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Toolbox for nonreciprocal dispersive models in circuit quantum electrodynamics
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We provide a systematic method for constructing effective dispersive Lindblad master equations to
describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonrecipro-
cal linear system, with effective coupling parameters and decay rates written in terms of the immittance
parameters characterizing the coupler. This article extends the foundational work of Solgun et al. [IEEE
Trans. Microw. Theory Techn. 67, 928 (2019)] for linear reciprocal couplers described by an impedance
response. Notably, we expand the existing toolbox to incorporate nonreciprocal elements, account for
direct stray coupling between immittance ports, circumvent potential singularities, and include collective
dissipative effects that arise from interactions with external common environments. We illustrate the use
of our results with a circuit of weakly anharmonic Josephson junctions coupled to a multiport nonrecip-
rocal environment and a dissipative port. The results obtained here can be used for the design of complex
superconducting quantum processors with nontrivial routing of quantum information, as well as analog
quantum simulators of condensed matter systems.
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I. INTRODUCTION

Superconducting circuits [1] have become one of the
most prolific platforms for the design and operation of
small-scale quantum processors and quantum simulators,
with basic quantum algorithms and error-correction proto-
cols already being implemented [2–7]. Based on Josephson
junctions (JJs) [8], nonlinear elements with negligible dis-
sipation at cryogenic temperatures, superconducting cir-
cuits show macroscopic quantum coherence and are useful
platforms for the engineering of light-matter interaction
giving rise to the field of circuit quantum electrodynamics
(cQED) [9].

In typical cQED setups, transmons are used as qubits
due to their simplicity and reduced sensitivity to charge
noise, a feature that is linked to their low anharmonicity
[10]. These qubits are integrated in circuits with lumped or
distributed element couplers, readout resonators, and con-
trol lines [11]. With these various components operated
in the dispersive regime, it is possible to obtain effective
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models where the qubits are dressed by their electromag-
netic environment [12]. To address the growing complex-
ity of quantum processors, systematic approaches have
been developed to characterize the effective low-energy
quantum Hamiltonian of the qubits, accounting for the
multimode nature of the distributed circuit elements, while
remaining agnostic on the specific circuit design [13–
17]. These methods rely on the classical properties of
the linearized microwave structure in which the qubits
are embedded. This includes knowledge of the immit-
tance response of the microwave circuit, encompassing
both admittance [13] and impedance [14–16] responses,
or the computation of eigenmodes and their corresponding
fields through three-dimensional electromagnetic simula-
tions [17]. The nonlinearity arising from the qubits is
subsequently introduced, with its effects being systemati-
cally computed at any desired level of precision, provided
it remains weak.

Although general, these methods are not tailored to
describing nonreciprocal elements that are characterized
by nonsymmetric immittance response [18], and the need
for in situ physical or synthetic magnetic fields to break
time-reversal symmetry. Nonreciprocal components, such
as circulators and isolators, are essential for routing
signals in and out of quantum processors. They also
find application in the simulation of photonic lattices
with broken time-reversal symmetry [19,20], enabling the
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exploration of topological phases with superconducting
circuits [21].

In this article, we provide a systematic tool to engi-
neer the nonreciprocal Lindbladian in cQED platforms
based on Schrieffer-Wolff (SW) transformations, i.e., in the
dispersive regime, of general nondissipative linear cou-
plers described by an immittance matrix. This work thus
constitutes a generalization of the analysis conducted by
Solgun et al. [16] to nonreciprocal circuit elements. Here,
the qubit’s electromagnetic environment is described not
only by their impedance response, but, when applicable, by
an admittance response, removing singularities appearing
in the characterization of some linear systems. Moreover,
due to the mixed couplings between phase-space vari-
ables (i.e., flux-charge coupling), appearing in the descrip-
tion of nonreciprocal elements, a generalized symplectic
Schrieffer-Wolff transformation is used. In addition to this
transformation, another perturbation theory is employed to
eliminate the dissipative ports (i.e., the input-output lines
used to address and measure the qubits) within the Born-
Markov and partial secular approximations. This allows
us to deduce not only the local decay rates, commonly
known as Purcell rates, as discussed in Ref. [16], but
also the correlated decay rates resulting from the interac-
tion of the qubit modes with a common bath. The general
method we use, which is based on the exact fraction expan-
sion of immittance responses (a.k.a. black-box modeling
[13–15,18,22]), is applicable to electromagnetic environ-
ments containing an infinite number of modes and does
not suffer from divergence issues [23–26].

