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Low-depth Clifford circuits approximately solve MaxCut
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We introduce a quantum-inspired approximation algorithm for MaxCut based on low-depth Clifford circuits.
We start by showing that the solution unitaries found by the adaptive quantum approximation optimization
algorithm (ADAPT-QAOA) for the MaxCut problem on weighted fully connected graphs are (almost) Clifford
circuits. Motivated by this observation, we devise an approximation algorithm for MaxCut, ADAPT-Clifford, that
searches through the Clifford manifold by combining a minimal set of generating elements of the Clifford group.
Our algorithm finds an approximate solution of MaxCut on an N-vertex graph by building a depth O(N ) Clifford
circuit. The algorithm has runtime complexity O(N2) and O(N3) for sparse and dense graphs, respectively, and
space complexity O(N2), with improved solution quality achieved at the expense of more demanding runtimes.
We implement ADAPT-Clifford and characterize its performance on graphs with positive and signed weights.
The case of signed weights is illustrated with the paradigmatic Sherrington-Kirkpatrick model, for which our
algorithm finds solutions with ground-state mean energy density corresponding to ∼94% of the Parisi value in
the thermodynamic limit. The case of positive weights is investigated by comparing the cut found by ADAPT-
Clifford with the cut found with the Goemans-Williamson (GW) algorithm. For both sparse and dense instances
we provide copious evidence that, up to hundreds of nodes, ADAPT-Clifford finds cuts of lower energy than
GW.
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I. INTRODUCTION

Near-term quantum processors have found a niche in the
hybrid quantum-classical model of computation with varia-
tional quantum algorithms (VQAs) [1–3]. These algorithms
perform classical optimization of a problem-specific objec-
tive function that is evaluated by measuring the output of
a parametrized quantum circuit. Through variational search
over circuit parameters, a VQA thus seeks a solution circuit
that transforms a simple input state in the Hilbert space of
problem variables to a superposition of approximate solutions,
i.e., configurations that yield near-optimal values of the ob-
jective function. In attempts to determine whether they can
lead to a speedup over classical algorithms for any useful
task, VQAs have been applied to a variety of combinatorial
optimization problems.

Quantum approximate optimization algorithms (QAOAs)
[4,5] have been in a constant tug of war with classical solvers,
with initial indications of putative quantum speedups [6–9],
followed by experimental claims [10] and rebuttals [11], and
then further proposals for possible quantum speedup [12].
A byproduct of this large effort has been the definition and
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construction of quantum-inspired algorithms [13–18]. These
are “dequantized” classical versions of quantum or hybrid
quantum-classical algorithms that unveil and exploit previ-
ously unrecognized properties or structures in a problem,
leading to solution strategies that outperform the best known
classical algorithm.

In this work we introduce a quantum-inspired approxima-
tion algorithm for the MaxCut problem. The algorithm, which
we dub ADAPT-Clifford, is motivated by the observation that
the solution circuits found by an adaptive QAOA variant for
MaxCut on weighted complete graphs are (almost) Clifford
circuits, a well-known restricted class of quantum circuits
that are easy to simulate classically [19–23]. ADAPT-Clifford
builds an entangled state with a number of unitary operations
that is equal to the number of nodes N , adding at every
step a known two-qubit gate to the circuit. The algorithm is
polynomial in both time and space, with worst case runtime
complexity O(N4) and space complexity O(N2). We charac-
terize the performance of the algorithm in several families of
graphs. For graph sizes up to N = 30 nodes we report the
exact approximation ratios. For larger problem sizes up to
hundreds of nodes and depending on graph family, we assess
the performance by either direct comparison with the solution
found by the best classical algorithm for MaxCut [24,25],
or by comparing with the known value of the mean energy
density in the thermodynamic limit.

The rest of this paper is organized as follows. In Sec. II we
present a short summary of the MaxCut problem, quantum
approximate optimization, and its adaptive variant, Clifford
circuits, and introduce the tools we use to characterize the
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structure of solution circuits. In Sec. III we present the ori-
gin of the algorithm by analyzing the structure of solution
circuits to MaxCut on weighted complete graphs obtained
with QAOA and ADAPT-QAOA. In Sec. IV we present the
ADAPT-Clifford algorithm, discuss its details, and analyze its
runtime and space complexities in different types of graphs. In
Sec. V we present numerical results of the algorithm perfor-
mance on weighted complete graphs with positive and signed
weights, using the Sherrington-Kirkpatrick model as a specific
example of the latter. In Sec. VI we explore the performance
of the algorithm beyond complete graphs, including weighted
and unweighted K-regular graphs and Erdős-Rényi graphs. Fi-
nally in Sec. VII we conclude with a discussion of our results
in the context of near-term quantum optimization algorithms
and present an outlook for future work.

II. BACKGROUND AND METHODS

A. The MaxCut problem

Given a graph G = (V, E ), where V is the vertex set and
E ⊆ V2 is the set of edges (E = V2 is a complete graph), and
edge weights ωi, j ∈ R for (i, j) ∈ E , the MaxCut problem
asks to partition V into two complementary subsets A,A ⊂
V , such that the total weight of the edges between A and A
is maximized. We use binary variables zi ∈ {0, 1}, i ∈ V to
help us identify each subset, so that zi = 1 if vertex i ∈ A and
zi = 0 if i ∈ A. The maximal cut can then be formally ex-
pressed as the assignment z′ that maximizes the cost function

C(z) =
∑

(i, j)∈E
ωi, j zi(1 − z j ), (1)

where z = z1 . . . zN is a N-bit binary string and ωi, j =
ω j,i ∀(i, j) ∈ E .

The MaxCut problem on general graphs is known to be NP-
hard [26,27]. However, MaxCut can be solved in polynomial
time in some special cases, such as graphs without long odd
cycles [28], weakly bipartite graphs [29], planar graphs both
weighted [30,31] and unweighted [32,33], 1-planar graphs
[34], and graphs with k crossings [35]. Finally, when all the
edge weights are negative, MaxCut becomes a equivalent to
MinCut and admits a polynomial time algorithm [36].

Beyond the special cases mentioned above and due to the
difficulty of solving the problem exactly, one often aims in-
stead to find approximation algorithms that yield reasonably
good solutions in polynomial time for all problem instances.
That is, we search for an algorithm that outputs an assignment
z∗, such that the approximation ratio

α(z∗) = C(z∗)

maxz[C(z)]
(2)

equals some desired value, ideally as close to 1 as possi-
ble, on all instances of MaxCut. However, in some cases
the gap between approximate an optimal solutions cannot be
reduced arbitrarily in polynomial time [37], a phenomenon
known as hardness of approximation. For MaxCut on general
graphs, the best known approximation algorithm is that of
Goemans and Williamson (GW) [24], which has a perfor-
mance guarantee (worst case) of α 	 0.878 [24,25,38,39].
Below we will present extensive performance comparisons

between ADAPT-Clifford and the GW algorithm; in order to
be as self-contained as possible we review the details of the
GW algorithm in Appendix A.

One might hope to achieve better approximation ratios
by focusing on specific families of graphs. For unweighted
graphs Ref. [40] showed that finding an algorithm yielding
an approximation ratio better than 16/17 is NP-hard. Nearly
optimal algorithms both for cubic graphs [41], guaranteeing
α = 0.9326, and for K-regular graphs of large degree [42]
are known. Another interesting example is the case of dense
graphs, i.e., graphs with O(N2) edges. Polynomial time ap-
proximation schemes (PTASs) are known for both unweighted
[43,44] and weighted [45] graphs, although for the latter there
is only an existence result. A PTAS guarantees an approximate
solution whose cost is 1 − ε away from the optimal. Although
these schemes have a provable polynomial runtime in N , it
might not be polynomial in ε; see, for example, Ref. [44]. We
will come back to this point in Sec. VII.

In quantum approximate optimization, the objective func-
tion of a combinatorial optimization problem defined on
binary variables zi, such as MaxCut, is expressed as an Ising
Hamiltonian through the mapping σi = 2zi − 1, with connec-
tivity dictated by the graph G [46]; that is, the entries ωi, j

of the adjacency matrix reflect the coupling between the ith
and jth spin. In this setting the optimum z′ is encoded as the
ground state of the Ising Hamiltonian. The Ising Hamiltonian
is then promoted to a Hamiltonian operator via the identifi-
cation σi → Zi, with Zi a Pauli-z operator acting on the qubit
that corresponds to the ith spin. For the MaxCut problem, the
corresponding Hamiltonian is

HC = 1

2

∑
i< j

ωi, jZiZ j . (3)

In writing Eq. (3) we have dropped a constant factor equal
to

∑
i< j

ωi, j

2 and added a minus sign to turn the maximization
problem defined by Eq. (1) into a minimization one.

In analogy with classical approximation algorithms, quan-
tum approximate optimization yields approximate solutions in
the form of a state |φ〉, whose energy expectation is as close as
possible to the ground-state energy of the Ising Hamiltonian.
Thus, the approximation ratio, Eq. (2), takes the form

α = 〈φ|HC|φ〉
EC

min

, (4)

where EC
min is the smallest eigenvalue of HC. To achieve advan-

tageous performance, a quantum algorithm must produce an
approximate solution with a desired α faster than any classical
algorithm.

B. The quantum approximate optimization algorithm
and its adaptive variant

The Quantum Approximate Optimization Algorithm
(QAOA) is a type of variational algorithm [2] that aims to
solve combinatorial optimization problems [4]. It is defined
by a parametrized quantum circuit with a periodic structure.
Each layer of the circuit is given by a product of two unitaries,
time evolution under HC, followed by time evolution under a
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mixer Hamiltonian

HM =
N∑

j=1

Xj, (5)

where Xj is a Pauli-x on the jth qubit. For p layers QAOA
prepares the state

|ψ (γ,β)〉p =
[

p∏
l=1

e−iβl HM e−iγl HC

]
H⊗N |0〉⊗N , (6)

where γ = γ1, . . . , γp, β = β1, . . . , βp, and H is the
Hadamard gate. In order to find approximate solutions
the set of 2p parameters is optimized so as to minimize
〈ψ (γ,β)|HC|ψ (γ,β)〉p. After executing the circuit with op-
timized parameters a measurement in the computational basis
returns a candidate solution in the form of a bit string z∗.
Ideally, one would sample with high probability a good ap-
proximate solution. We will denote the optimal parameters
found by numerical experiments as (γ∗,β∗) and the associated
solution unitary U (γ∗,β∗) = ∏p

l=1 e−iβ∗
l HM e−iγ ∗

l HC .
Not much is known regarding performance guarantees and

hardness of approximation for QAOA. The case of constant p
has so far been the main focus, as it is the regime of interest for
current quantum devices [47]. Reference [48] gives evidence
for a possible quantum advantage for MaxCut on 3-regular
graphs with shallow QAOA. References [49,50] provide ev-
idence that both p = 1 and large-depth QAOA output states
with bit string probabilities following Boltzman distributions,
rendering sampling classically hard. At the same time, it is
known that constant p QAOA is bounded away from opti-
mality in sparse graphs [51–53], as well as in some dense
problems where the overlap gap property [54] is known to
exist [55]. These results were recently extended to the case of
p ∼ log(N ) [56]. However these results do not apply directly
to the case of p ∼ poly(N ). As a consequence there are no
conclusive results on the runtime required for p ∼ poly(N )
QAOA to reach a given approximation ratio, with only loose
lower bounds appearing recently [57]. Most studies of QAOA
so far have been numerical experiments on different families
of problem instances; two examples are Erdős-Rényi graphs
[6] and 3- and 4-regular graphs (weighted and unweighted)
[58]. Importantly, any indication of a putative advantage in
this type of studies has been inconclusive due to the small
problem sizes accessible to either quantum implementations
or classical simulation [59].

