states no longer have a
quasiresonant partner; see Fig. 4(b). As a result, this
mechanism precipitating ionization is no longer active,
and the increase of the critical photon number with
detuning becomes more monotonic.

III. FLOQUET ANALYSIS OF THE DRIVEN
TRANSMON

During qubit readout, the drive εd on the resonator
displaces the resonator field to a coherent state with
amplitude αðtÞ which, in turn, acts as a classical drive
on the transmon [14,31]. By making a displacement
transformation â → âþ αðtÞ on the master equation
[Eq. (4)] and subsequently ignoring the quantum fluctua-
tions of the resonator, we arrive at the simplified semi-
classical picture of a driven transmon with Hamiltonian
(see Appendix C):

ĤðtÞ ¼ 4ECðn̂t − ngÞ2 − EJ cosðφ̂tÞ þ EtðtÞn̂t
¼ Ĥt þ EtðtÞn̂t: ð12Þ

Assuming the resonator drive frequency ωd to be close to
the resonator frequency ωr, the classical drive on the
transmon is approximately EtðtÞ ≈ εtðtÞ cosðωdtÞ, with a
time-dependent amplitude εtðtÞ ¼ 2g

ffiffiffiffiffiffiffiffiffiffi
n̄rðtÞ

p
, where

FIG. 7. Gate-charge-averaged critical photon number versus
detuning extracted from the fully quantum model (pink) and from
Floquet analysis (red). The top corresponds to the ground state
n̄qcrit;0t and n̄fcrit;0t for (a) negative detuning and (b) positive
detuning. The bottom corresponds to the excited state n̄qcrit;1t
and n̄fcrit;1t for (c) negative detuning and (d) positive detuning. The
detuning is varied by changing the resonator frequency. Shaded
areas correspond to the distribution of nqcrit;it and nfcrit;it between
the tenth and 90th percentiles over 100 realizations of ng for both
models. The dashed blue lines are the Jaynes-Cummings-like
critical photon numbers ncrit;it defined in Appendix A for each
state. The colored background shows the transmon population
extracted from the gate-charge-averaged dynamics of a driven
transmon with steady-state photon number n̄rðt ⟶ ∞Þ ¼ 400,
κ=2π ¼ 1 MHz (negative detuning), and κ=2π ¼ 10 MHz (pos-
itive detuning); see Sec. III for details. Note the change in color
scale between the top and bottom.
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n̄rðtÞ ¼
�
εd
κ

�
2

ð1 − e−κt=2Þ2 ð13Þ

is the average number of photons in the resonator; see
Appendix C for details. In this model, the resonator
frequency ωr of the fully quantum model is replaced by
the drive frequency ωd. As a result, we place the qubit
frequency below or above ωd when considering negative or
positive detuning, respectively.
The effective drive on the transmon originates from the

displacement of the transmon-resonator coupling. Thus, its
amplitude is proportional to the coupling strength g. With
the usual large values of g in circuit QED, this can lead to a
very large effective drive amplitude on the transmon. For
example, for the value g=2π ¼ 120 MHz used in this
paper, we have εt=2π ∼ 750 MHz for n̄r ¼ 10 photons
in the resonator. This is significantly larger
than the transmon anharmonicity α. Even though it is
off resonant, this effective drive cannot be treated
perturbatively and can be expected to lead to leakage
out of the computational subspace. In this section, we
show that this simplified semiclassical model leads to the
same predictions for transmon ionization as the fully
quantum model. The essence of the success of this simple
approach is that it preserves the full cosine potential of
the transmon qubit.
Because the effective drive amplitude εtðtÞ ∝

ffiffiffiffiffiffiffiffiffiffi
n̄rðtÞ

p
changes on a timescale 1=κ that is much larger than the
period of the drive (T ¼ 2π=ωd), our analysis relies on the
instantaneous Floquet spectrum [32]. The instantaneous
spectrum is obtained by taking εt to be constant, such that
ĤðtÞ is periodic. The solution to Schrödinger’s equation
can then be expressed as jψðtÞi ¼ P

it cite
−iϵit tjϕitðtÞi,

where ϵit is a Floquet quasienergy and jϕitðtÞi ¼ jϕitðtþ
TÞi is a Floquet mode [33]. The phases expð−iϵitTÞ and
the Floquet modes jϕitðtÞi are the eigenvalues and eigen-
vectors of the propagator over one period of the drive,
Ûðtþ T; tÞjϕitðtÞi ¼ e−iϵit T jϕitðtÞi. These eigenvalues can
also be obtained from a static Hamiltonian whose form is
reminiscent of the transmon-resonator Hamiltonian; see
Appendix D. Importantly, as the phases expð−iϵitTÞ remain
invariant under a shift of ϵit by an integer multiple of ωd,
the quasienergies ϵit are defined only modulo ωd. Thus,
quasienergies are analogous to quasimomenta in Bloch
theory, and they are folded in a first “Brillouin zone”
−ωd=2 ≤ ϵit ≤ ωd=2. Importantly, the Floquet modes and
quasienergies are functions of the drive amplitude εt.
Just as in the previous section, we sort the Floquet

quasienergies ϵit ½εt� and modes jϕit ½εt�i into transmon
branches. Our labeling procedure at finite drive is per-
formed by smoothly increasing the drive amplitude to
connect the eigenstates of the propagator to those at
zero drive. This is made possible by the fact that, at zero
drive, Floquet modes are simply the bare transmon

eigenstates, jϕit ½εt ¼ 0�i ¼ jiti, and the quasienergies are
the bare transmon energies modulo the drive frequency,
ϵit ½εt ¼ 0� ¼ Eit mod ωd. Thus, the Floquet quasienergy
spectrum is akin to the modular energy spectrum intro-
duced above for the fully quantum model. Both spectra
capture changes in (quasi)energy with photon number.
Moreover, thanks to the folding of the spectrum present
in both cases, there can be avoided crossings between states
corresponding to low- and high-energy transmon states;
see, e.g., Fig. 8(b). Thus, avoided crossings in the quasie-
nergy spectrum are linked to resonances between ac-Stark-
shifted transmon states, up to k drive photons of energy ωd
[24]. More details on the correspondence with the fully
quantum approach are given in Appendix D.

FIG. 8. Negative detuning. (a) Period-averaged transmon
population of the Floquet modes and (b) quasienergy spectrum
of the Floquet modes as a function of the average resonator
photon number n̄r ¼ ðεt=2gÞ2 for a negative detuning Δ=2π ¼
−1.217 GHz. In (a) and (b), branches B0t

, B1t
, B7t

, B10t
, and B11t

are highlighted in color (see the legend), and the others are gray. In
(b), energies are measured from the qubit ground state energy and
then folded into the interval ½−ωd=2; ωd=2�. The transmon param-
eters are the same as in Fig. 2. Swapping of the branch populations
occurs at avoided crossings in the quasienergy spectrum (dotted
vertical lines). The transmon parameters are the same as in Fig. 2.
(c) Time evolution of the average transmonpopulation under a drive
of amplitude εtðtÞ ¼ 2g

ffiffiffiffiffiffiffiffi
100

p ð1 − e−κt=2Þ, with κ=2π¼7.95MHz
and ωd=2π ¼ 7.515 GHz. The transmon is initialized in j0ti (blue
line) or j1ti (red line). (d) Probability jhϕit ½εtðtfÞ�jÛðtfÞj1tij2 of
being in the Floquet mode it ¼ 1t (red line, adiabatic) or it ¼ 7t
(light blue line, diabatic) versus κ at the final time tf ≈ 10=κ of the
evolution. The dashedblack lines are theLandau-Zener predictions;
see Appendix E.
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For unbounded Hamiltonians such as the transmon
Hamiltonian, however, there are avoided crossings with
quasienergy gaps of arbitrarily small sizes [34]. To prevent
capturing very small avoided crossings that are not relevant
to transmon ionization, we numerically obtain the Floquet
spectrum as a function of εt by choosing a finite increment
δεt for tracking the Floquet branches Bit . This freedom in
the choice of δεt contrasts with the branch construction of
the fully quantum model where one resonator photon is
added at each step by default, corresponding to an incre-
ment ∼g= ffiffiffiffiffi

nr
p

. Here, we take δεt=2π ¼ 10 MHz, which
captures the avoided crossing seen in the modular spectrum
of the fully quantum model. Another reason for this choice
is that the effective drive amplitude εtðtÞ is linked to the
photon population of the resonator, which in a qubit
readout goes from 0 to a finite population nrðtÞ on a
timescale set by κ. As such, the size of the increment δεt
can, to some extent, be linked to the system’s dynamics.
Thus, we have taken δεt to be close to the value of κ=2π ¼
7.95 MHz used in our time-dependent simulations.

A. Negative detuning ωq < ωr

We saw in Sec. II C that the opposite signs of the ac-
Stark shifts of pairs of transmon branches (one deep in the
cosine potential well and the other near the top of the well)
result in avoided crossings in the modular energies. These
avoided crossings—which can be precipitated by the early
hybridization of states at the top of the well—lead to
transmon ionization during readout. We now show that the
same phenomenology is present in the simplified semi-
classical model of a driven transmon [Eq. (12)] with its full
cosine potential.
Figure 8(b) shows the numerically obtained quasienergy

spectrum as a function of the transmon drive amplitude,
here expressed in terms of the equivalent average resonator
photon number n̄r ¼ ðεt=2gÞ2. The similarity with the
modular energy spectrum in Fig. 2(b) obtained from the
fully quantummodel is remarkable. In correspondence with
Fig. 2(b), the quasienergies of states at the bottom and near
the top of the cosine potential well move in opposite
directions with n̄r (see Appendix D), leading to avoided
crossings at finite drive amplitudes. As an example, the
quasienergies of branches B1t

(red line) and B7t
(light blue

line) approach each other until an avoided crossing is
formed at n̄r ≈ 82 photons.
To illustrate the abrupt change in the character of

the Floquet modes at the avoided crossings, we show in
Fig. 8(a) the period-averaged transmon population

⟪N̂t⟫it ¼
1
T

Z
T

0
dτ
X
jt

jtjhjtjϕitðτÞij2; ð14Þ

for each Floquet branch as a function of n̄r. The similarity
with the transmon population of the branches computed for

the full transmon-resonator system of Fig. 2(a) is again
remarkable, with branch swapping occurring at the avoided
crossings identified in Fig. 8(b). Note also the presence of a
small feature at n̄r ≈ 22 of the period-averaged transmon
population corresponding to the branches B0t

(dark blue
line) and B7t

(light blue line). This feature is due to a very
small avoided crossing of the same two branches also at
n̄r ≈ 22, which, with our choice of increment δεt, is not
resolved and is shown as a crossing; see Fig. 8(b). We
confirm below that, with our choice of κ, this resonance
does not play a role in the dynamics of the system.
To confirm that the observed resonances are responsible

for transmon ionization in this semiclassical model, we now
turn to time dynamics obtained under the Hamiltonian of
Eq. (12) together with resonator decay κ; see Fig. 8(c).
Here, εt is no longer a static control parameter but changes
in time following εtðtÞ ¼ 2g

ffiffiffiffiffiffiffiffiffiffi
n̄rðtÞ

p
, with the average

photon number given by Eq. (13). After preparing the
transmon in the bare state jψð0Þi ¼ jiti, the state adiabati-
cally follows the instantaneous Floquet mode of the itth
branch, jϕit ½εtðtÞ�ðtÞi, as the drive amplitude is increased
and until an avoided crossing with branch Bjt is met.
Following the usual Landau-Zener argument [33], at that
point the state diabatically switches branch or adiabatically
remains in the branch. This transition occurs with the
Landau-Zener probability PLZ ¼ expð−πΔ2

ac=2vÞ, where
Δac is the quasienergy gap at the avoided crossing and vðεtÞ
is the speed of passage through the resonance [35–38]; see
Appendix E. Importantly, and as explained in the Sec. II,
ionization is averted if the state transitions diabatically
through the crossing. By contrast, transitioning adiabati-
cally means that the transmon ionizes.
In Fig. 8(c), we show a parametric plot of the transmon

population as a function of time, here expressed in terms of
n̄rðtÞ. When initially prepared in j0ti (blue line), the state of
the transmon follows branch B0t