This article is structured as follows. In Sec. II, we
present our main results, which includes an overview of
the derivation of the qubits’s Hamiltonian and decay rates,
while deferring the technical details to the Appendices.
This allows us to formulate the master equation for the
qubits in its Lindblad form in terms of the circuit’s immit-
tance parameters. It is worth emphasizing that our results
subsume and extend those derived in Ref. [16], and are
capable of describing a broader range of circuits, including
nonreciprocal elements, direct stray couplings both capac-
itive and inductive, and correlated decay. In Sec. III, we
consider a simple case involving a nonreciprocal three-port
scattering device, showing how our results can be used
to achieve unidirectional signal transmission. Finally, in
Sec. IV we give insight into potential applications that can
benefit from our work, and we discuss possible directions
for future works.

II. EFFECTIVE LINDBLAD MASTER EQUATION

In this section we present our main results and pro-
vide sketches for their derivations, with full details found
in the appendices. Figure 1(a) schematically illustrates
our conceptual framework: qubits (green and blue) are

FIG. 1. (a) Paradigm of the article: a circuit containing non-
linear elements divided into linear and nonlinear parts, and
transmission lines modeled as classical voltage drive ports cou-
pled by a general (nonreciprocal) linear system described by
an immittance frequency-dependent matrix, i.e., Z(ω) or Y(ω).
After dispersive elimination of the black-box inner modes an
effective Lindblad master equation including effective couplings
Jij = |Jij |eiθij with nontrivial phases θij , correlated decay rates
γij , and drive amplitudes εid is obtained for the qubit modes.
(b) Schematic illustration of the qubit modes (green) and elec-
tromagnetic environment modes (black).

interacting via an arbitrary linear and lossless electromag-
netic environment that can contain nonreciprocal elements,
and coupled to drive and dissipative ports (orange and
brown). The electromagnetic environment is described
by its multiports’ impedance Z(ω) or admittance Y(ω).
Moreover, following Solgun et al. [16], “qubit ports” are
defined between the terminals of nonlinear dipole elements
described by their flux degree of freedom (such as Joseph-
son junctions), which we decompose into a linear part
(represented schematically by the bare inductance L̃Ji) and
a purely nonlinear contribution Unl(φi) (represented by the
spider symbol). The “drive ports” are defined as the termi-
nals at the ends of transmission lines carrying the signals
to the chip. We note that, with the port definitions we
use here, the response matrices Z(ω) and Y(ω) do not
include the linear part of the dipole potential, inline with
the method of Refs. [14–16]. This approach contrasts to
that used in, e.g., Refs. [13,17].
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In general, any lossless causal immittance has a canon-
ical lumped representation known as its Cauer circuit that
synthesizes its response [18]; see Appendix A. Thus, in the
circuit of Fig. 1 we substitute Z (or Y) by its Cauer circuit
composed of capacitors, inductors, and gyrators coupled
to the external ports by ideal transformers (see Fig. 5 in
Appendix A). As shown in Appendix C, using the methods
of canonical circuit quantization of Refs. [27,28], we con-
struct the exact classical Lagrangian of the circuit. From
this Lagrangian, we obtain the full classical system-bath
Hamiltonian that we decompose in the standard way as

H = HS + HI + HB + HD(t). (1)

In this expression, HS is the Hamiltonian of the junctions
and inner modes of the circuit (i.e., resonators and gyrators
coupled to the qubit modes), HI is the interaction Hamilto-
nian of the coupling between qubit and inner modes with
the dissipative ports, and HB is the bath Hamiltonian cor-
responding to the dissipative ports. Finally, HD(t) accounts
for classical external voltage sources at the drive ports.