To alleviate some of the roadblocks explored above, vari-
ants to the original QAOA ansatz have been developed; see
Ref. [60] for a review. Of interest to us here is the ADAPT [61]
variant, which was proposed as a way to find ansätze which
are tailored to the specifics of the problem under consid-
eration. ADAPT-QAOA is an iterative variational algorithm
which replaces the fixed mixer Hamiltonian in Eq. (6), by a
suitably chosen one, Al , at each layer l � p. Thus, p-layer
ADAPT-QAOA prepares the state

|ψ (γ , β )〉ADAPT
p =

[
p∏

l=1

e−iβl Al e−iγl HC

]
H⊗N |0〉⊗N . (7)

The lth mixer Hamiltonian is chosen as the one which maxi-
mizes the energy gradient, that is,

Al = max
As∈POP

[−i〈ψl−1|eiγl HC [HC, Âs]e
−iγl HC |ψl−1〉], (8)

where the new variational parameter γl is set to a predefined
small positive value γ0 ∼ 0 [61], POP is an operator pool,
and |ψl−1〉 is the state resulting from the application of the
ADAPT-QAOA solution circuit with only l − 1 layers. The
choice of pool is not unique, with different pools being ad-
vantageous in different situations [62,63]. Below we restrict
ourselves to the pool

POP =
{∑

i

Xi,
∑

i

Yi

}
∪ {Xj,Yj} j=1,...,N

∪ {XjXk,YjYk,YjZk, ZjYk} j,k=1,...,N, j �=k, (9)

which is sufficient for our purposes.
In contrast to QAOA, ADAPT-QAOA grows the circuit

layer by layer, until the desired number p. As such, we begin
with a single layer, find the corresponding mixer according to
Eq. (8), then optimize to find the best parameters. We then
add a second layer, find the corresponding mixer according to
Eq. (8), initialize the new pair of parameters to zero [64] and
the rest of the parameters to the best values already found,
and optimize all of them. This procedure is repeated until p
layers are added. For a fair comparison between QAOA and
ADAPT-QAOA in our numerical simulations we construct the
QAOA solution circuit following the same iterative strategy,
but with a fixed mixer.

C. Clifford circuits and their efficient simulation

In this subsection we review some concepts of the stabilizer
formalism which will be used later in the paper. For a general
presentation see Ref. [65].

The single-qubit Pauli group is given by the operators
{I, X,Y, Z} together with multiplicative factors ±1,±i. The
N-qubit Pauli group P̃N is given by all the N-tensor products
of these operators together with multiplicative factors. Given a
pure state on N qubits |ψ〉, we say P̃i ∈ P̃N stabilizes |ψ〉 if the
state is an eigenvector of P̃i with eigenvalue +1: P̃i|ψ〉 = |ψ〉.
A n-qubit pure state is a stabilizer state if it can be completely
specified, up to a global phase, by its N stabilizers.

Quantum circuits which map stabilizer states to stabilizer
states define a large class of nontrivial quantum circuits—
stabilizer circuits—which can be simulated in polynomial
time on a classical computer [22,23]. This is the content of the
celebrated Gottesman-Knill theorem [20,21]. These quantum
circuits can be completely written in terms of controlled-NOT,
Hadamard, and phase gates and single-qubit measurements.
Importantly, the efficient classical simulability does not imply
these circuits are not interesting. On the contrary, they have
extensive applications in quantum information science, for
instance, encoding and decoding in quantum error correction
[19,21,66,67], dense quantum coding [68], quantum teleporta-
tion [69], quantum simulation [70,71], and proof of principle
of quantum advantage with nonlocal games [72,73], as well as
in quantum many-body physics [74–78].

In absence of measurements, stabilizer circuits are referred
to as Clifford circuits or Clifford unitaries. They form a group
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C, defined as the unitaries which normalize the Pauli group,
that is, the unitaries which map Pauli operators to Pauli op-
erators. Following from the Gottesman-Knill theorem, this
group has three generators, the controlled-NOT, Hadamard,
and phase gates. Naturally the Pauli operators are elements
of the group, as they are generated by Hadamard and phase.

Both the QAOA and ADAPT-QAOA ansätze are defined
as products of unitaries generated by Pauli strings. When are
unitary transformations generated by Pauli strings Clifford
unitaries? To answer this question, take P̃i, P̃j ∈ P̃ , two dis-
tinct Pauli strings that either commute or anticommute by
definition. Further consider the unitary W (θ ) = e−iθ P̃j , then
W †P̃iW = P̃i if [P̃i, P̃j] = 0, and W †P̃iW = iP̃iP̃j if {P̃i, P̃j} =
0 and θ = ±m π

4 with m ∈ N. We thus see that when a quan-
tum circuit is composed of products of unitaries generated by
Pauli strings that do not necessarily commute, it is a Clifford
circuit if and only if the parameters of these transformations
are integer multiples of ±π/4. Therefore, if QAOA solution
circuits U (γ∗,β∗) are to be Clifford, then the circuit parame-
ters γ∗ and β∗ must be integer multiples of ±π/4.

D. Characterizing the structure of solution unitaries

Here we introduce the tools we use in the next sec-
tion to characterize the structure of QAOA solution circuits
U (γ∗,β∗). Consider the Hilbert space H of N qubits with
dimension d = 2N , and define the N-qubit Pauli basis as
PN = P̃N/〈±iI〉, the quotient group containing, D = 4N −
1, Pauli strings with all multiplicative factors equal to +1.
Furthermore any pair of Pauli strings obey Tr[PiPj] = dδi j .
Therefore, PN defines a basis for all Hermitian operators in H.

Consider some Hermitian operator O acting on H. If O
evolves under some unitary transformation V , we write

O′ = V †OV =
D∑

j=1

f [Pj ; O′]Pj, (10)

with Pj ∈ PN . Noticing that
∑

j | f [Pj ; O′]|2 = Tr[O′2] =
Tr[O2], we define

p j (O;V ) = 1

Tr[O2]
| f [Pj ; O′]|2. (11)

It is easy to see that
∑

j p j = 1. Equations (11) thus denotes
the probability of finding O′ to be the jth Pauli string Pj . In
the case of O = Pl , the normalization factor in Eq. (11) is∑

j | f [Pj ; O′]|2 = d .
We analyze the transformation V as an “input-output”

channel, with O the input and O′ the output, and we are
interested in characterizing the locality, in the Pauli basis,
of the output. This can be inferred from the the localization
properties of p j (O;V ), which we investigate with the second
Rényi entropy (see Ref. [79] and Sec. 2.7 of Ref. [80]):

S (O;V ) = − log

⎛
⎝ 4N∑

j=0

| f [Pj ; O′]|4
d2

⎞
⎠. (12)

Equation (12) has a resemblance to the stabilizer Rényi en-
tropy [81]. Although the latter quantifies the nonstabilizerness
of a multiqubit state, the expression in Eq. (12) directly looks
at non-Cliffordness of the transformation. As such, one might

interpret it as the operator space counterpart to the stabilizer
Rényi entropy, and we expect both quantities to have similar
behaviors, that is, if for a multiqubit state V |ψ〉⊗N the stabi-
lizer Rényi entropy is high/low, then Eq. (12) for some input
Pauli string O and the same unitary V will be high/low.

The Pl ∈ PN can be ordered by their “weight,” i.e., the
number of nonidentity elements in the Pauli string. This order-
ing allows us to systematically study the Clifford character of
the transformation V on Pauli strings. Naturally, the first step
will be to check it for strings of weight one, which is done
by setting O = Yn, where Yn denotes a Pauli operator with
a Pauli-y on the nth qubit position and identity everywhere
else. In particular we denote S (Yn;V ) = Sn(V ). Since we can
place the initial Pauli-y at any of the N positions representing
the nodes of the graph, we consider the node-averaged Renyi
entropy of the operator distribution

S (V ) = 1

N

N∑
n=1

Sn(V ) (13)

as our figure of merit. Since Clifford unitaries map Pauli
strings to Pauli strings, then S (O;V ) = 0 for all O ∈ PN .
Since we are checking only the behavior of V as a “channel”
for Pauli strings localized on one qubit, a vanishing S is
necessary (but not sufficient) for V to be Clifford. We thus
use S as evidence of Cliffordness.

We supplement this evidence with an examination of the
optimal parameters (γ∗,β∗). Observation of γ∗,β∗ = ±m π

4
with m ∈ N then provides the sufficient condition for V to
be Clifford. This observation is made quantitative via the
distance of the vector of parameters v to the discrete set of
interest. We define this distance as

D(v) =
∑
vi∈v

minl∈Z
[∣∣vi − l π

4

∣∣]
π/8

, (14)

where the normalization ensures that each term in the sum
is bounded to the interval [0,1], thus we have 0 � D(v) �
|v|. Then the instance-averaged distances E[D(γ ∗)] → 0 and
E[D(β∗)] → 0 will disclose solution circuits which are close
to Clifford.

III. ORIGIN OF THE ADAPT-CLIFFORD ALGORITHM

To understand the origin of the ADAPT-Clifford algorithm,
it is instructive to examine the solution circuits obtained with
QAOA and ADAPT-QAOA for MaxCut on small weighted
complete graphs. We implemented both variational algorithms
in the extensible Julia framework Yao.jl [82] and use the
COBYLA optimizer. The analysis of the operator distribution
in the Pauil basis was implemented using QuantumOptics.jl
[83].

We consider first the case of graphs with positive weights
with ωi, j from either U[0, 1], where by U[a, b] we denote
the uniform distribution in the interval [a, b], or Exp(1), the
exponential distribution with mean 1. In Fig. 1(a) we show the
mean approximation ratios for 50 problem instances with N =
6 for circuits up to p = 10 layers. Similar to the observation
in Ref. [61], ADAPT-QAOA [green diamonds and circles in
Fig. 1(a)] finds a solution arbitrarily close to the exact solution
at sufficiently high but finite p, away from the p → ∞ limit
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FIG. 1. QAOA and ADAPT-QAOA results for MaxCut on
weighted complete graphs with N = 6. (a) Instance average of α for
QAOA (purple) and ADAPT-QAOA (green). (b) Instance average of
S in Eq. (13) of solution circuits with p layers fore QAOA (purple)
and ADAPT-QAOA (green). For both (a) and (b) the distributions of
the weights used are indicated in the figure. (c), (d) Examples of the
parameters γ∗ (cost, solid line) and β∗ (mixer, dashed line) of the
solution unitary U (γ∗, β∗) for an instance with weights drawn from
U[0, 1] (c) and N (0, 1) (d).

where QAOA is guaranteed to reach the exact solution. In
Fig. 1(b) we show the expectation value over instances of
S , E[S]. The ADAPT-QAOA solution circuits that lead to
α → 1 in Fig. 1(a) display E[S] → 0, indicating they might
be Clifford circuits. In contrast, the QAOA solution unitaries
show E[S] > 0 with a tendency towards the typical value,
log(4−N ), with increasing depth, in agreement with previous
works using other indicators [84–86].