, going straight through the
weak avoided crossing at n̄r ∼ 22 that our finite-step-size
Floquet tracking purposely did not capture. In this case,
the drive does not induce transitions in the transmon. On
the other hand, when initially prepared in j1ti (red line), the
state follows mostly adiabatically branch B1t

through the
avoided crossing at n̄r ≈ 82, leading to a transition to high-
energy transmon states. Figure 8(d) shows the probability
of transitioning adiabatically or diabatically through the
avoided crossing as a function of the rate at which εtðtÞ
varies. More precisely, we show as a function of κ [which
controls εtðtÞ; see Eq. (13)] the probability of the state
being in branch Bit ¼ B1t

(red line) or in branch Bit ¼ B7t

(light blue line) at the final time tf ≈ 10=κ of the evolution.
By increasing the value of κ and, thus, the speed at which
resonances are crossed, the Landau-Zener probability for a
diabatic crossing can be tuned from zero to almost one [22].
On top of these curves, we show the transition probability
obtained from the Floquet-Landau-Zener formula (dashed
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black line) in perfect agreement with the time-dynamics
simulations; see Appendix E.
The onset of ionization, therefore, depends on the

effective speed at which resonances are crossed.
According to Eq. (13), the drive ramp-up is faster at low
photon numbers and slows down when approaching the
steady-state photon number. Thus, we expect resonances
that occur at the steady-state photon number to be more
easily resolved. Consequently, ionization can be pushed
back by diabatically crossing the resonance in the transient.
This is observed experimentally in Ref. [6], wherein the
probability of qubit ionization exhibits an initial rise at a
certain drive power, followed by a subsequent decline at
higher powers. However, it is important to note that
ionization can also happen at an avoided crossing when
the resonator field ramps down after the measurement, and
this must also be accounted for to explain experimental
observations.

B. Positive detuning ωq > ωr

As discussed in Sec. II D, because of the negative
anharmonicity of the transmon, the branch swapping
observed at negative detuning is replaced by branch
bunching at positive detuning. We now show that this
phenomenology is captured by the simplified semiclassical
model of a driven transmon. Because ionization typically
occurs at smaller resonator photon numbers at positive
detuning than at negative detuning, larger discrepancies
between the fully quantum model and the semiclassical
model are expected.
Figures 9(a) and 9(b) show the period-averaged trans-

mon population of the Floquet branches and the quasie-
nergy spectrum, respectively, versus n̄r and obtained for the
same parameters as in Sec. II D. Although there are some
discrepancies, especially at small photon numbers, the
agreement with the modular spectrum of the fully quantum
model is nevertheless excellent; see Fig. 3. As in the fully
quantum model, rather than branch swapping, we observe
in Fig. 9(a) the expected branch bunching at ⟪N̂t⟫ ∼ 4. The
branch bunching also correctly correlates with avoided
crossings in the quasienergy spectrum. For example, at
n̄r ≈ 6.4, the quasienergies of branches B1t

and B7t
form a

strong and wide avoided crossing, at which point we also
observe the bunching of these two branches. Interestingly, a
weak avoided crossing of the quasienergies associated with
0t and 8t at n̄r ≈ 5.3 is not captured with our finite tracking
increment of δεr=2π ¼ 10 MHz. While the 1t–7t transition
requires the absorption of six drive photons, the 0t–8t
transition requires eight. Hence, it is more strongly sup-
pressed and is not observed at this low drive amplitude.
This higher-order transition, however, becomes relevant at
larger drive amplitudes. Indeed, at n̄r ≈ 18, a weak level
repulsion of the quasienergies associated with 0t and 8t is
observed which correlates with the start of the bunching of
these two states.

The correlation between branch bunching and avoided
crossings is further confirmed by examining the projection
of the Floquet modes onto the bare transmon basis; see
Figs. 9(c), 9(d), 9(f), and 9(g). There, we see that the Floquet
modes associatedwith 0t and 8t show a strong delocalization
in the bare transmon basis at n̄r ≈ 18. Similarly, for 1t and 7t
this occurs at n̄r ≈ 6.5, matching the presence of the avoided

FIG. 9. Positive detuning. (a) Period-averaged transmon
population of the Floquet modes, (b) quasienergy spectrum of
the Floquet modes, and (c)–(g) projections of the Floquet
modes on the bare transmon basis as a function of the average
resonator photon number n̄r ¼ ðεt=2gÞ2 for a positive detuning
Δ=2π ¼ 1.031 GHz. In (a) and (b), branchesB0t

,B1t
,B4t

,B7t
, and

B8t
are highlighted in color (see the legend), and the others are gray.

In (b), energies are measured from the qubit ground state energy
and then folded into the interval ½−ωd=2; ωd=2�. In (c)–(g), the
projections of 8t, 7t, 4t, 1t, and 0t are plotted on a logarithmic color
bar scale with the same color coding. The dotted vertical lines
indicate the average resonator photon number at which the
population bunching in B0t

and B1t
dramatically increases. The

transmon parameters are the same as in Fig. 3. (h) Time evolution of
the average transmon population under a drive of amplitude
εtðtÞ¼2g

ffiffiffiffiffi
30

p ð1−e−κt=2Þ, with κ=2π ¼ 11.98 MHz (set to match
the full χ shift at zero photons) and ωd=2π ¼ 5.267 GHz. The
transmon is initialized in j0ti (blue line) or j1ti (red line).
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crossing in the quasienergy spectrum. To quantify the
delocalization of the modes swallowed into the bunching
layer, we compute the inverse participation ratioP

jt jhjtjϕitij4 [39], which here measures the delocalization
of a Floquet mode jϕiti on the transmon basis. At n̄r ≈ 11,
the inverse participation ratio is approximately 0.14 ≈ 1=7
for both jϕ7t

i and jϕ1t
i, corresponding to a delocalization of

these modes across at least seven bare transmon states.
To confirm that the presence of avoided crossings in

the quasienergy spectrum is an accurate predictor of
the system’s dynamics, in Fig. 9(h) we show the time-
dependent transmon population as a function of time, here
parametrized by the instantaneous average photon number
n̄rðtÞ. When the transmon is initialized in j0ti (blue line), the
state follows branch B0t

, avoiding an early measurement-
induced ionization at n̄r ≈ 5.3. As a result, no feature is
observed in hN̂tiðtÞ at that average photon number, except
for a slow overall increase of the transmon population due to
the gradual hybridization of branchB0t

with other branches.
At n̄r ≈ 18, the transmon population increases, as expected
from the delocalization of that branch; see Fig. 9(g). On the
other hand, when initialized in j1ti (red line), the system
mostly adiabatically transitions at the large avoided crossing
at n̄r ≈ 6.4, thereby following branch B1t

with a high
probability. This results in measurement-induced transitions
and in the observed rapid increase of hN̂tiðtÞ.

C. Comparison to the fully quantum model

We define the critical photon numbers in the Floquet
analysis similarly as in the branch analysis of the fully
quantum model. Thus, the Floquet critical photon numbers
for the ground state nfcrit;0t and for the excited state n

f
crit;1t

are
defined as the smallest value of n̄r for which⟪N̂t⟫0t ¼ 2 and
⟪N̂t⟫1t ¼ 3, respectively. In Fig. 7, we compare the

extracted nfcrit;it (red line) with nqcrit;it of the fully quantum
model (pink line) for a range of detunings. The agreement
between the two methods is excellent for both the average
values and the fluctuationswith charge noise (see the red and
pink shaded areas). This agreement confirms the validity of
treating the driven resonator as an effective classical field
driving the transmon.Numerically, this approach is advanta-
geous because of its simplicity and efficiency.
As previously mentioned, in Fig. 7 we also compare the

critical photon numbers with the dynamics of the driven
transmon (colored background). Because avoided crossings
are very narrow in the negative detuning regime, we take a
small κ=2π ¼ 1 MHz to ensure a slow ramp-up of the
average photon number in the resonator. In this way, the
system slowly crosses the resonances responsible for n̄qcrit;it
and n̄fcrit;it , leading to ionization in the time dynamics. At
positive detuning, resonances are wider and a faster ramp-
up with κ=2π ¼ 10 MHz still results in ionization around
n̄qcrit;it and n̄fcrit;it . When comparing to experiments, the

values of κ and εd used in the time-dynamical simulations
can be adjusted to match the speed at which the resonator
field builds up. For large speeds, early weak resonances are
crossed rapidly and, therefore, do not lead to ionization.
The step size δεt in the Floquet tracking should be adjusted
accordingly.

IV. NONLINEAR DYNAMICS OF A DRIVEN
CLASSICAL TRANSMON

We showed in Sec. III that a simplified semiclassical
model of a transmon driven by a classical monochromatic
drive is enough to understand and predict the onset of
ionization. In this section, we go one step further and
investigate a model where the transmon itself is treated as a
classical object. As in the previous sections, we account
for the full nonlinearity of the transmon cosine potential
and treat the readout drive nonperturbatively. This fully
classical description, combined with the Bohr-Sommerfeld
quantization rule, was shown in Ref. [23] to capture the
main features of ionizing transitions. While this work
points out the relevance of these transitions for readout,
a quantitative analysis as well as a comparison to other
methods remains lacking. Moreover, the qualitative differ-
ence between negative and positive transmon-resonator
detunings was not fully explored, since the Bohr-
Sommerfeld quantization used there applies only to pos-
itive detunings where a single large resonance dominates
(see below). Here, we further clarify the classical mech-
anisms of ionization for both negative and positive detun-
ing, and we explicitly connect them to the quantum
phenomenology discussed in Secs. II and III.

A. General properties of the classical model

The full nonlinear dynamics of the classical transmon is
governed by a dimensionless Hamiltonian that is formally
identical to that of a driven classical pendulum [2,40]:

H̃ðt̃Þ ¼ 1

2
ñ2t − cos φ̃t þ ε̃t cosðω̃dt̃Þñt

¼ H̃t þ ε̃t cosðω̃dt̃Þñt: ð15Þ

Here, H̃t ¼ Ht=EJ and t̃ ¼ ωpt are the rescaled
Hamiltonian and time, respectively, with ωp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EJEC
p

the transmon plasma frequency. Moreover, ε̃t ¼ εt=ωp and
ω̃d ¼ ωd=ωp are the rescaled transmon drive amplitude and
drive frequency, respectively. The rescaled phase-space
coordinates are φ̃t ¼ φt and ñt ¼ znt with Poisson bracket
fφ̃t; ñtg ¼ z, where z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EC=EJ

p
is the transmon imped-

ance [23]. We omitted the gate charge ng from Eq. (15),
since a static gate charge does not affect classical dynamics.
Moreover, as in Sec. III, the drive frequency ωd is a
surrogate for the resonator frequency of the fully quan-
tum model.
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Given the periodic time dependence of Eq. (15), the
solutions to Hamilton’s equations are best studied using the
Poincaré section, obtained by plotting the phase-space
coordinates stroboscopically at multiples of the drive
period T̃t ¼ 2π=ω̃d. In Fig. 10, we show the Poincaré
sections for a negative detuning (top) and for a positive
detuning (bottom) of the qubit frequency to the drive
frequency. In each case, we show the Poincaré sections
for increasing values of the drive amplitude ε̃t. These
results are obtained for the same values of the transmon
parameters as above, here corresponding to ωp=2π ¼
6.526 GHz and z ∼ 0.27.
When ε̃t ¼ 0, two distinct types of regular orbits fill

phase space. see Figs. 10(a) and 10(e). For H̃t < 1, the
system undergoes bounded periodic phase oscillations that
are the classical analogs of the transmon bound states. In
the Poincaré section, these bounded oscillations correspond
to the near-circular orbits located in the center of phase
space. Below, we refer to this set of orbits as the main

regular region. On the other hand, for H̃t > 1 the system
undergoes full�2π phase rotations, corresponding to phase
slips in the quantummodel [2]. This type of motion appears
in the Poincaré section as nearly horizontal features that do
not cross ñt ¼ 0. Separating these two types of motion is
the contour H̃t ¼ 1 known as the separatrix [olive line in
Figs. 10(a) and 10(e)]. In the vicinity of the separatrix,
small changes to the initial conditions can lead to large
changes in the system’s dynamics.
In addition to bounded and unbounded oscillations, for

ε̃t > 0 new types of motion are visible in the Poincaré
sections. The first type of motion common to all panels in
Fig. 10 for which ε̃t > 0 is chaotic motion. Chaos emerges
in the vicinity of the separatrix for an arbitrarily weak drive
amplitude and results from the instability of the system
with respect to small perturbations at energies close to
H̃t ¼ 1. The size of the phase-space region covered by
chaotic motion generally increases with the drive amplitude
[41,42]. Critically, this process reduces the area of phase

FIG. 10. Poincaré sections for different values of the drive amplitude ε̃t at negative (top row) and positive (bottom row) detuning. For
negative detuning (a)–(d), the drive frequency is ω̃d ¼ 1.152 (ωd=2π ¼ 7.515 GHz, Δ=2π ¼ −1.202 GHz), and the drive amplitudes
are, from left to right, ε̃t ∈ f0; 0.167; 0.501; 0.624g (n̄r ∈ f0; 20.6; 185.6; 287.6g). For positive detuning (e)–(h), the drive frequency is
ω̃d ¼ 0.807 (ωd=2π ¼ 5.267 GHz, Δ=2π ¼ 0.998 GHz), and the drive amplitudes are, from left to right, ε̃t ∈ f0; 0.029; 0.081; 0.152g
(n̄r ∈ f0; 0.63; 4.88; 17.02g). The Bohr-Sommerfeld orbits of the qubit ground and excited states are shown for EJ=EC ¼ 110 in dark
blue and dark red, respectively. At zero drive amplitude (a),(e), the separatrix is shown in olive. In (b), ð5∶3Þ and ð7∶5Þ resonances are
highlighted in purple and plum red, respectively. A pair of ð3∶2Þ resonances are also highlighted in orange and pale green. In (c), the
ð7∶5Þ resonance collides with the Bohr-Sommerfeld orbit of the excited state. This is illustrated by coloring the resonance in red. In (d),
the merging of the excited state with the chaotic layer is assisted by a pair of ð3∶2Þ resonances that reduce the regular area available to the
excited states. In (f)–(h), a ð1∶1Þ resonance occupies a large fraction of the region inside the main separatrix. At large drive amplitudes
(d),(h), the excited state is engulfed by the chaotic layer. This is illustrated by the red points in the chaotic layer.
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space supporting regular bounded oscillatory motion. This
reduction of the phase-space area available to the main
regular region due to the emergence of chaotic layers was
identified as a key phenomenon responsible for the onset of
ionization in the classical model [23]. We note that the
emergence of chaos in the quantum model of Eq. (12) and
the classical model of Eq. (15) were studied in Ref. [40].
The second type of motion seen in all panels in Fig. 10

for which ε̃t > 0 is the presence of sets of islands
surrounding the main regular region; see, e.g., the
features highlighted in plum red, olive, and purple in
Fig. 10(b), as well as the large croissant-shaped feature
in Figs. 10(f)–10(h). These features are subharmonic
periodic orbits corresponding to ðn∶mÞ-nonlinear resonan-
ces occurring when nω̃ðĨÞ ¼ mω̃d [41]. In this expression,
ω̃ðĨÞ ¼ ∂H̃t=∂Ĩ, with Ĩ the rescaled action variable, is the
energy-dependent frequency of periodic motion of the
pendulum, which reduces to 1 at low energy. A ðn∶mÞ
resonance can be identified in phase space by a chain of n
islands. We show below that, in addition to the emergence
of chaos, the presence of these resonances is a second key
phenomenon responsible for the onset of ionization within
the classical model. Importantly, the phase-space area
occupied by a resonance depends on n, with increasing
values of n leading to smaller resonances, i.e., weaker
resonances. The area occupied by a resonance and its
distance from the center of the main regular region also
generally depends on ε̃t. As a result, although there is
typically an abundance of ðn∶mÞ resonances due to the
nonlinearity of ω̃ðĨÞ [41], not all of these play an equally
important role in ionization.

B. Bohr-Sommerfeld critical photon numbers

We now exploit the previous observations to predict the
onset of ionization within the classical model. Interestingly,
the relevance of chaotic behavior to the ionization of highly
excited Rydberg atoms was already pointed out [43–45].
Here, we follow Ref. [23] and use Bohr-Sommerfeld
quantization to establish a correspondence between the
stroboscopically obtained orbits in the Poincaré section and
the Floquet modes of the transmon.
Since the rescaling of the dynamical coordinates in

Eq. (15) does not preserve volumes in phase space, the
quantization must proceed using an effective reduced
Planck constant ℏeff ¼ z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8EC=EJ

p
[23]. The uncer-

tainty principle then dictates that 2πℏeff is the area of phase
space occupied by a single quantum state. As such, it
imposes a limit to the resolution with which quantum states
can probe the continuous structure of the classical phase
space. While the classical limit is recovered by taking
ℏeff → 0, we find below that classical dynamics remains a
good predictor of ionization for large but finite values
of EJ=EC.

The quantized Bohr-Sommerfeld orbits for oscillatory
motion are the classical orbits which enclose an area equal
to [46]

Ait ¼ 2πℏeff

�
it þ

1

2

�
; ð16Þ

where it ∈ f0; 1; 2; 3;…g is the Bohr-Sommerfeld quan-
tum number for the transmon. Thus, the number of Bohr-
Sommerfeld states contained in a given area A of phase
space is given by bA=2πℏeffc. As an illustration, the orbits
associated with the qubit ground and excited states are the
blue and red orbits in Fig. 10. They are the orbits of the
main regular region which enclose areas A0 ¼ πℏeff and
A1 ¼ 3πℏeff , respectively. To account for quantum fluc-
tuations, in our analysis we extend the Bohr-Sommerfeld
orbits to include the area between Ait − πℏeff and
Ait þ πℏeff . Note that, because we are quantizing orbits
obtained stroboscopically, the resulting Bohr-Sommerfeld
orbits are the classical analog of the Floquet modes. We
provide numerical evidence for this identification in
Appendix F.
We expect the transmon drive to induce unwanted

transitions for transmon state it whenever the Bohr-
Sommerfeld orbit for that state cannot exist. Both chaotic
dynamics and the presence of a ðn∶mÞ resonance can
prevent the existence of a given Bohr-Sommerfeld orbit.
Indeed, the widening of the chaotic layer with increasing
ε̃t reduces the number of Bohr-Sommerfeld orbits sup-
ported within the main regular region. In addition, a
Bohr-Sommerfeld orbit can collide with a resonance for
some values of ε̃t. Moreover, as discussed further below,
even a resonance appearing in the chaotic layer away
from the qubit ground or excited orbits can facilitate
ionization by reducing the regular area available to the
qubit states.
Because it is difficult to visualize from Poincaré sections

how features in phase space change with the drive ampli-
tude, we instead plot in Figs. 11(a) and 11(b) a single cut
ðφ̃t ¼ 0; ñtÞ of phase space as a function of ε̃t. All three
types of motion are easily identified in this figure. Focusing
on Fig. 11(a) for the moment, regular orbits correspond to
the solid colored regions. The centers of each Bohr-
Sommerfeld orbit are represented as pale colored lines,
and the horizontal extent of the colored regions about these
lines accounts for quantum fluctuations. In particular, the
blue and red regions correspond to the qubit ground and
excited states, respectively. The chaotic layer appears as
“noise,” and the nonlinear resonances appear as white gaps
in the regular regions, with wider gaps corresponding to
stronger resonances.
At large enough drive amplitudes, all Bohr-Sommerfeld

orbits are eventually absorbed by the chaotic layer, and the
colored regions disappear in the noise. This occurs earlier
for orbits of large radius and last for the ground-state orbit.
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Moreover, merging of the regular region with the chaotic
layer is sometimes precipitated by resonances; see, e.g.,
the large almost horizontal features close to ε̃t ¼ 0.6 and
0.9 in Fig. 11(a). Consequently, the regions where regular
orbits exist can have a jagged shape reminiscent of a
Christmas tree.
Another important observation is that the distance of

resonances from the center of the main regular region
decreases with the drive amplitude. As a result, resonances
within the main regular region collide with the Bohr-
Sommerfeld orbits at some values of ε̃t. For a given
transmon state it, the values of n̄r ¼ ðωp=2gÞ2ε̃2t at which
the center of the Bohr-Sommerfeld orbit it collides with a
resonance or with the chaotic layer yield a set of critical
photon numbers fnccrit;itg. These collisions are indicated by
stars for 0t and 1t. Below, we assign an uncertainty on the
value of these critical photon numbers by accounting for
quantum fluctuations, i.e., the horizontal extent of the
colored regions. Appendix G describes the systematic
procedure that was used to build the Christmas trees, as
well as to extract from them the values of fnccrit;itg and of the
lower bounds that can be expected due to quantum
fluctuations.
We now discuss how the above framework enables us to

understand and predict ionization thresholds for the cases
of negative and positive detuning. In doing so, we connect

this classical understanding to the quantum phenomenol-
ogy described in the previous sections.