To verify the Cliffordness of the ADAPT-QAOA solution
circuits we examine the optimized parameters, (γ∗,β∗), at
p = 10. An example is shown in Fig. 1(c) where dashed
and solid lines correspond to γ∗ and β∗, respectively. We
observe γ∗ → 0 and β∗ → −π/4 in all layers, and the mixer
Hamiltonians selected by the adaptive step are almost always
YlZm for some pair of qubits (l, m). Furthermore the distances
of the optimal parameters for p = 10 to ±s π

4 with s ∈ N
averaged over all instances with α → 1 (ωi, j ∈ U[0, 1]) are
E[D(γ ∗)] = 0.522 ± 0.270 and E[D(β∗)] = 0.247 ± 0.322,
indicating the optimized parameters are closed, on average, to
the Clifford values. This is to be contrasted with E[D(γ ∗)] =
3.53 ± 0.94 and E[D(β∗)] = 3.41 ± 0.62 for the optimized
parameters of the QAOA solution circuits with p = 10. Fi-
nally, we extensively checked that the properties of the
ADAPT-QAOA solution unitary discussed here do not change
as long as the edge weights are all positive.

Next we consider the case of signed weights with ωi, j

sampled either from U[−1, 1] or N (0, 1), the normal distri-
bution with mean 0 and variance 1. In Fig. 1(a) we compare

the averaged approximation ratio of the ADAPT-QAOA solu-
tions with that of the QAOA solutions for the same problem
instances. Similar to the case of strictly positive weights,
ADAPT-QAOA solutions get arbitrarily close to the exact so-
lution when enough layers are considered. As seen in Fig. 1(b)
E[S] �= 0 for the ADAPT-QAOA solution (green crosses and
squares). Although the circuits found are therefore not Clif-
ford, E[S] ∼ 1 at p = 10 for the small problem size under
study, in contrast to QAOA solution circuits (purple crosses
and hexagons), for which E[S] tends towards the typical
value.

The small value of E[S] for the ADAPT-QAOA solu-
tions raises the question: how far is this solution from the
Clifford manifold? To answer this, in Fig. 1(d) we show
the optimized parameters (γ∗,β∗) found for one of the
problem instances solved. The β∗’s are either 0 or −π/4,
indicating the mixer unitaries are Clifford, with mixer Hamil-
tonians almost always YlZm for some pair of qubits (l, m),
and most of the γ∗’s are zero with only few, ∼2, be-
ing nonzero. Furthermore, the distances of the optimized
parameters for p = 10 to ±s π

4 with s ∈ N averaged over
all instances with α → 1 (ωi, j ∈ N (0, 1)), are E[D(γ∗)] =
1.51 ± 0.72 and E[D(β∗)] = 0.83 ± 0.96, indicating that, on
average, the solution circuits are farther from the Clifford
manifold than in the case of ωi, j > 0. This is to be contrasted
with E[D(γ∗)] = 2.77 ± 0.78 and E[D(β∗)] = 2.75 ± 0.64
for the optimal parameters of the QAOA solution circuits with
p = 10. Therefore, the overall structure of the mixer unitaries
of the ADAPT-QAOA U (γ∗,β∗) found for positive ωi, j is still
there when ωi, j are signed, complemented with a nontrivial
non-Clifford action of a few of the cost layers. We have
checked that this structure is common to all ADAPT-QAOA
solutions reaching α → 1.

We summarize the observations of this section:
(i) The mixer part of all layers is Clifford with parameters

either 0 or −π/4. The mixer Hamiltonian at a given step is of
the form YlZm for some pair of qubits (l, m).

(ii) The cost part of most layers acts trivially with param-
eters equal to 0.

(iii) Only N steps are required to find an approximated
solution. Consequently, only N mixer layers of the form de-
scribed in the first point are needed.

IV. ADAPT-CLIFFORD APPROXIMATION
ALGORITHM FOR MAXCUT

A bit string z∗ is a good approximate solution to MaxCut
if α(z∗) is as close to 1 as possible. Thus, finding good
approximate solutions to this problem using only Clifford
circuits means to prepare a stabilizer state |
〉 whose energy
expectation satisfies |〈
|HC|
〉 − EC

min| � ε, with ε a small
positive constant ideally equal to 0. A measurement in the
computational basis then returns z∗ with the desired value
of α.

Consider the bit string z′ which maximizes the cost in
Eq. (1). A stabilizer state satisfying the conditions discussed
above is

|
 ′〉 = 1√
2

(|z′〉 − |z′〉), (15)
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where z′ is the complement of z′, and we have chosen the state
to be antisymmetric under the Ising symmetry [HC, X ⊗N ] =
0, of the cost Hamiltonian. The state |
 ′〉 is completely deter-
mined by its N stabilizers. One of them is −X1X2X3 . . . XN ,
while the remaining N − 1 ones are of ZZ type and their
signs encode the maximal cut of the graph. In this setting,
an approximation algorithm based on Clifford circuits must
be able to determine an assignment of the signs of the ZZ
stabilizers leading to either z′ or a z∗ with α(z∗) as close to
one as possible.

A. Details of the algorithm

We design ADAPT-Clifford so as to exploit the observa-
tions summarized at the end of Sec. III to prepare a stabilizer
state |
〉 with the general form given in Eq. (15). This is done
in a greedy manner, where after a choice of an initial seed,
at every step the best local update is performed. As such, at
an intermediate step 0 < r � N we label qubits as active and
inactive. A qubit is active if a Pauli gate has been applied
to it, otherwise it is inactive, and a(r) ∈ a(r) and b(r) ∈ b(r)

are indices denoting the positions of “active” and “inactive”
qubits, respectively, and a(r) and b(r) are vectors storing the
positions of all the active and inactive qubits at step r.

ADAPT-Clifford prepares |
〉 starting from the kth qubit
and growing this entangled state qubit by qubit, in such a
way that at step r the state is a product of two parts: an
entangled state of all the |a(r)| active qubits and all the |b(r)|
inactive qubits in the product state |+〉⊗|b(r)|. To specify the
pair (a(r), b(r) ) of qubit indices at each step, we use a “gradi-
ent” criterion similar to that of ADAPT-QAOA. Specifically,
at step r > 2 we compute

g(r)
a(r−1),b(r−1) = −i〈[HC, Za(r−1)Yb(r−1) ]〉r−1

= −
∑

l

ωl,b(r−1)〈Zl Xb(r−1) Za(r−1)〉r−1, (16)

where 〈.〉r−1 = 〈ψr−1|.|ψr−1〉 is taken on the state at step
r − 1. Then we choose the pair of qubits (a(r−1), b(r−1)) that
maximizes g(r)

a(r−1),b(r−1) . The case of r = 1 is special, and we
discuss it below alongside the steps of the algorithm.

ADAPT-Clifford returns a candidate maximal cut z∗ of a
graph G after completing the following N steps:

(0) At step r = 0 we begin by selecting a position k and
preparing the product state

|ψ0〉 = ZkH⊗N |0〉⊗N . (17)

At this point the active and inactive qubits are a(0) = {k} and
b(0) = {1, . . . , N}\{k}.

(1) At step r = 1, given that a(0) = k we can estimate
the largest gradient analytically. In fact, maxb(0) [g(1)

k,b(0) ] =
maxb(0) [ωk,b(0) ], thus the pair we are looking for is the edge
(k, j) of G with

j = argmax
b(0)

[ωk,b(0) ]. (18)

After applying the gate ei π
4 YkZ j , the state is

|ψ1〉 = ei π
4 Z jYk ZkH⊗N |0〉⊗N . (19)

The vectors of active and inactive qubits are updated to a(1) =
{k, j} and b(1) = {1, . . . , N}\{k, j}, respectively.

(2) For r = 2, . . . , N − 1, we find the pair of qubits
(l̃, b(r−1)), with l̃ ∈ {k, j}, which maximizes g(r)

l̃,b(r−1) , apply the

gate ei π
4 Zl̃Yb(r−1) , and update the vectors of active and inactive

qubits. In the case of more than one pair (l̃, b(r−1)) leading to
the same largest value of g(r)

a(r−1),b(r−1) we break the tie arbitrar-
ily.

(3) After all N steps are completed, we perform a mea-
surement in the computational basis. From the output bit
string, zout, we read out the approximate maximal cut of
the graph as (A,A) with A = {zi ∈ zout|zi = 0, i = 1, . . . , N}
and A = {zi ∈ zout|zi = 1, i = 1, . . . , N}.

After the above N steps are completed, the resulting stabi-
lizer state |
〉 encoding the solution has the form

|
〉 =
[

N−1∏
r=2

ei π
4 Zl̃Yb(r)

]
ei π

4 Z jYk ZkH⊗N |0〉⊗N . (20)

While it may seem that restricting the search to pairs of the
form (l̃, b(r−1)) in step 2 may lead to missing the true largest
gradient, in Appendix B we show that this is not the case.
Furthermore, this restriction has a simple interpretation. After
step r = 1, we have effectively selected the edge (k, j) as a
reference with respect to which we are going to partition the
graph. Nodes k and j are thus representatives of the disjoint
subsets of the cut. Thus, from that step onward, we can pick
a(r−1) ∈ {k, j} without loss of generality in order to decide
which qubit to move into the active set, i.e., to include in the
entangled state.

Some further comments are in order: (i) Given the type
of two-qubit gate we are considering, the form of the initial
product state |ψ0〉 is chosen as to guarantee that maxb(0) [g(1)

k,b(0) ]
will be positive. (ii) For r > 1, and independently of the graph
connectivity, not all the terms in the sum in Eq. (16) are
nonzero; in fact, the expectation values in g(r)

a(r−1),b(r−1) become
〈Zl Xb(r−1) Za(r−1)〉r−1 = 〈Zl Za(r−1)〉r−1 and are nonzero only for
those values of l for which either ±ZlZa(r−1) is a stabilizer
of |ψr−1〉. This observation allows us to find the largest
gradient without explicitly computing the expectation values
in Eq. (16), which we show in Appendix C. At the same
time, this observation establishes a direct connection between
ADAPT-Clifford and a family of existing MaxCut euristics
[87,88], as was recently pointed out in Ref. [89]. (iii) The
relevant two-qubit gate can be written in terms of Clifford
gates as

ei π
4 Yl Zm = SlHmCNOTl,mR(l )

x (−π/2)CNOTl,mS†
l Hm, (21)

where the Sl , Hl , are the phase and Hadamard gates acting
on the lth qubit, CNOTl,m is the controlled-NOT gate, with
qubit l and qubit m as control and target qubits, respectively.
Furthermore one can write R(l )

x (−π/2) = HY Z
l Zl with HY Z

l a
variant of the Hadamard gate which swaps the y and z axes.
We work through the operations of our algorithm for two
small examples in Appendix F.

1. A stabilizer perspective on the algorithm

We can gain further understanding of the inner work-
ings of the algorithm by looking at the way the stabilizers
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of the state change from step r = 0 to step r = N − 1.
At step r = 0, the product state |ψ0〉 has N − 1 stabilizers
equal to Xl , l = 1, . . . , N , l �= k and the remaining stabilizer
equal to −Xk . At step r = 1 the action of the gate between
qubits (k, j), with j found as described previously, increases
the weight of the −X stabilizer by one and changes one
of the +X stabilizers by a ZZ stabilizer. The state |ψ1〉
is hence stabilized by −I1 . . . XkIk+1 . . . I j−1Xj . . . IN and
−I1 . . . ZkIk+1 . . . I j−1Zj . . . IN while the remaining N − 2
are still Xl with l �= k, j. This process continues until r =
N − 1; with every new gate the weight of the −X stabilizer
increases by one, and one of the +X stabilizers gets replaced
by a ZZ stabilizer. We see then that the Clifford gate ei π

4 Yl Zm

was not chosen arbitrarily. In fact, ADAPT-QAOA finds it
because it is the gate that maps Xl to ZlZm.