C. Negative detuning ωq < ωr

We first consider the case of negative qubit-drive
detuning; see the Poincaré sections in Figs. 10(a)–10(d).
At any finite drive amplitude ε̃t, a chaotic layer emerges in
the vicinity of the separatrix of H̃t; see Fig. 10(b), which is
obtained at the small drive amplitude ε̃t ¼ 0.167 corre-
sponding to n̄r ¼ 20.6 photons. As a result, the area of the
main regular region shrinks with increasing drive amplitude
at the expense of the chaotic layer. Moreover, several
nonlinear resonances can be identified in the chaotic or
regular regions, and we highlight in color orbits associated
with a ð5∶3Þ resonance, a pair of ð3∶2Þ resonances, and a
ð7∶5Þ resonance. At this drive amplitude, neither the
chaotic layer nor the nonlinear resonances disrupt the
orbits associated with the qubit logical states, and we do
not expect ionization to occur.
At larger drive amplitudes, the orbits of the nonlinear

resonances in the main regular region shrink toward its
center; see Fig. 11(a). At the drive amplitude corresponding
to n̄r ¼ 185.6, the ð7∶5Þ resonance collides with the Bohr-
Sommerfeld orbit associated with the qubit excited state;
see Fig. 10(c), where the collision is illustrated by coloring
the ð7∶5Þ resonance in the color of the excited state. At that

FIG. 11. Cut ðφ̃t ¼ 0; ñtÞ of phase space as a function of ε̃t for (a) negative detuning (ω̃d ¼ 1.152, ωd=2π ¼ 7.515 GHz,
Δ=2π ¼ −1.202 GHz) and (b) positive detuning (ω̃d ¼ 0.807, ωd=2π ¼ 5.267 GHz, Δ=2π ¼ 0.998 GHz). The horizontal axes scan
the initial conditions ðφ̃t ¼ 0; ñ0t Þ with ñ0t ∈ ½−2.0; 2.0� varied in increments of 1=300. The vertical axes scan the drive amplitudes in
increments of δε̃t ¼ 0.0015323, corresponding to an increment of δεt=2π ¼ 10 MHz. The Bohr-Sommerfeld orbits are represented by
pale colored lines, while dark regions with matching colors represent quantum fluctuations of πℏeff on each side of the Bohr-Sommerfeld
orbits. ForEJ=EC ¼ 110, the area occupied by aBohr-Sommerfeld state is2πℏeff ¼ 1.69445. Thegray line centered at ñt ¼ 0 at zero drive
indicates the center of themain regular region,while the light blue and light red lines closest to it are theBohr-Sommerfeld orbits associated
with the qubit ground and excited states, respectively. In (b), the gray line at ñt ≈ 1.5 indicates the center of the ð1∶1Þ resonance. White
regions indicate points where the algorithm in Appendix G fails to find a closed connected orbit due to chaotic or resonant motion. The
points where the Bohr-Sommerfeld orbits associated with the qubit states stop existing (stars) yield the Bohr-Sommerfeld critical photon
numbers fnccrit;itg. As discussed in the text, weak resonances are ignored. (c) and (d) show, using the same color code, the Poincaré sections
corresponding to the drive amplitudes ε̃t ¼ 0.167 (n̄r ¼ 20.6) and ε̃t ¼ 0.029 (n̄r ¼ 0.63) indicated by the dashed yellow lines in (a) and
(b), respectively. The other parameters in (c) and (d) are the same as in Figs. 10(b) and 10(f), respectively.
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point, the qubit excited state can be unstable. As discussed
further below, however, this does not necessarily result in
ionization. Indeed, weak resonances occupying a small
area in phase space can cross the qubit states without
damage. By further increasing the drive amplitude, the orbit
of the resonance shrinks and no longer coincides with that
of the qubit state. Given the abundance of nonlinear
resonances, the pattern of resonances crossing and then
moving away from the orbits of the qubit ground and
excited states is a common occurrence. This is the reason
for the jagged shape of the Christmas tree in Fig. 11(a),
where large resonances lead to large windows of drive
amplitude for which these orbits cannot exist. This obser-
vation is in agreement with the experimental results in
Ref. [6], which showed that “quiet spots” with minimal
measurement-induced transitions could be found at an
average resonator photon number larger than the value
where transitions are observed.
At still larger drive amplitudes, initializing the classical

system at the energy corresponding to the qubit excited
state does not lead to a regular orbit but rather fills the
chaotic layer; see Fig. 10(d) obtained for n̄r ¼ 287.6. Thus,
at that drive amplitude, the excited state is engulfed by the
chaotic layer and is unstable. At yet larger drive amplitudes
(not shown), the ground state eventually suffers the same
fate and becomes unstable. It is interesting to note the
presence in Fig. 10(d) of a pair of ð3∶2Þ resonances
near the inner edge of the chaotic layer. Because to each
resonance is associated a new separatrix around which
chaos emerges, the presence of these ð3∶2Þ resonances
further reduces the phase space available to the orbit
associated with the qubit excited state, thereby hastening
its merger with the chaotic layer. We note that the collisions
of ðn∶mÞ resonances with the Bohr-Sommerfeld orbits
associated with the qubit states are the classical analogs
of the multiphoton resonances discussed in Secs. II C and
III A, where ionization of the qubit states is delayed until
the drive pushes higher-energy dressed states into reso-
nance with the computational subspace.
Building on these observations, Figs. 12(a) and 12(b)

show the critical photon numbers fnccrit;itg as a function of
detuning Δ. The solid red lines indicate a collision
of the orbit associated with the qubit (a) ground or
(b) excited state with a resonance, while the hatched red
lines rather indicate a collision with the chaotic layer. At
Δ=2π ¼ −1.202 GHz, these lines correspond to the stars in
Fig. 11(a). While chaos is expected to always induce
ionization, this is not the case for all collisions with
resonances. This is because many resonances occur at
low photon numbers and are, thus, too weak to induce
ionization. To account for this, the width of the solid red
lines is proportional to the phase-space area of the
resonance colliding with the qubit state orbit, which is,
in turn, proportional to the resonance’s strength. Using this
information, the olive lines indicate the smallest critical

photon number for which the phase-space area of the
corresponding resonance is larger than 0.05 × 2πℏeff in
Fig. 12(a) and 0.10 × 2πℏeff in Fig. 12(b). These values are
free parameters and were chosen to best fit the classical

FIG. 12. Bohr-Sommerfeld critical photon numbers fnccrit;itg
(red lines) and gate charge average of the period-averaged
transmon population ⟪N̂t⟫it defined in Eq. (14) (colored back-
ground) as a function of detuning Δ and photon number n̄r. The
top corresponds to the qubit ground state for (a) negative detuning
and (c) positive detuning, and the bottom corresponds to the qubit
excited state for (b) negative detuning and (d) positive detuning.
The detuning is varied by changing the drive frequency. Note the
change in color scale between the top and bottom. The hatched
red lines indicate the critical photon numbers due to the chaotic
layer, while the solid red lines indicate the critical photon
numbers due to a resonance. The width of the solid red lines
is proportional to the phase-space area of the resonance, while
that of the hatched red lines is chosen to correspond to an area of
2πℏeff . The shaded red areas give the lower-bound uncertainty
due to quantum fluctuations around the Bohr-Sommerfeld orbit.
The dashed blue lines are the Jaynes-Cummings-like critical
photon numbers ncrit;it defined in Appendix A for each state. The
hatched white regions indicate regions where the dispersive
approximation does not hold and for which critical photon
numbers are not calculated. In (a) and (b), the olive lines indicate
the smallest critical photon number for which the phase-space
area of the corresponding resonance is larger than 0.05 × 2πℏeff
and 0.10 × 2πℏeff , respectively. For both classical and Floquet
theory, the vertical axis is produced by varying εt=2π in incre-
ments of 10 MHz.
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model to the Floquet analysis; see the discussion below.
The occasionally jagged behavior of that line in Fig. 12(a)
occurs when the area of the relevant resonances becomes
comparable to the resolution with which we compute
phase-space areas.
These Bohr-Sommerfeld critical photon numbers are

compared to the period-averaged transmon population
⟪N̂t⟫it (colored background), a quantity which was shown
to be a good indicator of transmon ionization in Sec. III. We
average the results over ng to remove the dependence on
this parameter. In both panels, we observe abrupt changes
in ⟪N̂t⟫it near the photon numbers where classical reso-
nances occur. The agreement is excellent when discarding
weak resonances which are not expected to have an effect
on the qubit; see the olive lines. That some resonances are
not relevant to transmon ionization is consistent with the
discussion in Sec. III, where it was observed that weak
resonances between Floquet modes do not cause ionization
because they can be traversed diabatically. Other corre-
spondences between the chaotic behavior of the driven
classical pendulum and Floquet quasienergies of the trans-
mon are discussed in Ref. [23].

D. Positive detuning ωq > ωr

We now turn to the case of positive detuning; see
Figs. 10(e)–10(h). As at negative detuning, a chaotic layer
develops when the drive amplitude is made finite; see
Fig. 10(f) obtained for n̄r ¼ 0.63 photons. The most
dramatic feature is, however, the appearance of a large
ð1∶1Þ resonance inside the separatrix of H̃t. In Fig. 11(b),
the dome-shaped feature centered at ñt ¼ 0 at low drive
amplitude corresponds to the main regular region, while the
Christmas-tree-like feature centered at ñt ∼ 1.6 corresponds
to the resonance. This resonance results from the negative
anharmonicity of the transmon, which at positive detuning
allows for ω̃ðĨÞ ¼ ω̃d to be satisfied for some Ĩ. This is the
classical equivalent of the breakdown of the dispersive
approximation at zero photon number due to a one-photon
qubit-resonator resonance discussed in Sec. II D.
While this resonance typically does not collide with the

Bohr-Sommerfeld orbits associated with the qubit ground
and excited states, its presence rapidly restricts the phase
space available to the main regular region. This is exac-
erbated by the presence of a new separatrix surrounding the
ð1∶1Þ resonance and about which a chaotic layer develops;
see Fig. 10(g) obtained at n̄r ¼ 4.88 photons and the
V-shaped region between the main regular region and
the resonance in Fig. 11(b). Increasing further the drive
amplitude, the qubit excited state is engulfed by the chaotic
layer and becomes unstable; see Fig. 10(h) obtained at n̄r ¼
17.02 photons. This is followed by the ground state also
entering the chaotic layer at a still larger photon number.
The area of the ð1∶1Þ resonance is large enough

(> 2πℏeff ) to support its own Bohr-Sommerfeld orbits;

see Appendix F. In Figs. 11(b) and 11(d), these orbits share
the same color code as the distinct orbits of the main regular
region because they enclose the same areas. These orbits
are located in phase space within the separatrix of H̃t and,
thus, have an energy that is below the top of the cosine
potential well of the transmon. This is in direct analogy
with the branch bunching about a state i⋆t located below the
top of the well discussed in Secs. II D and III B. Moreover,
additional ðn∶mÞ resonances appear within the main
regular region; see Fig. 11(b). However, these are small
and are usually not relevant compared to the large ð1∶1Þ
resonance discussed above. Only at relatively large positive
detuning does the critical photon number associated with
the ð1∶1Þ resonance become large enough to allow other
ðn∶mÞ resonances to become relevant for ionization
(not shown).
Figures 12(c) and 12(d) show the critical photon num-

bers fnccrit;itg as a function of positive detuning Δ and
average photon number n̄r, with Fig. 12(c) corresponding
to the ground state and Fig. 12(d) corresponding to the
excited state. Because the small ðn∶mÞ resonances crossing
the qubit-state orbits are of no consequence for this range of
detuning, the critical photon number here corresponds to
the point where the qubit states are engulfed by the chaotic
layer (hatched red lines). For most detunings, the presence
of the large ð1∶1Þ resonance results in a much smaller
critical photon number than at negative detuning. Also in
contrast with the case of negative detuning, the Bohr-
Sommerfeld critical photon number monotonically
increases with the magnitude of the detuning, since the
ð1∶1Þ resonance dominates the ionization mechanism.
The critical photon number is compared with the gate

charge average of ⟪N̂t⟫it (colored background). Although
the classical predictions tend to slightly overestimate the
critical photon number obtained from Floquet theory, we
again observe a good agreement between the two
approaches over a large range of detunings and photon
numbers. Some features that are not captured are the
oscillations in the critical photon number at small detuning;
see Fig. 13 for a clearer view of the oscillating features. As
discussed in Secs. II D and III B, these arise from quantum
tunneling between pairs of states and, thus, cannot be
captured within a classical model. In broad strokes, how-
ever, the classical model of the driven nonlinear pendulum
captures the essence of transmon ionization remark-
ably well.

V. COMPARISON TO EXPERIMENTAL RESULTS

We now compare the critical photon numbers extracted
from the quantum transmon-resonator, Floquet, and
classical models to experimental data from Ref. [7]. This
experiment consists in preparing the qubit in its ground or
first excited state, filling the resonator with n̄r photons for a
controlled amount of time, and then performing a QND
readout of the qubit state. The colored background in
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Figs. 13(a) and 13(b) shows the conditional probability
PðitjitÞ for the qubit to be measured in the state it was
prepared in as a function of detuning and average resonator
photon number. Figure 13(a) is for the ground state and
Fig. 13(b) is for the excited state. A white background
indicates that the interaction with the n̄r photons did not
cause qubit leakage, while a dark background indicates
leakage. In both cases, sharp dips are observed as a function
of detuning. In that experiment, the readout resonator has a
bare frequency ωr=2π ¼ 4.75 GHz, the coupling constant
is g=2π ¼ 91 MHz, the charging energy is EC=2π¼
194MHz, and the qubit frequency ωq=2π can be tuned

from 5.5 to 6.34 GHz. In all cases, this corresponds to the
regime of positive detuning.
In Ref. [7], a semiclassical model predicting the posi-

tions and amplitudes of these dips is presented. Here, we
compare the experimental results to the critical photon
number obtained from our gate-charge-averaged fully
quantum transmon-resonator (pink line) and semiclassical
driven transmon (red line) models. The agreement with
experimental results is excellent for both models and qubit
initial states. In particular, the theoretical values capture the
full detuning dependence of the critical photon number,
including the presence of dips in n̄r. These dips correspond
to the pairwise multiphoton resonances which are expected
to precipitate ionization at positive detuning; see Sec. II D.
Notably, the theory captures not only the position of these
dips, but also their height and width. Moreover, as expected
from the discussion in the previous sections, ionization
typically occurs earlier for the qubit excited state than for
the ground state. Considering the experiment’s slow time-
scale relative to gate charge fluctuations, we also show
the full cumulative distribution function Pðn̄fcrit;it > n̄rÞ of
the Floquet critical photon numbers n̄fcrit;it over many
iterations of gate charge as the colored background in
Figs. 13(c) and 13(d). The gate charge variance of this
distribution is in qualitative agreement with the critical
photon number variance observed in the experiment,
emphasizing the necessity of including gate charge in
these predictions. Because it predicts the full dependence
of the ionization threshold with detuning, including regions
where n̄crit;0t and n̄crit;1t are large in between resonances, the
framework presented here could be exploited to maximize
readout performance.
The prediction from the classical model (solid black

lines) follows the general trend of the critical photon
number as a function of detuning. The dotted black lines
are a lower bound to these predictions that accounts
for quantum fluctuations. Because the classical model does
not capture the pairwise multiphoton resonances respon-
sible for accelerating ionization, the classical predictions do
not capture the dips in critical photon number versus
detuning. Yet, it is remarkable that, as long as the full
cosine potential is accounted for, excellent estimates
of the photon number threshold for ionization that match
experimental results can be obtained simply by solving
Hamilton’s equations of motion.

VI. CONCLUSION AND OUTLOOK

We have introduced a comprehensive framework
describing the physical origin of transmon ionization.
Our study is based on three complementary levels of
description of the qubit-resonator system used for disper-
sive qubit readout in circuit QED. A first approach treats
the qubit and the resonator as coupled quantum systems. A
second approach simplifies the situation by replacing the

FIG. 13. Critical photon numbers of our three models compared
to the experimental results in Ref. [7]. The red line shows our
prediction of n̄qcrit;it using the branch analysis of the full transmon-
resonator system. The pink line shows n̄fcrit;it obtained from the
Floquet branch analysis. The solid black line shows the prediction
from the classical dynamics, with a lower bound given by the
dotted black line. The dashed blue line shows Jaynes-Cummings-
like critical photon numbers defined in Appendix A for each
state. In (a) and (b), the heat maps show experimental results for
the ground state (it ¼ 0t) and for the excited state (it ¼ 1t),
respectively. For a fixed detuning between the tunable transmon
frequency and the resonator frequency, the experiment consists of
preparing the transmon qubit in j0ti or j1ti, driving the resonator
at the conditional dressed frequencies ωr;0t or ωr;1t to populate it
with n̄r photons on average, waiting for the resonator to decay
back to the vacuum, and finally reading out the qubit to extract the
conditional probabilities PðitjitÞ of finding the outcome it given
that jiti was initially prepared. The long vertical features in (b) at
very low photon numbers and for Δ=2π ≳ 1.25 GHz are attrib-
uted to the presence of two-level defects [7]. In (c) and (d), the
heat maps show the cumulative distribution function Pðnfcrit;it >
n̄rÞ over realizations of gate charge for the ground state (it ¼ 0t)
and for the excited state (it ¼ 1t), respectively. The lines plotted
in (c) and (d) are the same as the lines plotted in (a) and (b),
respectively.
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driven resonator by a classical drive acting directly on the
transmon. A third approach considers an entirely classical
problem. All three approaches have in common that they
rely on the full cosine potential of the transmon’s Josephson
junction. The first two descriptions identify multiphoton
resonances as the mechanism responsible for ionization.
The positions of these resonances can be easily located
and estimates of critical photon numbers can be efficiently
obtained numerically with both methods, leading to
predictions which are in agreement with each other and
with recent experimental results. These approaches also
highlight the strong dependence of the critical photon
numbers on gate charge, even deep in the transmon
regime. The third level of description provides a simple
interpretation of ionization based on the motion of a
classical driven pendulum and its chaotic behavior.
Although this method misses some features captured by
the quantum models, the critical photon numbers it
predicts are in qualitative agreement with the quantum
predictions and with experimental results. It is remarkable
that classical dynamics of the driven transmon is sufficient
to capture the physics of ionization.
Although we used fixed sets of parameters throughout

this work, we verified that the conclusions we reached
remain general. While, e.g., the specific multiphoton
resonances precipitating ionization may shift with
changes in parameters, the dependence of the critical
photon numbers n̄qcrit;it and n̄

f
crit;it

on detuning preserves the
same features.
Having identified the root causes of ionization, it remains

to be seen how to exploit our findings to increase readout
speed and fidelity. Our work, however, already offers
several general strategies to keep in mind when designing
qubits. For example, one should exploit regions of detun-
ings located between the dominant multiphoton resonan-
ces, where the critical photon number can be large. In
addition, the increase in critical photon number with
increasing absolute detuning jΔj (see, e.g., Fig. 7) indi-
cates the potential of working at large detuning to improve
qubit readout. While the trade-off between the reduced
dispersive shift and the increased critical photon number
in this regime has not yet been extensively investigated,
recent experimental findings lend support to this hypoth-
esis [47]. Moreover, because the speed at which reso-
nances are traversed affects the probability of ionization
occurring, optimizing the readout pulse shape with an
understanding of the position of resonances could prove to
be beneficial. We hope that the analyses presented in this
work will facilitate the experimental exploration of
parameter regions wherein transmon ionization occurs
at large photon numbers.
Beyond dispersive readout, many experiments in circuit

QED contain the basic ingredients that are at the core of
ionization, namely, strong drives and weak anharmonic-
ities. These include, but are not limited to, other types of

qubits [48–51], readout schemes [52,53], parametric gates
[54–58], and quantum state stabilization [59–61]. The tools
introduced in this work can easily be applied to these
scenarios. These tools are simple to interpret, have an easy
construction, are easy to implement, and are computation-
ally efficient. Thus, we anticipate the framework introduced
in this work to become an integral part of the theoretical
analysis and support of current and future circuit QED
experiments.

ACKNOWLEDGMENTS

The authors are grateful to Ross Shillito and
Pierre-Antoine Graham for helpful discussions. This work
is supported by a collaboration between theU.S.Department
of Energy and other agencies. This material is based upon
work supported by the U.S. Department of Energy, Office of
Science, National Quantum Information Science Research
Centers, Quantum Systems Accelerator. Additional support
is acknowledged from theNatural Sciences and Engineering
Research Council, the Canada First Research Excellence
Fund, the Ministère de l’Économie et de l’Innovation du
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APPENDIX A: JAYNES-CUMMINGS-LIKE
CRITICAL PHOTON NUMBERS

In the main text, we compare the various critical photon
numbers defined in our work with the critical photon
numbers ncrit;it that define the dispersive limit. Here, we
summarize how these critical photon numbers are calculated.
The commonly used Jaynes-Cummings critical photon

number for the qubit transition is defined as ncrit ¼
jðω0t1t

− ωrÞ=2g0t1t j2 [1,4]. This is the photon number
for which the interaction term in Eq. (1) becomes resonant
with the qubit transition. However, this definition is
insufficient to capture the breakdown of the dispersive
regime in a multilevel system like the transmon. It is instead
necessary to define a critical photon number for every
transition [1,62]. To do so, we simply transpose the
definition for the qubit transition to all other transitions:

ncrit;ktlt ≡
����ωktlt − ωr

2gktlt

����
2

: ðA1Þ

Note that this definition naturally includes counterrotating
transitions as the case where ωktlt ∼ −ωr. We define the
Jaynes-Cummings-like critical photon number for an initial
transmon state jiti as the smallest of the ncrit;ktlt that
involves the initial state:

ncrit;it ¼ min
ktlt

fncrit;ktlt jkt ¼ it or lt ¼ itg: ðA2Þ

Because of the dipolelike selection rules of the transmon
regime, the limiting transitions for the qubit states are
always 0t ↔ 1t and 1t ↔ 2t. As a result, ncrit;0t and ncrit;1t
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are essentially independent of the gate charge ng. Eq. (A1)
gives similar predictions as other definitions of the state-
dependent critical photon numbers for the transmon [1] but
has the advantage of being applicable to any multilevel
system.

APPENDIX B: NONPERTURBATIVE
CORRECTIONS TO THE BRANCHES AT

NEGATIVE DETUNING

In Sec. II C, we argue that nonperturbative
corrections to the approximate eigenstates

obtained via Schrieffer-
Wolff perturbation theory are ultimately the cause of branch
swapping. Here, we discuss at length the mechanism
through which these nonperturbative corrections occur.
As an illustrative example, let us consider the swapping

of branches B1t
and B7t

which occurs at roughly 84 photons
in Fig. 2. If we were to consider only the bare transmon
energies, swapping between these branches would be
unexpected. Indeed, even if one considers the possibility
of a multiphoton process connecting such states, the
detuning between them is still large. For instance, ðE7t

−
E1t

− 4ωrÞ=2π ≈ 1.98 GHz ≫ g=2π is the “most-resonant”
multiphoton transition for states near the top of the cosine
potential. Moreover, the interaction cannot directly add or
remove four photons from the resonator, and any such
process that appears within perturbation theory should be
small. Thus, it is at this stage not evident why the swapping
should occur between these branches.
To address how the requisite term mediating this process

arises, we must keep more terms in the infinite-order
expansion than in Eq. (7). To that end, we recall that the
standard approach [2,63] dictates that, by choosing

Ŝ ¼ −iðŜtâ† þ âŜ†t Þ ðB1Þ

with

Ŝt ¼
X∞
it;jt¼0

gitjt
ωitjt − ωr

jitihjtj; ðB2Þ

we obtain

eŜĤtre−Ŝ ¼ ωrâ†âþ Ĥt þ â†â
X∞
it;jt¼0

χitjt jitihjtj

þ
�
â†â†

X∞
it;jt¼0

ηitjt jitihjtj þ H:c:

�

þ
X∞
it;jt¼0

Λitjt jitihjtj þOðg3Þ; ðB3Þ

where the matrix elements are

χitjt ¼
X∞
kt¼0

gitktgktjt

�
ωitkt

ω2
r − ðωitktÞ2

þ ωjtkt

ω2
r − ðωjtktÞ2

	
; ðB4Þ

ηitjt ¼
1

2

X∞
kt¼0

gitktgktjt

�
1

ωr − ωktjt

−
1

ωr þ ωktit

�
; ðB5Þ

Λitjt ¼ −
1

2

X∞
kt¼0

gitktgktjt

�
1

ωr − ωktjt

þ 1

ωr − ωktit

�
; ðB6Þ

and we drop all terms of the order of g3 and higher. The
dispersive shifts and Lamb shifts discussed in the main text
are the diagonal parts χit ≡ χitit and Λit ≡ Λitit , respec-
tively. Note that we use a different notation than that
presented in Ref. [2]. We also note that Xiao et al. [24]
introduce a diagrammatic approach to obtain a high-order
effective Hamiltonian for a driven transmon in the absence
of a resonator.
By keeping the diagonal terms in Eq. (B3), we recover