As such we can phrase goal of the algorithm to be the
correct assignment of the signs of the ZZ stabilizers. After all
N − 1 steps are completed, the state |ψN−1〉 has one stabilizer
equal to −X1X2X3 . . . XN and the remaining N − 1 stabilizers
are ZZ with signs that were determined in the previous steps.
If this sign assignment is done correctly, it encodes the ap-
proximate maximal cut produced by the algorithm. One can
read it out directly by setting the value of any spin to either
+1 or −1 arbitrarily and use the measured signs of the ZZ
stabilizers to fix the values of the spins at the other N − 1
positions relative to the first one.

B. Runtime and space complexities

Although finding the qubit with the largest gradient at a
given step does not require the explicit computation of ex-
pectation values of Pauli strings (see Appendix C for details),
it is defined based on a double sum with indices running on
portions of the vertex set. As such, this part of the algorithm
incurs the leading runtime cost.

At step r > 1 and before applying the two-qubit gate, there
are r − 1 active qubits and N − r + 1 inactive qubits. In or-
der to decide on which pair of qubits we act the gate, we
compute Eq. (16) via Eq. (C3) for all pairs (l̃, b(r−1)) where
l̃ ∈ {k, j} and b(r−1) ∈ b(r−1). There are 2(N − r + 1) of those
pairs. For a given pair the sum in Eq. (16) is ∀l such that
(l, l̃ ) ∈ E . However only when l ∈ a(r−1) is the expectation
value 〈ZlX

(r−1)
b Zl̃〉r−1 nonzero. Hence, at step r, there are

δ = min(r − 1, K ) with K the maximum degree of the graph,
nonzero terms in the sum. For bounded-degree graphs, such
as K-regular graphs, δ = O(K ) at most, whereas for dense
graphs with K = O(N ), δ = O(N ).

For a fixed initial position k, the algorithm executes N − 1
steps before reaching a candidate solution. The total number
of nonzero terms involved in the computation of the largest
gradients is

∑N−1
r=2 2(N − r + 1)δ, so we have

2K
N−1∑
r=2

(N − r + 1) = K (N2 − N + 2)

or

2
N−1∑
r=2

(N − r + 1)(r − 1) = 2

3
(N3 − 7N + 6)

for bounded-degree and dense graphs, respectively. Leading
to a run time complexity of O(N2) for bounded degree graphs
and O(N3) for dense graphs.

Since in general the initial position k leading to the best
approximate solution is not known, we propose and explore
two complementary approaches. In the first approach, we
choose the initial position at random. This algorithm, to
which we refer as randomized ADAPT-Clifford, leads to run
time complexities of O(N2) and O(N3) for bounded-degree
and dense graphs, respectively, as described above. Second,
we introduce a deterministic version—deterministic ADAPT-
Clifford—where the best initial position k∗ is determined
by exhaustive search. That is, we run ADAPT-Clifford N
times, each with a different initial position k, and return
the cut of minimal energy found. The runtime complexity
of this deterministic approach is thus O(N3) and O(N4) for
bounded-degree and dense graphs, respectively. Naturally, the
deterministic approach is guaranteed to return solutions of
equal or smaller energy expectation that the randomized ap-
proach, at the cost of a more limiting runtime. Whether there
exist graph families for which any initial position is as good
as any other is a question for future work. Finally, it is easy to
see that for both randomized and deterministic approaches the
space complexity of the algorithm is O(N2), corresponding to
the memory required to store the Tableau.

V. ALGORITHM PERFORMANCE ON WEIGHTED
COMPLETE GRAPHS

We have implemented the ADAPT-Clifford algorithm
using the fast stabilizer circuit simulator Stim [23]. Our imple-
mentation is available at [90]. Although we have chosen this
simulator to implement our algorithm, any stabilizer circuit
simulator which supports interactivity, that is, where expecta-
tion values of Pauli strings can be computed and the circuit
modified according to the results, could be used to implement
the algorithm.

We follow the presentation of Sec. III and discuss sepa-
rately our algorithm’s performance for MaxCut on weighted
complete graphs with positive and signed weights. For the lat-
ter case, we will focus on the Sherrington-Kirkpatrick model.

A. The case of positive weights

The results of Sec. III indicate that the precise choice
of positive weight distribution may be immaterial. We have
verified numerically that this is indeed the case for a few
different weight distributions. In this subsection, we focus
the discussion to ωi, j sampled from U[0, 1] and leave an
exhaustive investigation for future work.

We begin studying the performance of the randomized ap-
proach. We draw a parallel between the random initialization
of ADAPT-Clifford and the rounding step of GW, and thus
assess the performance of the randomized ADAPT-Clifford by
direct comparison with GW. We solved 100 different problem
instances for graph sizes up to N = 1000 with both algo-
rithms. In Fig. 2(a) we show the normalized mean minimum
energy, E[Emin]/N , of the solutions obtained with random-
ized ADAPT-Clifford (green circles) and the ones obtained
with GW (light gray circles). Notice that our randomized
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FIG. 2. Performance of randomized ADAPT-Clifford on
weighted complete graphs. (a) Normalized energy found by
randomized ADAPT-Clifford (green circles) and GW (light
gray circles) averaged over 100 instances. (b) Instance-averaged
minimum energy difference between the solution found with
randomized ADAPT-Clifford and GW as a function of problem size.
Notice that randomized ADAPT-Clifford is almost always superior
to GW. The magenta dotted line indicates a mean energy difference
of zero. We have omitted the error bars for the sake of clarity.

ADAPT-Clifford almost always produces a solution of lower
energy expectation than GW. These observations can be fur-
ther verified with the mean difference of the minimum energy
found, E[ECliff

min − EGW
min ], which we show in Fig. 2(b). Since

our randomized ADAPT-Clifford consistently beats GW, we
expect it to have a performance guarantee for typical instances
of positively weighted complete graphs above that of GW
for the general problem. We discuss the methodology used to
estimate it in Appendix G. We find αr ≈ 0.8986 a value which
confirms our intuition and sets a lower bound for the expected
performance of the deterministic ADAPT-Clifford.

We now focus on the deterministic approach. First, we
benchmark this algorithm for instances with size up to N =
30 for which the exact solution can be found exhaustively.
Figure 3(a) shows the exact approximation ratios α, obtained
for 100 problem instances. For these small problems, our
algorithm performs, on average, above α = 0.997, with the
value of the minimum α increasing as N → 30. We notice
that the number of instances for which our algorithm finds the
exact ground state slightly decreases with the problem size.
The success rate, defined as the number of times the algorithm
finds a cut with energy ECliff

min − EC
min < 10−10, is shown in

Fig. 3(b) as a function of the problem size. We observe a
success rate ∼80% for N = 30.

For problem sizes beyond N = 30, when we cannot access
the exact value of the ground-state energy, we resort to a
direct comparison with the GW algorithm. We find that the
cuts obtained with deterministic ADAPT-Clifford are of supe-
rior quality to those found with the standard GW algorithm.
To obtain a comparison, we thus systematically increase the
number of times I the rounding step is performed in GW
and return the best cut found; see Appendix A for details.
The standard GW algorithm thus corresponds to I = 1. In
Fig. 3(c) we show the normalized mean energies E[Emin]/N
for 60 problem instances up to a problem size of N = 200
produced by our algorithm (orange circles), standard GW
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FIG. 3. (a) Approximation rations α (empty circles) and mean
approximation ratios (orange full circles) of solutions to MaxCut
on 100 weighted complete graphs per graph size found with de-
terministic ADAPT-Clifford. (b) Success rate on the 100 problem
instances per graph size considered in (a). (c) Instance-averaged
minimum energy over 60 problems up to graphs with 200 nodes, both
with our algorithm (orange solid line), with Goemans-Williamson
algorithm (light gray dashed line) and Goemans-Williamson with
I = 105 (black dashed line). The inset shows the mean difference in
the minimum energies found by our algorithm and the GW algorithm
as a function of the problem size and for different values of I. The
magenta dotted line indicates a mean energy difference of zero. In
the inset we have omitted the error bars for the sake of clarity.

(light gray circles), and GW with I = 105 (black circles).
Notice that our algorithm produces cuts which are always, not
merely on average, better than those produced with standard
GW, and only when we reach I = 105 does the GW algorithm
begin to produce a cut whose quality is, on average, superior
to that of the cut produced by our algorithm.

To further verify this observation, the inset of Fig. 3(c)
shows the mean energy difference, E[ECliff

min − EGW
min ],

between the solution found with our algorithm and the
one found with GW, with the magenta dotted line indicating
E[ECliff

min − EGW
min ] = 0, that is, equal quality cuts on average.

It is seen that ADAPT-Clifford performs increasingly better
than GW with fixed I as problem size is increased. To
quantify the approximation quality of ADAPT-Clifford, we
estimate the average approximation ratio of the deterministic
ADAPT-Clifford on this family of graphs to be α = 0.9686;
see Appendix G for details.
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To complement our benchmarks we performed a time to
solution (TTS) study of GW with variable I, randomized
ADAPT-Clifford, and deterministic ADAPT-Clifford, the de-
tails are shown in Appendix D. While Fig. 3(c) shows that
I = 105 rounding steps are needed for the GW algorithm to
match the approximation quality of the deterministic ADAPT-
Clifford for problem sizes up to N = 200, the data in the
inset imply that I may in fact need to scale with N for the
GW algorithm to compete with ADAPT-Clifford. However, in
Appendix D we show that the TTS of GW remains constant
with I up to I = 103 and only slightly increased for larger
values of I, and even at I = 105 the TTS of GW is faster
than deterministic ADAPT-Clifford. In fact, we empirically
verify the O(N3) runtime scaling of GW (see Appendix D and
[24,91] and references therein).

However, we also find an empiric runtime scaling for
randomized ADAPT-Clifford of O(N2.7), indicating an ad-
vantage. The comparison here is more involved, as GW with
I > 101 already produces a better solution than randomized
ADAPT-Clifford. However, the Cholesky decomposition per-
formed as part of GW is usually executed as a multicore
operation in most numerical linear algebra libraries. On the
contrary, our implementation of ADAPT-Clifford runs on a
single core, thus one could then easily improve the quality
of solution without sacrificing the TTS or runtime scaling
by executing the algorithm for different initial position in
parallel. We thus believe this variant of the algorithm does
offer an advantage over GW.

B. Signed weights: The Sherrington-Kirkpatrick model

The Sherrington-Kirkpatrick (SK) model [92] has played a
fundamental role in the advancement of the understanding of
the physics of spin glasses and disordered systems [93–96].
It describes N classical spins with all-to-all couplings of both
ferromagnetic and antiferromagnetic character. The Hamilto-
nian is given by

Hsk = 1√
N

∑
i< j

ωi, jσiσ j, (22)

where σi ∈ {−1, 1} is a classical spin and the couplings ωi, j

are sampled from a distribution with zero mean and unit
variance, for instance, the normal distribution N (0, 1). A
milestone result by Parisi [97,98] gave an explicit expression
for the ground-state energy density of this model in the ther-
modynamic limit, which we refer to as the Parisi value,

lim
N→∞

E

[
E sk

min

N

]
= �∗ = −0.763166 . . . , (23)

where the expectation value is over realizations of the ran-
dom couplings, and E sk

min refers to the ground-state energy of
Hamiltonian in Eq. (22). The most accurate numerical value
of Eq. (23) to date was computed in Ref. [99]. The limit in
the left-hand side of Eq. (23) has been formally shown to both
exist and be equal to the Parisi value [100,101].