Eq. (7) and, thus, correctly obtain the dispersion to the order
of g2. However, a salient feature of Eq. (B3) is that, to the
same order in the coupling, there are terms like â†â†jjtihktj
that create pairs of photons in the resonator [62]. These terms
can also cause transitions between any pair of approximate
eigenstates with an amplitude proportional to ηitjt . If we
were to explicitly keep track of terms to higher order in g, we
would similarly conclude that to fourth order there appears
an analogous term â†â†â†â†jjtihktj. Nevertheless, it would
seem that this term is irrelevant, considering that it is of
fourth order in a nominally small parameter.
To ensure that such terms can safely be dropped, however,

we would have to verify that, in this new basis of approxi-
mate eigenstates, the usual criteria for the validity of
perturbation theory is satisfied. As we emphasize in the
main text, these states are ac-Stark shifted. This opens up the
possibility that these new approximate eigenstates can have
a very small detuning, thus rendering seemingly small off-
diagonal terms like â†â†â†â†jjtihktj relevant. This neces-
sarily leads to nonperturbative corrections to the eigenstates.
For instance, focusing again for concreteness on the

branches B1t
and B7t

in Fig. 2, suppose we had computed
the perturbative corrections to the bare states j1t; nri and
j7t; mri to some order in g using higher-order Schrieffer-
Wolff perturbation theory. These approximate eigenstates

and have energies and
, respectively. They also have a residual

coupling with an interaction strength ,
which is necessarily proportional to a nonzero power
of g.
As stated above, the most-resonant transition between

transmon states 1t and 7t involves four photons. Thus,
assuming that the coupling with any other approximate
eigenstate is irrelevant, we can project onto the two-
dimensional subspace spanned by and

MARIE FRÉDÉRIQUE DUMAS et al. PHYS. REV. X 14, 041023 (2024)

041023-22



for each nr and conclude that the eigenvalues and
eigenvectors of the two-dimensional matrix

ðB7Þ

control the hybridization between these approximate
eigenstates. Thinking of nr as an external controllable
parameter, we would observe an avoided crossing when the
condition

ðB8Þ

is met. Had we gone to high-enough order in g, we would
have found that Eq. (B8) is satisfied for nr ≈ 84.
Thus, we see that the branch analysis classifies states

in a way that is analogous to adiabatically tracking the
energies of each state. For instance, before the crossing the
off-diagonal elements are irrelevant, and the branch analy-
sis classifies and .
After the crossing, the characters of the states are
switched, and we have and

. Near the crossing itself, however,
the eigenstates are a highly entangled superposition

, and there is an accompanying
avoided crossing in the modular spectrum. We stress that
there is no way to perturbatively connect the entangled
states to the approximate eigenstates

and , and so by definition they could not
have been obtained via perturbation theory in the residual
coupling between these states. This highlights the non-
perturbative nature of branch swapping.
We now wish to confirm the validity of this interpre-

tation by comparing the overlaps of the approximate
eigenstates with the relevant numerically obtained eigen-
states; see Fig. 14. It is important to recall that the
coupling scales as g

ffiffiffiffiffi
nr

p
such that the validity of pertur-

bation theory worsens with increasing photon number. As
a result, the overlaps between the numerically exact
eigenstates and their perturbative counterparts decrease
as nr gets large. To try and remove this trivial decrease in
the overlaps, which should be contrasted with the non-
perturbative corrections due to an avoided crossing, we
now go to one order higher in perturbation theory than in
Eq. (B3). By defining

ðB9Þ

where T̂ is proportional to g2, we can eliminate the off-
diagonal terms to that order in Eq. (B3). Just like Ŝ is

linear in â and â† to eliminate the first-order term in g, T̂ is
quadratic in â and â† to eliminate the to second-order
terms in g. Its full explicit form is

T̂ ¼ Âð2Þ
t þ B̂ð2Þ

t â†âþ Ĉð2Þ
t â âþD̂ð2Þ

t â†â†; ðB10Þ

where

Âð2Þ
t ¼ −

g
2

X
it≠jt

jitihitjðn̂tŜt þ Ŝ†t n̂tÞjjtihjtj
ωitjt

; ðB11Þ

B̂ð2Þ
t ¼ g

2

X
it≠jt

jitihitj½n̂t; Ŝ†t − Ŝt�jjtihjtj
ωitjt

; ðB12Þ

Ĉð2Þ
t ¼ g

2

X
it;jt

jitihitj½Ŝ†t ; n̂t�jjtihjtj
ωitjt þ 2ωr

; ðB13Þ

D̂ð2Þ
t ¼ g

2

X
it;jt

jitihitj½n̂t; Ŝt�jjtihjtj
ωitjt − 2ωr

: ðB14Þ

At low photon numbers nr < 84, we see in Fig. 14
that , indicating
the validity of the dispersive approximation.
For nr > 84, the overlaps and

rise and approach unity, indicating
branch swapping and the validity of perturbation theory.
Near nr ≈ 84, however, all of these overlaps are roughly a
half; if we were to perform higher-order Schrieffer-Wolff
perturbation theory, we could not recover a nearly flat line
of order unity at this value of nr, since the validity of this
perturbative expansion is contingent on the left-hand side
of Eq. (B8) being small.

FIG. 14. Overlaps of the eigenstates of branches B1t
and B7t

with the corresponding perturbative approximations
obtained via Schrieffer-Wolff perturbation theory [Eq. (B9)].
The parameters are the same in Fig. 2. Before the branch
swapping at approximately 84 photons, the eigenstates in each
branch are well approximated by their perturbative counterpart.
Near the swapping, perturbation theory fails and the eigenstates
are in a roughly equal superposition of the perturbative eigen-
states. For larger photon numbers, the character of the eigenstates
switches. Deviation of the overlaps from unity beyond the
swapping point is a consequence of the finite-order approxima-
tion for the , which fails at large photon numbers.
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The fact that the overlaps significantly deviate from unity
on each side of the branch swapping is a consequence of
using a finite-order expansion for the approximate eigen-
states. Indeed, because the transmon-resonator interaction
strength scales with photon number, such an expansion
becomes less accurate at large n̂r. The overlaps could be
made arbitrarily close to unity before and after the crossing
by going to even higher order in perturbation theory. At the
crossing itself, however, the observed branch swapping is
always nonperturbative in the coupling g.
We emphasize that we focused on B1t

and B7t
, since the

branch analysis had already identified that these two
branches had swapped. Without the branch analysis, we
would need to verify the resonance condition [Eq. (B8)] for
every pair of branches. Furthermore, we would need to
ensure that the perturbative energies are
accurate. At higher photon numbers, this means going to
higher order in perturbation theory, a needlessly tedious
task given that the branch analysis already contains this
information. Moreover, as discussed in Sec. II E, the
dispersive approximation fails even at low photon numbers
for transitions between chargelike states near the top of the
well, and this was shown to affect the ionization threshold.
Thus, a perturbative approach cannot be expected to
generally produce accurate results when the gate charge
fluctuates.
Finally, let us stress that the order of the multiphoton

process responsible for the swapping of the ground- or
excited-state branch with any other branch can be diag-
nosed by considering the modular spectrum of the bare
transmon states. For instance, here we knew that the four-
photon process was responsible for the swapping of
branches B1t

and B7t
, since ðE7t

− E1t
− 4ωrÞ=2π ¼

1.98 GHz was the smallest detuning between these trans-
mon states compared to any other multiphoton process.
Thus, the order of these multiphoton resonances changes
with the detuningΔ. For instance, going from small to large
negative detuning, the three peaks we see in the detuning
sweep in Fig. 7(a) are a consequence of multiphoton
processes of fifth, fourth, and third order between the
ground state and branches B7t

, B6t
, and B5t

, respectively.

APPENDIX C: EFFECTIVE DRIVE ON THE
TRANSMON

In Sec. III, we obtain Eq. (12) by applying a displace-
ment transformation D̂ðαÞ ¼ expðαâ† − αâÞ on the driven
qubit-resonator master equation [Eq. (4)]. In that trans-
formation, the amplitude α is time dependent and takes the
form αðtÞ ¼ R

t
0 dτEdðτÞe−ðiωrþκ=2Þðt−τÞ. With that choice,

the transformation eliminates the resonator drive from
the Hamiltonian and induces an effective transmon
drive EtðtÞn̂t ¼ 2gIm½αðtÞ�n̂t.
Taking the resonator drive to be EdðtÞ ¼ εd sinðωdtÞwith

constant amplitude εd, we have that

αðtÞ ¼ εd
2

�
e−iωdt − e−ðiωrþκ=2Þt

ω− − iκ=2
−
eiωdt − e−ðiωrþκ=2Þt

ωþ − iκ=2

	
;

ðC1Þ

where ω� ¼ ωr � ωd. Therefore, the amplitude of the
transmon drive reads

EtðtÞ ¼ gεd

�
cosðωdt − ϕ−Þ − cosðωrt − ϕ−Þe−κt=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2
− þ ðκ=2Þ2

p

−
cosðωdtþ ϕþÞ − cosðωrt − ϕþÞe−κt=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ω2þ þ ðκ=2Þ2
p

	
; ðC2Þ

where tanϕ� ¼ −2ω�=κ. Because ωþ ≫ gεd, we can
ignore the second line in the above expression.
Furthermore, assuming that jω−j ≪ κ, the drive amplitude
takes the simpler form

EtðtÞ ¼
2gεd
κ

ð1 − e−κt=2Þ cosðωdtÞ: ðC3Þ

This is the expression that we use in Sec. III.
Beyond this limiting regime, the effective drive on the

transmon [Eq. (C2)] can still be well approximated by a fast
periodic drive with an envelope that grows slowly as
1 − e−κt=2, although not monotonically when jωr − ωdj is
finite. In particular, for large jωr − ωdj compared to κ, an
avoided crossing in the Floquet spectrum might be dynami-
cally crossed multiple times.
An important remark is that, when jωr − ωdj≳ κ, we still

obtain a better approximation to the full transmon-resonator
dynamics by using Eq. (C3) than by using Eq. (C2) for the
driven transmon. The reason is that the resonator responds
at a qubit-state-dependent frequency that is typically closer
to the readout frequency ωd than to ωr. Thus, the mono-
chromatic-tone approximation is more accurate.

APPENDIX D: FLOQUET FORMALISM

While for the numerical simulations we extract the
Floquet Hamiltonian directly from the propagator over
one period, ÛðTÞ≡ e−iĤFT , it is instructive to express the
Floquet problem in Shirley space, also known as the infinite
replicas picture [64].
The infinite replicas picture is obtained by solving the

time-dependent Schrödinger equation in frequency space.
Defining the Floquet quasienergies and modes of the time-
dependent periodic Floquet Hamiltonian via ĤFjϕiti ¼
ϵit jϕiti, a particular solution to the Schrödinger equation
is the Floquet state jψ itðtÞi ¼ e−iϵit tjϕitðtÞi. The quasie-
nergy is defined within the first Brillouin zone ϵit ∈
½−ωd=2;ωd=2�. The Floquet modes are periodic in time,
jϕitðtÞi ¼ jϕitðtþ TÞi, where jϕitðtÞi ¼ ÛðtÞeiĤFtjϕitð0Þi
and jϕiti≡ jϕitð0Þi.
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In the case of the driven transmon, we may expand both
the Hamiltonian ĤtðtÞ in Eq. (12) and the Floquet modes in
Fourier components as ĤtðtÞ¼Ĥtþðεt=2Þðeiωdtþe−iωdtÞn̂t
and jϕitðtÞi ¼

P
m eimωdtjϕit;mi, respectively. We can then

substitute them into Schrödinger’s equation i∂tjψ tðtÞi ¼
ĤðtÞjψ tðtÞi, leading to the eigenvalue problem

ðĤtþmωdÞjϕit;miþ
εt
2
n̂tðjϕit;mþ1iþ jϕit;m−1iÞ¼ ϵit jϕit;mi:

ðD1Þ

The infinite replicas eigenvalue problem in Eq. (D1) can be
interpreted more clearly if written in matrix form as

0
BBBBBBBBBBBB@

. .
. . .