Recently the SK model has been used as a benchmark in
the study of quantum approximate optimization algorithms
[9,102,103]. Motivated by these works, we focus our attention
on this model to characterize the performance of our algorithm
on complete graphs with signed weights. A word of caution:

The ADAPT-QAOA solution circuits for the signed case, in-
cluding small instances of the SK model, are not completely
Clifford; see Figs. 1(b) and 1(d) and Sec. III. As such, we
do not expect our algorithm to match the solution quality
of the best classical algorithm due to Montanari [104,105],
which produces a σ∗ with energy below (1 − ε) times the
lowest energy for typical instances, with ε a small positive
constant [106]. Nevertheless, we are interested in seeing how
close the σ∗’s produced by our algorithm get to the Parisi
value, for both the randomized and deterministic variants of
ADAPT-Clifford.

In order to utilize ADAPT-Clifford we promote the clas-
sical spin in Eq. (22) to σi → Zi and use the resulting
Hamiltonian as our cost. Following the presentation of the
previous subsection, we discuss first the performance of the
randomized ADAPT-Clifford. The green circles in the inset of
Fig. 4(c) show E[ Emin

N ] for this algorithm with problem sizes
up to N = 1000. To obtain its value in the thermodynamic
limit we fit the data for N ∈ [40, 1000] to a model of the form
qN−2/3 + �Cliff

ri [107] where �Cliff
ri corresponds to the mean

energy density in the thermodynamic limit obtained with
the randomized ADAPT-Clifford. We find �Cliff

ri ≈ −0.682,
which corresponds to ∼89% of the Parisi value [black star in
inset of Fig. 4(c)]. This value is below what is obtained with
convex relaxation methods, for instance, semidefinite pro-
gramming, which is known to give E[ Emin

N ] = − 2
π

+ o(1) ≈
−0.6366 with o(1), a number which vanishes for N → ∞
[108,109]. For comparison we display E[ Emin

N ] = − 2
π

as the
horizontal dotted line both in the inset and in Fig. 4(c).

Let us now consider the deterministic ADAPT-Clifford.
For small problems N ∈ [10, 30] we computed the exact ap-
proximation ratios α over 100 problem instances, and show
them as empty circles in Fig. 4(a). Notably we do not observe
α < 0.94 for any instance, and the average over instances
is always above α > 0.997. To complement this observation
we compute the success rate, defined as the number of in-
stances for which the difference ESK

min − ECliff
min < 10−10. These

are shown in Fig. 4(b) with the smallest one being ∼82% at
N = 30.

To fully explore the performance of the deterministic
ADAPT-Clifford algorithm, we solve 100 instances for prob-
lems up to N = 200. The normalized energies ECliff

min /N are
shown as empty circles in Fig. 4(c) for all the instances con-
sidered, the red full circles show the respective E[ECliff

min ]/N ,
and the error bars correspond to the standard deviation of the
normalized energies. To assess the quality of the solutions
found we consider the data in the interval N ∈ [40, 200]
and fit it to a model of the form qN−2/3 + �Cliff with �Cliff

the estimated mean energy density in the thermodynamic
limit of the solutions found by our algorithm. In particular for

N = 200 we find E[ ECliff
min
N ] ≈ −0.727 . . . and from the linear fit

we find �Cliff ≈ −0.7409 . . ., shown by a red star in Fig. 4(c).
These values correspond to ∼94% and ∼97% of the Parisi
value, respectively (the latter is shown with a black star in
Fig. 4 c). These values are below what is obtained with convex
relaxation methods [horizontal dotted line in Fig. 4(c)].
Notably, the value reached by our algorithm for N = 200 is
already better than what can be obtained with zero-
temperature simulated annealing which gives E[ Emin

N ] ∼ −0.71
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FIG. 4. (a) Approximation rations α (empty circles) and mean
approximation ratios (red full circles) of deterministic ADAPT-
Clifford for 100 different disorder realizations of the SK model per
system size. (b) Success rate on the 100 problem instances per graph
size considered in (a). (c) Ground-state energy density for each of
the 100 problem instances (empty circles) per problem size up to
N = 200, and their mean (full circles). The dashed-dotted line shows
the best linear fit and the red star the respective mean energy density
in the thermodynamic limit. The inset shows the average ground-
state energy density up to N = 1000 as obtained with randomized
ADAPT-Clifford, with its corresponding linear fit (see main text)
and the value in the thermodynamic limit (green star). The gray
dotted line shows the mean energy density obtained with semidefinite
programing, and the black star shows the Parisi value �∗.

(as quoted in Ref. [102]), and �Cliff is comparable to what
is achievable with simulated annealing on large problem
instances.

VI. ALGORITHM PERFORMANCE ON OTHER
FAMILIES OF GRAPHS

In this section, we characterize the performance of
ADAPT-Clifford in both its variants for the MaxCut problem
on K-regular graphs (unweighetd and weighted) and un-
weighted Erdős-Rényi graphs with various edge probabilities.
For the randomized ADAPT-Clifford, we directly compare
the quality of the cuts found with standard GW, while for
determinisitic ADAPT-Clifford we discuss the exact approx-
imation ratios for small problems and compare against GW

with variable I, the number of time the rounding step is
performed.

A. Performance on K-regular graphs

We consider 3-regular and 8-regular graphs, unweighted
and weighted. In all cases edge weights are sampled from
U[0, 1].

In Figs. 5(a)–5(c) we show the normalized instance-
averaged minimum energy of the solutions found with
randomized ADAPT-Clifford and standard GW. For large
(N > 200) unweighted 3-regular graphs, GW finds better
solutions, on average, than randomized ADAPT-Clifford;
see Fig. 5(e). The situation is markedly reversed with
the inclusion of nontrivial edge weights, with randomized
ADAPT-Clifford outperforming standard GW [see Fig. 5(b)],
and the performance margin widens with increased con-
nectivity [see Fig. 5(c)]. These observations are verified
with the averaged minimum energy differences shown in
Figs. 5(f) and 5(g) for weighted 3- and 8-regular graphs,
respectively. Thus, GW performs better than randomized
ADAPT-Clifford only for unweighted 3-regular graphs, while
the comparative performance of our algorithm consistently
improves with both the inclusion of edge weights and higher
connectivity.

We now move to the performance of deterministic ADAPT-
Clifford. In Fig. 6(a) we show the mean approximation
ratios over 100 problem instances for each of these types
of graphs. For the unweighted 3-regular graphs we consider
problem sizes N ∈ [10, 28] and for the weighted problems
we consider problem sizes N ∈ [12, 28]. We have omitted
the error bars from the figure for the sake of clarity. Deter-
ministic ADAPT-Clifford shows the poorest performance for
unweighted 3-regular graphs, circles in Fig. 6(a), with a de-
creasing mean α as N increases. Interestingly the comparative
performance of ADAPT-Clifford improves upon inclusion of
edge weights, diamonds in Fig. 6(a), with a mean α above
0.995 for all problem sizes considered. Further improved
performance is observed with higher edge connectivity, as
evidence by the mean approximation ratio for weighted 8-
regular graphs [squares in Fig. 6(a)]. In Fig. 6(b) we show
the success rate of the algorithm, i.e., the number of times
ADAPT-Clifford found the maximal cut. The 3-regular graphs
(unweighted and weighted) show a success rate which consis-
tently decay with problem size. On the contrary for weighted
8-regular graphs our algorithm shows a success rate above
90% up to N = 28.

For larger problem sizes, we compare the solution qual-
ity of deterministic ADAPT-Clifford with that of GW with
variable I (I = 1 is the standard GW algorithm). Fig-
ures 7(a)–7(c) show the normalized mean minimum energy
E[Emin]/N for the K-regular graphs studied. Notably, deter-
ministic ADAPT-Clifford produces solutions of lower energy
than GW for all three graph ensembles under consideration;
compare the colorful markers with the light gray mark-
ers in Figs. 7(a)–7(c). For the unweighted 3-regular graphs,
Fig. 7(a), already at I = 10 GW consistently finds a cut of
lower energy than deterministic ADAPT-Clifford, signaling
a reduced performance of the latter method compared to the
case of weighted complete graphs. This observation can be
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FIG. 5. Performance of randomized ADAPT-Clifford vs GW. (a)–(d) Normalized instance-averaged minimum energy found with random-
ized ADAPT-Clifford (colorful markers and solid lines) and standard GW (light gray markers and dashed lines). The different graph types
studied are (a) unweighted 3-regular graphs, (b) weighted 3-regular graphs, (c) weighted 8-regular graphs, and (d) unweighted Erdős-Rényi
graphs with edge probability 1/2. For the weighted case we take ωi, j in U[0, 1]. (e)–(h) Instance-averaged minimum energy differences
between the solutions found with ADAPT-Clifford and standard GW for (e) unweighted 3-regular (circles), (f) weighted 3-regular (diamonds),
(g) weighted 8-regular (squares), and (h) Erdős-Rényi with edge probability 1/2 (x’s). The magenta dotted line indicates equal energy of the
solutions found on average. We have omitted the error bars to avoid saturating the figure. All averages were computed over 100 randomly
generated instances.
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FIG. 6. (a) Instance-averaged approximation ratios up to N = 28
for 100 different instances of: unweighted 3-regular graphs (circles),
weighted 3- (diamonds) and 8-regular graphs (squares) with ωi, j ∈
U[0, 1], and Erdős-Rényi graphs with edge probability 1/2 (x’s). We
have omitted the error bars for clarity. (b) Success rate for each of
the problem sizes and graph types considered in (a).

further verified with the mean difference of the minimum
energy found, E[ECliff

min − EGW
min ], shown in Fig. 7(e).

Similarly to its randomized counterpart, deterministic
ADAPT-Clifford performs more competitively when edge
weights are included. In Fig. 7(b) we show the E[Emin]/N
obtained with our algorithm (red diamonds), GW (light gray
diamonds), and GW with I = 103 (black diamonds), for the
weighted 3-regular graphs. Further inspection of the corre-
sponding E[ECliff

min − EGW
min ], shown in Fig. 7(f), shows that at

least I = 102 are necessary for the GW solution to be, on
average, superior to that found by our algorithm. The per-
formance margin widens as we move to regular graphs with
higher connectivity. Figure 7(c) shows E[Emin]/N obtained
with deterministic ADAPT-Clifford (orange squares), stan-
dard GW (light gray squares), and GW with I = 103 (black
squares), for weighted 8-regular graphs. After inspecting the
E[ECliff

min − EGW
min ] in Fig. 7(g) we observe that I = 104 is

necessary for the GW solution to be consistently better than
the deterministic ADAPT-Clifford solution. Thus, for sparse
graphs the performance of both randomized and deterministic
ADAPT-Clifford improves with the inclusion of edge weights
and/or higher node connectivity.

B. Performance on unweighted Erdős-Rényi graphs

We now wish to characterize the performance of ADAPT-
Clifford for MaxCut on dense graphs with variable density.
For this task we will focus on unweighted Erdős-Rényi
graphs.