. . .
.

. .
.

Ĥt −ωd
εt
2
n̂t 0

. .
. εt

2
n̂t Ĥt

εt
2
n̂t

. .
.

0 εt
2
n̂t Ĥt þωd

εt
2
n̂t

. .
. . .

. . .
. . .

.

1
CCCCCCCCCCCCA

0
BBBBBBBBB@

..

.

jϕit;−1i
jϕit;0i
jϕit;1i

..

.

1
CCCCCCCCCA

¼ ϵit

0
BBBBBBBBB@

..

.

jϕit;−1i
jϕit;0i
jϕit;1i

..

.

1
CCCCCCCCCA
: ðD2Þ

Thus, the original time-dependent eigenvalue problem is
mapped to a static eigenvalue problem involving infinite
replicas of transmons ordered in a one-dimensional lattice.
The transmon at site m has a static Hamiltonian Ĥt þmωd
and is coupled to nearest-neighbor sites m� 1 via the
“tunneling” operator ðεt=2Þn̂t. In the absence of a drive,
εt ¼ 0, the Floquet mode’s mth component is just
jϕit;m½εt ¼ 0�i ¼ jit; mi, i.e., the bare transmon state it at
site m. Moreover, in the replicas picture, the bare states
jit; mi and jjt; ni can hybridize at finite εt provided that
they can be connected via a tunneling path along the one-
dimensional lattice. Moving back to the original time-
dependent picture, the interpretation is that there can be a
transition between levels it and jt provided jn −mj drive
photons at frequency ωd are absorbed (n > m) or emit-
ted (n < m).
With a second-order perturbative expansion in εt, we can

compute a correction to the bare (εt ¼ 0) frequencies
Eit þmωd. The ac-Stark shift of level it is

χit;m ¼ ε2t
4

X
jt

� jhitjn̂tjjtij2
Eit;m − Ejt;mþ1

þ jhitjn̂tjjtij2
Eit;m − Ejt;m−1

�

¼ ε2t
2

X
jt

ωitjt jhitjn̂tjjtij2
ω2
d − ω2

itjt

¼ 2n̄r
X
jt

ωitjt jgitjt j2
ω2
d − ω2

itjt

; ðD3Þ

where we use the definitions ωitjt ¼ Ejt − Eit , gitjt ¼
ghitjn̂tjjti, and εt ¼ 2g

ffiffiffiffiffi
n̄r

p
. Note that this χit;m shift is

independent of the replica index m, as expected, since all
replicas are equivalent. Importantly, this expression is
exactly the frequency shift of the transmon level it obtained
with the fully quantum model [Eq. (8)] with an average
number of photons n̄r in the resonator and with ωd ¼ ωr.
This result is not accidental. Indeed, as we now explain,
the Shirley Hamiltonian is equivalent in a rigorous way
to a semiclassical version of the static Hamiltonian
Ĥtr. Furthermore, this result explains why the energies
modulo ωr of the branch eigenstates and the Floquet
quasienergies are nearly identical; compare Fig. 2(b) with
Fig. 8(b) and Fig. 3(b) with Fig. 9(b).
To make the connection to Eq. (D1) more evident, we

first apply a trivial phase shift to the creation and annihi-
lation operators in Ĥtr, which changes the capacitive
coupling −igðn̂t − ngÞðâ − â†Þ → gðn̂t − ngÞðâþ â†Þ but
leaves the eigenenergies invariant. We then let

jϕiti≡
X
jt;nr

cðitÞjt;nr
jjt; nri≡

X
nr

jϕit;nr ; nri ðD4Þ

denote a generic branch-Bit eigenstate of Ĥtr with energy
ϵit . Here, jϕit;nr ; nri is a tensor product of the transmon state

jϕit;nri≡
P

jt c
ðitÞ
jt;nr

jjti with the nrth Fock state. Given that

jϕiti is an eigenvector of Ĥtr, we can conclude that the
various jϕit;nri must satisfy

ðĤt þ nrωrÞjϕit;nri þ
εt;nrþ1

2
ðn̂t − ngÞjϕit;nrþ1i

þ εt;nr
2

ðn̂t − ngÞjϕit;nr−1i ¼ ϵit jϕit;nri; ðD5Þ

where we introduce the function εt;nr ≡ 2g
ffiffiffiffiffi
nr

p
.

To render the fully quantum eigenvalue problem in
Eq. (D5) equivalent to Eq. (D1), we assume that the
eigenvectors of Ĥtr have a large average photon number
n̄r and that they are localized in Fock space. This allows us
to ignore the photon-number-dependent variation in the
matrix elements εt;nr ≈ εt;nrþ1 ≈ εt;n̄r . This also allows us to
ignore the existence of the vacuum state. Indeed, in the
semiclassical picture, one can absorb or emit an arbitrary
number of photons, which is what leads to the replica index
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m spanning all integers. In contrast, in the quantum
picture, the transmon cannot absorb an arbitrary number
of photons. With the above assumption, however, the
existence of the vacuum is irrelevant, and we can safely
ignore the lower bound on nr. Note that these approx-
imations become better at large photon numbers or,
equivalently, at strong drives. In that limit, therefore,
the two eigenvalue problems in Eqs. (D5) and (D1) are
equivalent up to the dependence on ng. It can then be
shown that the dependence on ng can be removed with the
gauge transformation jϕ̃it;kri ¼

P
nr Jnr−krðεtng=ωdÞjϕit;nri,

where JkðxÞ is the Bessel function of the first kind,
corresponding to the gauge transformation that removes
an irrelevant constant −εtng cosðωdtÞ from the trans-
mon drive.

APPENDIX E: FLOQUET-LANDAU-ZENER
TRANSITION PROBABILITY

The Landau-Zener formula for the transition probability
at an avoided crossing between two Floquet quasienergies
gives accurate predictions, even for fast pulses [35,38]. In
our mapping of the driven transmon-resonator Hamiltonian
to a Floquet problem, we do not directly change the
detuning of the quasienergies linearly in time, as would
be the case for the standard Landau-Zener argument.
Instead, the relevant parameters are the amplitude εd of
the drive on the resonator and the resonator decay rate κ,
both of which change the effective drive amplitude εt on the
transmon following Eq. (C3). That effective drive ampli-
tude is the quantity which controls the detuning between
the quasienergies.
To deduce the effective speed v at which resonances are

traversed as a function of the drive amplitude εtðtÞ, we
follow Ref. [38] in approximating the difference in the
quasienergies close to an avoided crossing as

ϵjt ½εtðtÞ� − ϵit ½εtðtÞ� ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

ac þ ½vðt − tacÞ�2
q

≈ Δac þ
1

2

½vðt − tacÞ�2
Δac

: ðE1Þ

In this expression, tac is the time at which the minimum gap
Δac in the avoided crossing is reached. The value of the drive
amplitude at that time is denoted εt;ac ≡ εtðtacÞ. Expanding
the left-hand side of Eq. (E1) to second order (the first
derivatives vanish at the avoided crossing), we obtain

ϵjt ½εtðtÞ� − ϵit ½εtðtÞ� ≈ ϵjt ½εt;ac� − ϵit ½εt;ac�

þ
���� d

2ϵjt ½εt�
dε2t

����
εt;ac

�
dεtðtÞ
dt

����
tac

�
2

ðt − tacÞ2: ðE2Þ

Combining the two above expressions, we find that the
speed v is given by the relation

v2

2Δac
¼
���� d

2ϵjt ½εt�
dε2t

����
εt;ac

�
dεtðtÞ
dt

����
tac

�
2

: ðE3Þ

Note that, here, we assume that the second derivatives of
ϵit ½εt� and ϵjt ½εt� are equal at the avoided crossing.
Knowing the gap size Δac and the speed v, the Landau-

Zener diabatic transition probability can be computed
as PLZ ¼ exp ð−πΔ2

ac=2vÞ. For the parameters used in
Fig. 8(c), we obtain PLZ ¼ 0.35 for the diabatic crossing
and 1 − PLZ ¼ 0.65 for the adiabatic crossing. The qua-
sienergy gap and the speed are numerically obtained from
the tracked quasienergies and from the functional form of
the drive amplitude εtðtÞ.

APPENDIX F: COMPARISON OF THE
BOHR-SOMMERFELD ENERGIES WITH

FLOQUET THEORY

In this appendix, we show that the Bohr-Sommerfeld
quantization procedure gives a sensible approximation to
quantum theory for typical transmon parameters. This is
done by comparing the results obtained from the Bohr-
Sommerfeld quantization approach to the Floquet analysis
developed in Sec. III for ng ¼ 0. More precisely, we
compare the time-averaged transmon energy over the
coordinates fφitðτÞ; nitðτÞg for the Bohr-Sommerfeld
orbits:

⟪Ht⟫it ¼ lim
t→∞

1
t

Z
t

0
dτHtðφitðτÞ; nitðτÞÞ; ðF1Þ

to the time-averaged energy of the Floquet modes [23]:

⟪Ĥt⟫it ¼
1
T

Z
T

0
dτhϕitðτÞjĤtjϕitðτÞi; ðF2Þ

as shown in Figs. 15(a) and 15(b). In these plots, the gray
dots correspond to the Floquet mode energies given by
Eq. (F2) and the colored dots to the time-averaged
energies of the Bohr-Sommerfeld orbits given by
Eq. (F1). For the latter, we use the same color code as
in Fig. 11. The scale of the vertical axis is chosen such
that zero energy corresponds to the bottom of the cosine
well while 2EJ corresponds to the energy of the top of the
well, i.e., the energy of the separatrix of Ht. The
significance of the colored solid and dashed lines is
explained below.
Focusing first on the case of negative detuning