First, we fixed the edge probability to 1/2 and study the
performance with respect to the problem size. In Fig. 5(d)
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FIG. 7. (a)–(d) Normalized instance-averaged minimum energy found over 100 instances for problem sizes up to N = 100 and different
graph types obtained with deterministic ADAPT-Clifford (colored markers and solid lines), with standard GW (light gray markers and dashed
lines), and GW with I = 103 (dark gray markers and dashed lines). The different graph types studied are (a) unweighted 3-regular graphs,
(b) weighted 3-regular graphs, (c) weighted 8-regular graphs, and (d) unweighted Erdős-Rényi graphs with edge probability 1/2. For the
weighted case we always take ωi, j in U[0, 1]. (e)–(h) Instance-averaged minimum energy differences between the solutions found with our
algorithm and the solution found with GW with different values of I. For the graph types: (e) unweighted 3-regular (circles), (f) weighted
3-regular (diamonds), (g) weighted 8-regular (squares), and (h) Erdős-Rényi with edge probability 1/2 (x’s). As a reference the the magenta
dotted line indicates equal energy of the solutions found on average. We have omitted the error bars for clarity.

we show the instance-averaged minimum energy of solutions
obtained with randomized ADAPT-Clifford (green) and
standard GW (light gray). For graphs up to N = 1000. The
randomized version of our algorithm produces better solu-
tions, on average, than GW, an observation that is verified by
the instance-averaged minimum energy differences shown in
Fig. 5(h).

Next, we analyze the performance of the deterministic
ADAPT-Clifford on small problems N � 28. Figures 6(a) and
6(b) show mean approximation ratios x’s), which are above
α ∼ 0.997, and success rates, respectively. Notably, determin-
istic ADAPT-Clifford shows a higher success rate for this
family of graphs, finding the maximal cut on all instances con-
sidered for the sizes N = 10, 12 (whereas it only achieves the
same for the 19 nonisomorphic 3-regular graphs at N = 10).
For larger problems, in Fig. 7(d) we compare the normalized
instance-averaged minimum energy found by our algorithm
(orange solid line), standard GW (light gray dashed line), and
GW with I = 103 (black dashed line). Our algorithm (orange)
finds a solution of lower energy, on average, than that found
with GW (light gray). We explore the extent of this advantage
by inspecting the mean difference of the minimum energy
found, E[ECliff

min − EGW
min ], as a function of N and with I as a

control parameter. The results are shown in Fig. 7(h). It is
seen that only at I = 104 are the GW solutions consistently
of lower energy than those found by deterministic ADAPT-
Clifford.

Now we turn our attention to benchmarking both the
randomized and deterministic ADAPT-Clifford on Erdős-
Rényi graphs with varying edge inclusion probability. We
focus on problems with N = 120 and consider edge prob-
abilities in [0.1, 0.9]. We solve 100 problem instances of
MaxCut per edge inclusion probability. In Fig. 8(a) we show
the normalized mean energies found with the randomized
ADAPT-Clifford (green) and with standard GW (light gray).
Our randomized algorithm returns, on average, a cut of better
quality than GW [see also instance-averaged minimum energy
differences in Fig. 8(b)]. The normalized mean energies of the
solutions found with deterministic ADAPT-Clifford (orange)
are shown in Fig. 8(c), alongside those for standard GW (light
gray), and GW with I = 104 (black). With the exception of
edge probabilities smaller than 0.15 and larger than 0.85, the
solutions found by our algorithm are always, not merely on
average, better than the ones found with GW, with the largest
advantage observed for edge probabilities around 1/2. Only at
I ∼ 104 does GW produce solutions on average comparable
to those found by ADAPT-Clifford. This is seen more clearly
in the instance-averaged energy difference of the solutions
found E[ECliff

min − EGW
min ], shown in Fig. 8(b). Only at I = 104

do we find E[ECliff
min − EGW

min ] ∈ (0, 0.5] for all edge probabil-
ities, indicating our algorithm no longer offers an advantage
over GW.

The results discussed here suggest that ADAPT-Clifford
offers an advantage over GW on the quality of the cut found
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FIG. 8. (a) Normalized instance-averaged minimum energy of
the solutions found with randomized ADAPT-Clifford (green) and
GW (light gray). (b) Instance-averaged minimum energy differences
between the solutions found with our algorithm and the solution
found with GW. (c) Normalized instance-averaged minimum energy
of the solutions found with the deterministic ADAPT-Clifford (or-
ange), standard GW (light gray), and GW with I = 104 (black),
as a function of the edge probability which we take in [0.1, 0.9].
(d) Instance-averaged minimum energy differences between the solu-
tions found with our algorithm and the solution found with GW with
different values of I, as a function of edge probability. The magenta
dotted line indicates mean energy difference of zero. The averages
are taken over 100 different problem instances and for N = 120.

for dense graphs, with the largest gap for graphs with density
∼1/2.

VII. DISCUSSION AND OUTLOOK

We introduce ADAPT-Clifford, a quantum-inspired classi-
cal approximation algorithm for MaxCut. For each problem
instance, ADAPT-Clifford builds a low-depth Clifford cir-
cuit to prepare a stabilizer state that encodes an approximate
solution. The algorithm was inspired by observation of the
(almost) Clifford character of the ADAPT-QAOA solution
circuits for MaxCut on weighted fully connected graphs. A
comparison between the two methods and resource estimates
for ADAPT-Clifford is given in Appendix E. We introduce
a randomized and a deterministic variant of this algorithm.
Their respective runtime complexities are O(N2) and O(N3)
for sparse graphs, and O(N3) and O(N4) for dense graphs,
and in all cases the space complexity is O(N2). Naturally,
the deterministic variant always outperforms the randomized
variant, albeit at the cost of an increased runtime.

We have studied the performance of ADAPT-Clifford on
MaxCut for various families of graphs, both dense and sparse,
and both unweighted and weighted. On weighted complete

graphs with positive weights, ADAPT-Clifford finds very high
quality cuts, reaching the absolute maximum in the major-
ity of small instances. Moreover, the algorithm is scalable,
allowing us to easily find solutions for instances with up to
1000 nodes. ADAPT-Clifford also performs well for signed
weights, finding good approximations to the ground state of
the SK model with an energy that extrapolates to 97% of the
Parisi value in the thermodynamic limit. To investigate perfor-
mance as a function of density, we applied ADAPT-Clifford to
MaxCut on unweighted Erdős-Rény graphs with variable edge
inclusion probability. We again find that ADAPT-Clifford
finds the absolute maximum cut for the majority of small
instances and easily scales to hundreds of nodes. Finally,
we study the performance of ADAPT-Clifford for sparse
graphs. Even though these graphs are far from the context
that gave rise to the algorithm, we find that ADAPT-Clifford
still performs well, producing the absolute maximum cut
with high probability for small instances and easily scaling
to 1000 nodes. Only for the case of 3-regular graphs, the
sparsest category of graphs we studied, do we observe a no-
ticeable deterioration in solution quality with increasing size.
Counter-intuitively, performance improves somewhat with the
inclusion of edge weights.

To assess the performance of ADAPT-Clifford for large
problem instances whose exact solution is intractable, we
compare its performance with the GW algorithm, which rep-
resents the state of the art in approximate solution of MaxCut.
For all graph families studied, ADAPT-Clifford outperforms
the standard GW algorithm in the quality of the cut found.
Only for very sparse unweighted graphs, such as 3-regular
graphs, does the performance of the GW algorithm become
comparable to that of ADAPT-Clifford, but even in this
case the inclusion of edge weights favors the latter. Finally,
ADAPT-Clifford solves problems to which the GW algorithm
is not directly applicable, as exemplified by our results on the
SK model.

The Clifford or near Clifford character of the ADAPT-
QAOA solution circuits is a key observation which was
missed in previous work [61]. This observation, as laid out in
Sec. III, allowed us to devise a quantum-inspired, polynomial-
time approximation algorithm for MaxCut. While it is known
that MaxCut on dense graphs admits polynomial time approx-
imation schemes (PTASs), leading to approximated solutions
which are 1 − ε away from the optimum in time polynomial
in N [44,45], the scaling of the runtime as a function of ε may
render these algorithms impractical. In contrast, in this work
we showed empirically that ADAPT-Clifford performs bet-
ter than an algorithm that offers a guaranteed approximation
ratio. Notably, based on the gradient criteria used as update
rule in ADAPT-Clifford a connection between this algorithm
and a family of heuristics for the MaxCut problem, known as
Sahni-Gonzales algorithms [87,88], can be established, as was
recently pointed out in Ref. [89]. It is remarkable to see that
when ADAPT-QAOA performs best, the adaptive approach
builds solution circuits which share this property with well-
known classical heuristics.

We hope the results reported here will help delimit the sub-
set of graphs where a quantum speedup could be expected and
thus where the current efforts should focus, in similar spirit to
previous results obtained with a different subuniversal family
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of gates [110]. While our work indicates that ADAPT-Clifford
has a guaranteed approximation ratio, we do not yet have a
proof. Our algorithm showed the poorest performance on fully
connected graphs with signed weights. This was anticipated
in Sec. III since the ADAPT-QAOA solution circuits are not
fully Clifford. However, they are near-Clifford, motivating
then a resource-centered design of variational ansätze, with
a Clifford mixer part constructed following a scheme like the
one introduced in this work, similar in spirit to the optimal
mixers restricted to subspaces [111], and a cost part with
few variational parameters adding just the right amount of
non-Cliffordness necessary to approximate the problem up
to a desired ratio. Furthermore our algorithm could aid in
reducing the cost of parameter optimization in QAOA when
used to warm start [112] it. More broadly, Clifford circuits
can be leverage to construct a framework for the efficient
state initialization in variational quantum algorithms beyond
the product state paradigm. An example of this applied to
quantum chemistry problems was introduced in Ref. [113].
Finally, our Clifford algorithm was tailored to solve the Max-
Cut problem. It remains an open question to what extent other
combinatorial optimization problems admit Clifford approxi-
mation algorithms with practical polynomial runtimes.
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APPENDIX A: THE GOEMANS-WILLIAMSON
ALGORITHM

Suppose we are interested in solving the MaxCut problem
for some given graph G = (V, E ) of N nodes and edge weights
ωi, j using the Goemans-Williamson algorithm [24,25]. To do
so one proceeds as follows:

(1) Relax the binary character of the variables in the op-
timization problem defined by the cost function in Eq. (1),
that is, replace the zi ∈ {0, 1} with unit vectors yi ∈ RN and
the product ziz j with the inner product yT

i y j with T the trans-
pose. The new cost function

∑
i, j<i ωi, j (1 − yT

i y j ) with the
constraints yT

i yi = 1, Ỹ = [yT
i y j] is positive semidefinite and

defines a semidefinite program.
(2) Solve the semidefinite program using a polynomial

time algorithm, and find an optimal solution Ỹ ∗ for the relaxed
problem.

(3) Rounding: Choose a random vector r ∈ RN from a
Gaussian distribution, and for all i define hi = sgn(rT y∗

i ),
where sgn(x) is the sign function. This assignment defines a
partition of the nodes in two disjoint sets A = {i|hi = 1} and
A = {i|hi = −1}.

(4) Return the cut (A,A).
In this form the algorithm only performs the rounding, step

(3), a single time based on a single random vector r. As such, a
simple improvement consists of repeating this step I times for
different random vectors and then returning the cut of largest
cost among all the cuts found. We have used this approach in
comparing our algorithm with GW.

All the results for the GW algorithm reported in this paper
have been obtained using a freely available Julia implementa-
tion [114].

APPENDIX B: VALIDITY OF THE SEARCH THROUGH
A RESTRICTED SET OF PAIRS

In step (2) of ADAPT-Clifford in Sec. IV, we restricted our
search to pairs of the form (l̃, b(r−1)) with l̃ ∈ {k, j} and (k, j)
is the edge where the first two-qubit gate was applied, and
b(r−1) ∈ b(r−1). In this Appendix we show than in doing so we
do not miss the value of the largest gradient.

At step r > 1 the gradient is of the form

g(r)
a(r−1),b(r−1) = −

∑
l

ωl,b(r−1)〈Zl Xb(r−1) Za(r−1)〉r−1

= −
∑

l

ωl,b(r−1)〈Zl Za(r−1)〉r−1, (B1)

where we have used the fact that Xb(r−1) |ψr−1〉 = |ψr−1〉 since
b(r−1) is inactive. The maximum of Eq. (B1) happens at the
pair (a(r−1), b(r−1)) such that the number of l’s, with l ∈
a(r−1), for which −Zl Za(r−1) |ψr−1〉 = |ψr−1〉 is the largest.

Now consider the situation of interest where we search for
the pair to apply the gate among those of the form (l̃, b(r−1)),
and suppose we know that the maximum of Eq. (B1) occurs
at the pair (ã, b̃) with ã ∈ a(r−1) and b̃ ∈ b(r−1). Then

g(r)
ã,b̃

=
∑

l

ωl,b̃〈−Zl Zã〉r−1 =
∑

l

ωl,b̃〈−ZlZl̃ Zl̃Zã〉r−1, (B2)

where we introduced an identity Il̃ = Zl̃Zl̃ .
Since ã is active and −ZkZ j |ψr−1〉 = |ψr−1〉 we can always

pick the value of l̃ ∈ {k, j} such that ZãZl̃ |ψr−1〉 = |ψr−1〉.
Thus, we can extend Eq. (B2) to the following chain of equal-
ities:

g(r)
ã,b̃

=
∑

l

ωl,b̃〈−Zl Zl̃Zl̃Zã〉r−1 =
∑

l

ωl,b̃〈−Zl Zl̃〉r−1 = g(r)
l̃,b̃

.

(B3)

We see then that the largest gradient does live within the
restricted set of pairs of the form (l̃, b(r−1)).

APPENDIX C: GRADIENT COMPUTATION WITHOUT
EXPLICIT EVALUATION OF THE EXPECTATION VALUES

As mentioned in step 2 of our algorithm description, from
r > 1 onwards we select the qubit b(r) ∈ b(r) with the largest
gradient with either {k, j} and move it to the active set. The
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gradient is thus

g(r)
l̃,b(r−1) = −

∑
l

ωl,b(r−1)〈Zl Xb(r−1) Zl̃〉r−1, (C1)

where l̃ ∈ {k, j}. Since b(r−1) is an inactive qubit
Xb(r−1) |ψr−1〉 = |ψr−1〉. Further, as was pointed out in Sec. IV
only those terms for which l ∈ a(r−1) are nonzero. We write
the gradient as

g(r)
l̃,b(r−1) = −

∑
l∈a(r−1)

(l,b(r−1) )∈E

ωl,b(r−1)〈Zl Zl̃〉r−1. (C2)

Further note that the active qubits carry an additional label, in-
dicating whether the qubit became active after being entangled
with k or with j. This label allows us to write the active qubits
as a(r) = V (r)

k ∪ V (r)
j with V (r)

k ∩ V (r)
j = ∅. Consider an inac-

tive qubit at step r − 2; importantly if it becomes active after
being entangled with k, then the stabilizer generator at its posi-
tion, Xb(r−2) , changes to e−i π

4 Yb(r−2) Zk Xb(r−2) ei π
4 Yb(r−2) Zk = ZkZb(r−2) .

Since −ZkZ j is a stabilizer of the state, then −ZjZb(r−2) also
stabilizes the state. Similarly, if the qubit becomes active after
being entangled with j, then after application of the respective
two-qubit gate, the state is stabilized by both ZjZb(r−2) and
−ZkZb(r−2) . With these expressions we can immediately write
the gradient as

g(r)
k,b(r−1) = −

∑
l∈V(r−1)

k
(l,b(r−1) )∈E

ωl,b(r−1) +
∑

l∈V(r−1)
j

(l,b(r−1) )∈E

ωl,b(r−1) , (C3)

and g(r)
j,b(r−1) = −g(r)

k,b(r−1) . We thus see that the computation of
the gradient does not require the explicit computation of the
expectation values seen in Eq. (16).

We would like to point out that the explicit form of the
gradient in Eq. (C3) establishes a connection with a family
of heuristic algorithms for MaxCut known by the name of
Sahni-Gonzalez [87,88]. This connection was recently studied
in Ref. [89].

APPENDIX D: TIME TO SOLUTION ANALYSIS:
ADAPT-CLIFFORD VS GOEMANS-WILLIAMSON

In order to complete the comparison between the per-
formance of ADAPT-Clifford and GW, we conducted a
time-to-solution (TTS) analysis. This study was carried out
on an Apple M1 Pro laptop with eight cores. We focused on
the case of weighted complete graphs studied in Sec. V A,
and compared our Python-based implementation of ADAPT-
Clifford available at [90] against the freely available Julia
implementation of GW for the MaxCut problem [114]. Since
the TTS of deterministic ADAPT-Clifford can be easily de-
termined as one order of magnitude larger than that of
randomized ADAPT-Clifford, we restricted the TTS study to
the latter variant of our algorithm. For the GW we restricted
ourselves to consider the situations of only I = 100 and I =
105, the two extreme values taken for the results in Sec. V A.

The results are shown in Fig. 9. Several observations are in
order. The TTS of GW shows a relative slow increase with
system size for small problems, until about N ∼ 300 after
which the familiar O(N3) scaling is observed. Additionally,
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FIG. 9. (a) Problem instance-averaged time to solution for ran-
domized ADAPT-Clifford (orange solid line) and GW with I =
100, 105 (dashed light gray and black), for the weighted complete
graphs considered in Fig. 2. (b) Time to solution of GW as a function
of the number of times the rounding step I is performed. Results
are shown for three different system sizes, N = 300, 400, 500 from
bottom to top, respectively. The empty circles correspond to all the
individual TTS for the different 100 problem instances solved per
problem size, the full circle to the mean TTS, and the error bars
showing the standard deviation. The dashed lines are guides for the
eye.

we do not find a strong dependence of the TTS with I; in
fact, for the problem sizes considered in this work, i.e., up
to N = 1000, the TTS does not increase with I as this is
not bigger than O(102); see Fig. 9(b). When the value of
I exceeds this threshold, we do observe an increase in the
runtime albeit not a considerable one. As such, deterministic
ADAPT-Clifford will be superior in both solution quality and
TTS only up to N = 30.

For randomized ADAPT-Clifford the TTS is always better
than GW; see Fig. 9(a). In fact, we empirically find a more ad-
vantageous scaling of O(N2.7) when contrasted to the O(N3)
found in the same manner for GW. However, this makes the
comparison considerably more subtle. Although the quality
of solution found by GW is already better than randomized
ADAPT-Clifford when I > 10, GW relies on a Cholesky
decomposition which has highly optimized numerical sub-
routines that exploit the multicore nature of modern CPUs.
However, randomized ADAPT-Clifford is based on STIM and
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thus runs on a single core. One could then easily improve
the quality of solution without sacrificing the TTS or runtime
scaling by executing the algorithm for different initial position
in parallel. We thus believe that this variant of the algorithm
does offer an advantage over GW.

APPENDIX E: RESOURCE ESTIMATES
FOR ADAPT-CLIFFORD

As mentioned in Sec. VII one might wonder how ADAPT-
Clifford compares with ADAPT-QAOA, and what would be
the resource demands to implement ADAPT-Clifford on a
near-term device. In this Appendix we explore these two
questions.

Given the computational cost of directly simulating
ADAPT-QAOA we restrict the comparison to small problem
instances, such as those solved in Fig. 1. As we observed in
Sec. III, the best performing ADAPT-QAOA solution circuits
are very close to Clifford. In this sense, the performance,
quantified by the approximation ratio, of both ADAPT-QAOA
and ADAPT-Clifford, for these small problem instances, must
be the same. Now, if the comparison is extended to other met-
rics, for instance, number of layers or steps, cost of parameter
optimization, or cost of gradient evaluation, then ADAPT-
Clifford will be best.

In order to see this we will show that ADAPT-Clifford
can be directly obtained from ADAPT-QAOA by systemati-
cally reducing the ansatz expressivity. We start from the full
ADAPT-QAOA ansatz in Eq. (7), and use the observations
summarized at the end of Sec. III to systematically reduced the
ansatz expressivity. First, we start from the state ZkH⊗N |0〉⊗N

where k is chosen randomly. Second, we set all γl = 0 and
the βl = −π/4, this guarantees the resulting circuit to be
Clifford. Third, we restrict the operator pool in Eq. (9) to
POP = {YlZm, ZlYm} j,k=1,...,N, j �=k,, where one of the two in-
dices is fixed by our choice of k. Fourth, we use the gradient
Criteria to select the mixer Hamiltonian at any intermediate
step.

The above algorithm is a direct simplification of the full
ADAPT-QAOA ansatz, and although it is different from the
algorithm presented in Sec. IV, it already allows us to see
why ADAPT-Clifford is a more efficient algorithm. First,
the gradient evaluation is highly simplified by the reduction
of the operator pool size. Second, the need for parameter
optimization is bypassed. Third, the restriction to Clifford
unitaries enables efficient classical simulation. Finally, for
ADAPT-Clifford we showed in Appendix C that the gradient
evaluation can be done without the need for explicit eval-
uation of expectation values, which further speeds up the
algorithm.

Let us now focus on the second question. We based the
resource estimation on the CNOT count. First, let us con-
sider a qubit chip with all-to-all connectivity. In this case,
and given the gate shown in Eq. (21), it is easy to see
that the total number of CNOT gates required to run the cir-
cuit is 2N , with N the number of nodes in the problem
graph.

Consider now the opposite case, a qubit architecture with
only linear connectivity. In order to apply a CNOT between
two qubits at arbitrary positions, say, l and m, we bring the
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FIG. 10. (a), (d) Example graphs with N = 5 and N = 4 nodes,
respectively. (b), (e) Partitioned graphs according to the cuts pro-
duced by our algorithm, different colors denote the nodes in each
of the disjoint subsets. (c), (f) Approximation ratios of the states
produced by our algorithm in the search process for the maximal
cut of the graphs shown in (a) and (d). In both cases the algorithm
reaches approximation ratio of 1, indicating a maximal cut has been
found.

second qubit m to l + 1 using a swap network, then apply the
Clifford gate, and swap the second qubit back to its original
position m. In the following we use the fact that a swap can be
implemented with three CNOT gates. Further, we assume that
the two reference qubits, k and j, are on opposite ends of the
chain, thus |k − j| = N − 1, and implementing the entangling
Clifford gate between these two qubits requires 6(N − 2) + 2
CNOT gates. Finally, we assume the worst scenario in terms of
separation between the qubits, where the entangling Clifford
gates need to be applied between the reference qubit and the
qubit which is farthest from it, among those inactive. Thus, the
rest of the N − 2 steps can be implemented using 2(N − 2) +
6
∑N−3

s=0 s = 3(N − 3)(N − 2) + 2(N − 2) CNOT gates, which
leads to a total CNOT count of 2 + (N − 2)[3(N − 3) + 8].

APPENDIX F: SOME EXPLICIT EXAMPLES
OF ADAPT-CLIFFORD SOLVING MaxCut

In this Appendix, we go over the full analytical calculation
of the steps involved in solving MaxCut using the algorithm
introduced in Sec. IV for two small graphs with N = 4, 5
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nodes. In order to keep the expressions clean we have decided
to focus on the case of unweighted graphs.