[Fig. 15(a)], we observe that the average energy of the
Floquet modes (gray dots) located near the bottom of the
well changes smoothly with drive amplitude at small drive
amplitudes. By contrast, modes located near the separatrix
rapidly hybridize, resulting in erratic behavior with the
drive amplitude. In Ref. [23], this was shown to be a
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signature of chaotic behavior. As the drive amplitude is
further increased, the chaotic layer widens until it absorbs
the Floquet modes associated with the qubit logical states.
Note that the resonances responsible for ionization can be
seen as sharp features of the average energy connecting
Floquet modes at the bottom of the well with modes closer
to the top of the well.
Before chaotic behavior emerges, the average energies of

the Bohr-Sommerfeld orbits (colored dots) match the
average Floquet energies very well. It is interesting to note
that this is the case even though there are only a few levels
in the well. Thus, the classical method is quite robust.
Moreover, the discontinuities that are observed in the
average energies of the Bohr-Sommerfeld orbits coincide
with the ranges of ε̃t for which the corresponding orbits
cease to exist because of collisions with ðn∶mÞ resonances.
The solid and dashed pink lines denote the average energy

of the orbit at the center of the main regular region
[corresponding to the gray line in Fig. 11(a)] and the
average energy of the outermost orbit of the main regular
region, respectively. These two lines delimit the energy
window into which regular orbits exist, i.e., where Bohr-
Sommerfeld states are supported. The correspondence
between the dashed pink line and the region where the
average Floquet energy shows chaotic behavior is striking.
At positive detuning, we again see an excellent agree-

ment between the classical and the Floquet predictions at
small drive amplitudes; see Fig. 15(b). Notably, both
approaches show the emergence of a set of states in the
vicinity of it ¼ 4 whose energies change smoothly with
drive amplitude. This is the bunching layer discussed in
Secs. II D and III B and which is caused by a large ð1∶1Þ
resonance as discussed in Sec. IV D. Chaotic behavior
emerges not only close to the separatrix of H̃t, but also
close to the bunching layer. This is the behavior expected
from Figs. 10 and 11, and it results from the appearance of a
new separatrix close to the ð1∶1Þ resonance. Increasing
further the drive amplitude, the chaotic layer widens until
all states inside the cosine potential become chaotic.
Because of the presence of the large ð1∶1Þ resonance,

there are three different regions that can support Bohr-
Sommerfeld states, namely, the main regular region, the
ð1∶1Þ resonance itself, and the orbits surrounding both
the main regular region and the ð1∶1Þ resonance; see
Fig. 11(d). In Fig. 15(b), the solid and dashed pink lines
correspond to the average energies of the orbits at the center
and inner edge of the main regular region, respectively.
Furthermore, the solid and dashed indigo lines are the
average energies of the center and inner edge of the ð1∶1Þ
resonance, respectively. The lower and upper dashed green
lines are the average energies of the innermost and
outermost orbits external to the ð1∶1Þ resonance, respec-
tively. The agreement between the Bohr-Sommerfeld ener-
gies and Floquet modes energies in the three identified
zones is excellent. We verified that the correspondence
between the Floquet states and the regular orbits holds
better as ℏeff is made smaller (not shown). In the limit
ℏeff → 0 (EJ=EC → ∞), the lowest-energy Bohr-
Sommerfeld state coincides with the energy of the center
of the main regular region and ionizes at around ε̃t ∼ 0.3,
where the solid and dashed pink lines meet in Fig. 15(b).
Consequently, the Bohr-Sommerfeld critical photon num-
ber associated with the ð1∶1Þ resonance has a saturat-
ing value.
Finally, we note that the center of the ð1∶1Þ resonance is

a point of stability with higher average energy than the
surrounding points. Thus, the bunched states are excitations
within an effective inverted potential well generated by the
drive. Such an inverted effective potential well bears a
superficial resemblance to the Kapitza pendulum, i.e., a
rigid pendulum stabilized “upside down” by periodically
changing the height of the pivot point. With the ð1∶1Þ

FIG. 15. Time-averaged energies ⟪Ht⟫it of the Bohr-Sommer-
feld orbits (colored dots with the same color code as in Fig. 11)
and time-averaged energies ⟪Ĥt⟫it of the Floquet modes at ng ¼
0 (gray dots) as a function of the rescaled drive amplitude ε̃t. The
solid lines indicate the energies of the center of the main regular
region (pink) and of the ð1∶1Þ resonance (indigo). The dashed
lines indicate the energy of the boundaries of the regular regions,
namely, the main regular region (pink), the ð1∶1Þ resonance
(indigo), and the innermost and outermost orbits external to the
ð1∶1Þ resonance at positive detuning (green). We show (a) the
case of negative detuning (ω̃d ¼ 1.152) and (b) the case of
positive detuning (ω̃d ¼ 0.807). The Bohr-Sommerfeld ⟪Ht⟫it
are obtained by averaging the Hamiltonian over N ¼ 1000

periods using 40 points per period. The Floquet ⟪Ĥt⟫it are
obtained using 31 points per period. The drive amplitude is varied
in increments of δεt=2π ¼ ωpδε̃t=2π ¼ 10 MHz. The Bohr-
Sommerfeld orbits and the region boundaries are identified using
the procedure described in Appendix G.
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resonance of interest here, however, the stabilized orbits
oscillate around φ ¼ 0 and not around φ ¼ �π.

APPENDIX G: CALCULATION OF THE
BOHR-SOMMERFELD CRITICAL

PHOTON NUMBERS

In this appendix, we describe the method used to
compute the Bohr-Sommerfeld critical photon numbers
fnccrit;itg introduced in Sec. IV B. The key is to determine
whether the Bohr-Sommerfeld orbit associated with a given
qubit state it exists. If the orbit is chaotic or overlaps with a
ðn∶mÞ resonance, there exists no closed and fully con-
nected regular orbit with the required area, and the qubit
state is then declared unstable. The various photon numbers
at which the Bohr-Sommerfeld orbit associated with qubit
state it becomes nonexistent yield the Bohr-Sommerfeld
critical photon numbers fnccrit;itg.
For a given value of the rescaled drive frequency ω̃d (i.e.,

a fixed value of the detuning Δ) and of the rescaled drive
amplitude ε̃t, we solve Hamilton’s equations to obtain the
orbits over N drive periods for all initial conditions along
the axis ðφ̃t ¼ 0; ñ0t Þ, with ñ0t ∈ ½−2.0; 2.0� varied in incre-
ments of 1=300. We then attempt to compute the areas of all
orbits using Green’s theorem. More precisely, we choose
some phase-space field F ¼ fPðφ̃t; ñtÞ; Qðφ̃t; ñtÞg such
that ∇ × F is a unit vector perpendicular to the phase-
space plane. With that choice, Green’s theorem yields

A ¼
Z Z

D
ð∇ × FÞ · dA ¼

I
C
F · dr

≈
X
ν

½Pðφ̃ν
t ; ñνt ÞΔφ̃ν

t þQðφ̃ν
t ; ñνt ÞΔñνt �; ðG1Þ

where the sum is over all points ν in the orbit and where
Δφ̃ν

t ¼ φ̃ν
t − φ̃ν−1

t and Δñνt ¼ ñνt − ñν−1t are the coordinate
differences between adjacent points of the orbit. A simple
choice for F is Pðφ̃t; ñtÞ ¼ 0 and Qðφ̃t; ñtÞ ¼ φ̃t, yielding

A ≈
����
X
ν

φ̃ν
tΔñνt

����: ðG2Þ

The absolute value is present to obtain a positive area
independently of the integration direction along the orbit.
In general, the points of an orbit in the Poincaré section are
not naturally ordered along the orbit, because they are
obtained stroboscopically. Therefore, we must first order
the points of an orbit to compute an area using Eq. (G2). If
most points of an orbit can be ordered on a closed,
connected, and near-continuous orbit, an area can be
successfully calculated and a closed and connected orbit
with that area can exist. In all other cases, such an orbit
cannot exist.
In the attempt to order the points along an orbit, we start

at the initial point of the orbit. We then find the point of the

orbit that is closest to the initial point in the Poincaré
section. The nearest neighbor of this second point is then
selected, excluding the points that were already selected.
The procedure is repeated until it returns to the initial point
or until the nearest neighbor is farther than a distance
threshold d chosen as

d ¼

8>>><
>>>:

2πrcm
N if N dmin

2πm < rc <
N dmax
2πm ;

dmin if rc ≤
Ndmin
2πm ;

dmax if rc ≥
Ndmax
2πm or no main region:

ðG3Þ

Here, m is a scalar and rc is the distance between the initial
condition ð0; ñ0t Þ and the center of the main regular region
(determined as described in the next paragraph). The first
condition in Eq. (G3) sets the distance threshold in
proportion to the expected average distance between orbit
points. Indeed, the quantity 2πrc=N is the arc length
between orbit points distributed uniformly on a circle of
radius rc. Thus, m is the number of average arc lengths
tolerated between nearest neighbors. The second and third
conditions in Eq. (G3) set a minimum and maximum
distance threshold, respectively. The minimum distance
threshold dmin ensures that the threshold d remains finite
very close to the center of the main regular region, although
such small orbits are not relevant for the parameter regime
explored in this work (i.e., the area of a circle of radius
N dmin=2πm is smaller than the minimum area πℏeff of a
Bohr-Sommerfeld orbit). The maximum distance threshold
dmax ensures that the threshold remains finite far from
the main regular region or when the main regular
region stops existing. This mitigates the number of chaotic
orbits for which the algorithm occasionally finds a closed
connected orbit [these appear as “noise” in the white
regions in Figs. 11(a) and 11(b)]. The algorithm records
a successful area calculation if it returns to the initial
point and if the number of ordered points is larger
than N =2, and it otherwise records a failure. The latter
condition prevents mistakenly identifying a single discon-
nected island of a ðn∶mÞ resonance as a closed connected
orbit. For the above procedure, we use N ¼ 1000,
2πm=N ≈ 0.65, dmin ¼ 0.10, and dmax ¼ 0.80, which give
us fast and reliable results.
Setting the threshold d using Eq. (G3) requires knowl-

edge of the position of the center of the main regular region
at all drive amplitudes. At ε̃t ¼ 0, the center sits at (0, 0) in
phase space. If the drive amplitude is slightly increased, the
center slightly moves away from its former position, such
that an orbit with initial condition (0, 0) now encloses the
new center. The position of the new center is estimated
as the center of mass of that orbit. The method is iterated
until the main regular region stops existing. This is detected
by the orbit wandering too far away from the previous
center position. To track the center, we increment ε̃t by
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0.01, use orbits with N ¼ 1500 periods, and set the
wandering-off threshold distance to 1.0. In Fig. 11, the
center of the main regular region is shown as gray lines
starting at (0, 0) at zero drive amplitude in Figs. 11(a) and
11(b), while it appears as gray dots in Figs. 11(c) and 11(d).
The above procedure allows us to compute the phase-

space area of orbits as a function of ω̃d and ε̃t. We first vary
ω̃d [Δ=2π] between 0.5 [3.02 GHz] and 1.5 [−3.49 GHz]
in increments of 0.01 but exclude very small detunings
ω̃d ∈ ð0.90; 1.03Þ [Δ=2π ∈ ð−0.47; 0.41Þ GHz] where the
dispersive approximation does not hold. For each value
of ω̃d, we then vary ε̃t in increments of δε̃t ¼ δεt=ωp ¼
0.0015323, corresponding to δεt=2π ¼ 10 MHz. The
results are shown in Fig. 11 for (a) negative detuning
and (b) positive detuning. The colored regions indicate the
initial conditions where an area was successfully calcu-
lated. In particular, the Bohr-Sommerfeld orbits are high-
lighted as pale colored lines. The dark-colored regions
represent the extent of quantum fluctuations around a given
Bohr-Sommerfeld orbit. More precisely, they contain
all orbits with an area within πℏeff of that orbit at fixed
ε̃t. Thewhite regions indicate the initial conditionswhere the
algorithm failed to calculate an area. The Bohr-Sommerfeld
critical photon numbers fnccrit;itg are the points where the
Bohr-Sommerfeld line for state it collides with the white
regions as the drive amplitude is increased. These points are
represented by stars in Fig. 11. A lower bound to the fnccrit;itg
fromquantum fluctuations is obtained from the pointswhere
the boundaries of the dark-colored regions collide with the
white regions as the drive amplitude is increased. These
points are not shown in Figs. 11(a) and 11(b).
Finally, we quantify the strength of the resonances at the

critical photon numbers by the area they occupy in phase
space; see Fig. 12(a) in the main text. To obtain the area of a
resonance, we start at a critical point in Fig. 11 (star) and
vary ñ0t across the resonance at fixed ε̃t. The area of the
resonance is then obtained as the difference of the areas of
the two orbits that jointly enclose the resonance. We repeat
this procedure for every relevant resonance. Note that for
degenerate pairs of resonances, such as the two ð3∶2Þ
resonances shown in Fig. 10(b), the procedure computes
the total area of the pair.
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