1. Example with N = 5 nodes

Consider the unweighted graph with five nodes shown in
Fig. 10(a). Its adjacency matrix is given by

[ωi, j] =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 1 1 0
0 1 0 1 1
0 1 1 0 1
1 0 1 1 0

⎞
⎟⎟⎟⎟⎠. (F1)

We will solve MaxCut on this graph using our algorithm. We
begin by flipping the state of the qubit at k = 2; thus we have

|ψ0〉 = | + − + ++〉, (F2)

where |+〉 = H|0〉 and |−〉 = ZH|0〉 are the eigenstates of the
Pauli-x operator corresponding to eigenvalues +1 and −1,
respectively. At this point we have to initialize the records
of active and innactive qubits, which we identify by their
respective indices. The active qubits are [2] and the inactive
qubits are [1,3,4,5].

Given our choice of initial position, we have that g(1)
1,2 =

g(1)
2,3 = g(1)

2,4 = 1 and they are the largest “gradients.” We break
this tie arbitrarily and chose the pair of qubits (2,4). Then

|ψ1〉 = ei π
4 Y2Z4 |ψ0〉 = 1√

2
[| + − + ++〉 − | + + + −+〉],

(F3)

and the records of the active and inactive qubits are updated to
be [2,4] and [1,3,5], respectively. The second set of gradients
is given by

g(2)
1,2 = −

∑
l=2,5

〈ZlX1Z2〉

= −〈X1〉 − 〈Z5X1Z2〉
= −1 + 0 = −1, (F4a)

g(2)
3,2 = −

∑
l=2,4,5

〈Zl X3Z2〉

= −〈X3〉 − 〈Z4X3Z2〉 − 〈Z5X3Z2〉
= −1 + 1 + 0 = 0, (F4b)

g(2)
5,2 = −

∑
l=1,3,4

〈Zl X5Z2〉

= −〈Z1X5Z2〉 − 〈Z3X5Z2〉 − 〈Z4X5Z2〉
= 0 + 0 + 1 = 1, (F4c)

g(2)
1,4 = −

∑
l=2,5

〈ZlX1Z4〉

= −〈Z2X1Z4〉 − 〈Z5X1Z4〉
= 1 + 0 = 1, (F4d)

g(2)
3,4 = −

∑
l=2,4,5

〈Zl X3Z4〉

= −〈Z2X3Z4〉 − 〈X3〉 − 〈Z5X3Z4〉
= 1 − 1 + 0 = 0, (F4e)

g(2)
5,4 = −

∑
l=1,3,4

〈Zl X5Z4〉

= −〈Z1X5Z4〉 − 〈Z3X5Z4〉 − 〈X5〉 = −1, (F4f)

and the largest gradients are g(2)
5,2 and g(2)

1,4. Since they are equal,
we break the tie arbitrarily and chose the pair of qubits (1,4).
Thus, the state at step r = 2 is given by

|ψ2〉 = ei π
4 Y1Z4 |ψ1〉

= 1
2 [| + − + + + +| − − + −+〉
− | + + + −+〉 − | − + + ++〉]. (F5)

After the application of the gate we update the records of
active and inactive qubits, which now are [1,2,4] and [3,5],
respectively. The third set of gradients is given by

g(3)
3,1 = −

∑
l=2,4,5

〈ZlX3Z1〉

= −〈Z2X3Z1〉 − 〈Z4X3Z1〉 − 〈Z5X3Z1〉
= 1 − 1 + 0 = 0, (F6a)

g(3)
5,1 = −

∑
l=1,3,4

〈ZlX5Z1〉

= −〈X5〈−〈Z3X5Z1〉 − 〈Z4X5Z1〉
= −1 + 0 − 1 = −2, (F6b)

g(3)
3,2 = −

∑
l=2,4,5

〈ZlX3Z2〉

= −〈X3〉 − 〈Z4X3Z2〉 − 〈Z5X3Z2〉
= −1 + 1 + 0 = 0, (F6c)

g(3)
5,2 = −

∑
l=1,3,4

〈ZlX5Z2〉

= −〈Z1X5Z2〉 − 〈Z3X5Z2〉 − 〈Z4X5Z2〉
= 1 + 0 + 1 = 2, (F6d)

g(3)
3,4 = −

∑
l=2,4,5

〈ZlX3Z4〉

= −〈Z2X3Z4〉 − 〈X3〉 − 〈Z5X3Z4〉
= 1 − 1 + 0 = 0, (F6e)

g(3)
5,4 = −

∑
l=1,3,4

〈ZlX5Z4〉

= −〈Z1X5Z4〉 − 〈Z3X5Z4〉 − 〈X5〉
= −1 + 0 − 1 = −2. (F6f)

The largest gradient is g(3)
5,2 = 2, and the gate is applied at the

pair of qubits (2,5), where 2 is an active qubit and 5 is inactive.
The state at step r = 3 is given by

|ψ3〉 = ei π
4 Z2Y5 |ψ2〉

= 1

2
√

2
[| + − + ++〉 + | + + + +−〉

+ | − − + −+〉 + | − + + −−〉
− | + + + −+〉 − | + − + −−〉
− | − + + ++〉 − | − − + +−〉], (F7)
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with the records of active and inactive qubits updated to
[1,2,4,5] and [3], respectively. From this state we can compute
the set of gradients of step r = 4. They are given by

g(4)
1,3 = −

∑
l=2,4,5

〈ZlX3Z1〉

= −〈Z2X3Z1〉 − 〈Z4X3Z1〉 − 〈Z5X3Z1〉
= 1 − 1 + 1 = 1, (F8a)

g(4)
2,3 = −

∑
l=2,4,5

〈ZlX3Z2〉

= −〈X3〉 − 〈Z4X3Z2〉 − 〈Z5X3Z2〉
= −1 + 1 − 1 = −1, (F8b)

g(4)
4,3 = −

∑
l=2,4,5

〈ZlX3Z4〉

= −〈Z2X3Z4〉 − 〈X3〉 − 〈Z5X3Z4〉
= +1 − 1 + 1 = 1, (F8c)

g(4)
5,3 = −

∑
l=2,4,5

〈ZlX3Z5〉

= −〈Z2X3Z5〉 − 〈Z4X3Z5〉 − 〈X3〉
= −1 + 1 − 1 = −1. (F8d)

There are two largest gradients, g(4)
1,3 = g(4)

4,3 = 1. We break the
tie arbitrarily and take the pair of qubits (3,4). Thus, the state
at step r = 4 is given by

|ψ4〉 = ei π
4 Y3Z4 |ψ3〉

= 1
4 [| + − + ++〉 + | + − − −+〉 + | + + + +−〉
+ | + + − −−〉 + | − − + −+〉
+ | − − − ++〉 + | − + + −−〉 + | − + − +−〉
− | + + + −+〉 − | + + − ++〉 − | + − + −−〉
− | + − − +−〉 − | − + + ++〉 − | − + − −+〉
− | − − + +−〉 − | − − − −−〉]. (F9)

To extract the cut found by our algorithm we should write
|ψ4〉 in the computational basis. In order to do this we use its
stabilizers, which are

−XXXXX, −ZIIIZ, +IZIIZ, −IIZIZ, −IIIZZ,

which correspond to the state

|ψ4〉 = 1√
2

(|10110〉 − |01001〉), (F10)

in the computational basis. This state upon a measurement in
this basis returns the cut (A,A) = ([1, 3, 4], [2, 5]), which is
a maximal cut of the graph under consideration. We illustrate
this partitioning of the graph by coloring the nodes in A
red and those in A blue, and show the resulting partitioned
graph in Fig. 10(b). Additionally in Fig. 10(c) we show the
approximation ratio of the states |ψr〉 computed in this sec-
tion, notice that at r = 4 we have approximation ratio equal to
1, indicating the algorithm found a state composed of strings
encoding maximal cuts.

2. Example with N = 4 nodes

We consider now the graph with N = 4 nodes shown in
Fig. 10(d). Its adjacency matrix is given by

[ωi, j] =

⎛
⎜⎜⎝

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

⎞
⎟⎟⎠. (F11)

Let us start the algorithm with the state |ψ0〉 = | + − + +〉.
For this state there are two largest gradients at step r = 1 given
by g(1)

2,3 = g(1)
2,1 = 1. We break the tie arbitrarily and pick the

pair of qubits (2,3). Thus, the state at step r = 1 is given by

|ψ1〉 = ei π
4 Y2Z3 |ψ0〉 = 1√

2
[| + − + +〉 − | + + − +〉].

(F12)

Now the gradients at step r = 2 are given by

g(2)
1,2 = −

∑
l=2,3

〈ZlX1Z2〉 = −〈X1〉 − 〈Z3X1Z2〉

= −1 + 1 = 0, (F13a)

g(2)
1,3 = −

∑
l=2,3

〈ZlX1Z3〉 = −〈Z2X1Z3〉 − 〈X1〉

= 1 − 1 = 0, (F13b)

g(2)
4,2 = −〈Z3X4Z2〉 = 1, (F13c)

g(2)
4,3 = −〈X4〉 = −1. (F13d)

Thus, the largest gradient is g(2)
4,2 = 1. We apply the next gate

to the pair (2,4) leading to a state at step r = 2 of the form

|ψ2〉 = ei π
4 Z2Y4 |ψ1〉 = 1

2 [| + − + +〉 + | + + + −〉
−| + + − +〉 − | + − − −〉]. (F14)

For the next step we find all three gradients g(3)
1,2 = g(3)

1,3 =
g(3)

1,4 = 0, thus no gate needs to be added in this last step.
We verify this by looking at the approximation ratio of the
states produced by the algorithm, shown in Fig. 10(f), and
we observe that only after two steps does the algorithm reach
an approximation ratio of 1, indicating a maximal cut has
been found. In order to extract this cut we write |ψ2〉 in the
computational basis as

|ψ2〉 = 1
2 [|0010〉 + |1101〉 − |1010〉 − |0101〉]; (F15)

notice that the algorithm prepares a state which encodes two
distinct maximal cuts for the graph under consideration: one
of the form (A,A) = ([1, 2, 4], [3]) which we illustrate in
Fig. 10(e), and one of the form (A,A) = ([1, 3], [2, 4]).

APPENDIX G: ESTIMATION OF THE MEAN
APPROXIMATION RATIOS FOR THE CASE

OF POSITIVE WEIGHTS

In this Appendix we present the method used to estimate
α and αr reported in Sec. V A. Recall that our algorithm
solves the problem N times, each time starting from a different
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position k ∈ [1, N]. As such, for the same problem we might
have up to N different α’s.

We begin by fixing a threshold value αtr for a given graph
ensemble. For N ∈ [10, 30], we count how many initial po-
sitions k, Num(N ; αtr ) lead to a solution with α > αtr . We
repeat this process for all problem instances considered and
obtain E[Num(N ; αtr )]. At this point, we perform a linear fit
to the data (N,E[Num(N ; αtr )]) and obtain the slope M =
M(αtr ). We then vary the threshold αtr ∈ [0.88, 1] and re-
peat the above procedure. Once all the data (αtr,M(αtr ))
have been obtained we identify α = αtr|M(αtr )=0, the last
threshold value before the slope becomes negative. The
largest approximation ratio we can guarantee is thus the

one for which no initial position k � N leads to α = αtr .
To account for fluctuations among instances, the linear fit is
done to the data (N,E[Num(N ; αtr )] − σ [Num(N ; αtr )]), with
σ [Num(N ; αtr )] one standard deviation. As reported in the
main text, this procedure leads to α = 0.9686 for the case of
positive-weighted complete graphs with N ∈ [10, 30] and 100
instances per N .

For the case of randomly chosen initial condition we
identify αr = αtr|M(αtr )=0.5, that is, the threshold for which
at least half of the possible initial conditions will lead to,
on average, an approximation ratio equal to the thresh-
old. As reported in the main text, this procedure leads
to αr = 0.8986.
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