Having obtained a general classical representation of the
circuit, we now assume the circuit’s inner modes to be dis-
persively coupled to the qubit modes; see Fig. 1(b). As
usual, we first approximately diagonalize the linear sector
of the circuit, and then add the qubit nonlinearity. The pres-
ence of gyrators, which are the minimal lumped element
circuits needed to synthesize a nonreciprocal response,
introduces nondynamical modes in the circuit description
[27]. Following Ref. [28], we eliminate these nondynam-
ical modes with a symplectic transformation mixing the
flux-charge variables of the inner modes; see Appendix C
for details. Following this elimination, we move to the
dispersive frame by applying a second symplectic pertur-
bation theory akin to the Schrieffer-Wolff transformation
in quantum mechanics; see Appendix B for details and
a worked example. This transformation dresses the qubit
and inner modes while preserving the symplectic struc-
ture of the Hamiltonian. In contrast to the standard SW
transformation approach used in, e.g., Ref. [16], the trans-
formation used here preserves the symplectic structure of
the Hamiltonian even with flux-charge couplings present
in the description of gyrators.

The next step is to add back the qubit’s nonlinear-
ity. This approach can be applied to different types of
low-anharmonicity qubits operating within a single deep
potential well. For such qubits, the charge dispersion is fur-
ther suppressed when coupled to a linear (non)reciprocal
electromagnetic environment [13,29,30]. Here, we focus
on the transmon by keeping the first nonlinear term of
the Josephson junction’s cosine potential. After quantizing
the modes and applying a rotating-wave approximation,
we obtain in this way an effective master equation for the
qubit modes and their dispersive couplings to inner circuit

modes taking the familiar Lindblad form

˙̂ρ = −i[Ĥq + Ĥχ + Ĥv(t), ρ̂] + Lγ ρ̂. (2)

In this expression, Ĥq is the qubit Hamiltonian

Ĥq =
∑

i

ωib̂
†
i b̂i + δi

2
b̂†

i b̂i(b̂
†
i b̂i − 1)+

∑

i�=j

Jij b̂ib̂
†
j , (3)

where b̂i is the annihilation operator for the dressed qubit
mode i. The first two terms of Ĥq correspond to the free
dressed qubit Hamiltonian, and the last term to qubit-
qubit coupling mediated by the circuit. As in Solgun
et al. [16], the parameters entering Eq. (3) can be expressed
in terms of the impedance of the full circuit. Generalizing
those results, here expressions for these parameters are also
obtained in terms of the circuit admittance. Crucially, this
allows us to avoid singularities appearing in the characteri-
zation of some linear circuits (see Appendix A for details).
Moreover, our description can account for the presence of
nonreciprocal elements. To simplify the presentation, the
expressions for the parameters entering Ĥq are provided
below for the special case where there is no direct cou-
pling (capacitive, inductive, or nonreciprocal) between the
qubit ports (see Appendix C for details of the derivation,
including the case with direct coupling).

First, to second order in perturbation theory, the qubit
frequencies in Eq. (3) are

ωi = ωi − Im{Yac
ii (ωi)}

2CJi

, (4)

ωi = ωi − Im{Zac
ii (ωi)}

2LJi

, (5)

where the last term accounts for the Lamb shift introduced
by the inner modes, with LJi = 1/CJiω

2
i the dressed junc-

tion inductance. For I = Y, Z, the ac part of the response
is defined as Iac = I − Idc, while the dc part Idc is the
sum of poles at zero and infinity, i.e., Ydc = iωCY +
L−1

Y /iω + E∞, where CY (LY) is the capacitive (inductive)
matrix extracted from the admittance, and E∞ = [Ydc −
(Ydc)T]/2 = Ydc,NR is the nonreciprocal part of Ydc cor-
responding to direct nonreciprocal coupling between the
ports. We emphasize that the dc part of the impedance con-
tains only the capacitive response, Zdc = C−1

Z /iω, as we
consider ports shunted by capacitors; see Appendix A for
details. In the expression for ωi, the frequencies ωi take the
form

ωi = ω̃Ji

√
1 + ζi

(
1 − ECi/ω̃Ji

(1 + ζi)3/2 − ECi/ω̃Ji

)
, (6)

where ω̃Ji = 1/(̃LJiCJi)
1/2 is the plasma frequency of junc-

tion i, with L̃Ji = φ2
0/EJi the bare junction inductance, and
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CJi its total shunt capacitance. The frequency ωi has two
types of correction over the bare qubit frequency. First,
the presence of the charging energy (bare anharmonicity)
ECi = e2/2CJi . Second, and in contrast with the similar
expression from Ref. [16], the presence of ζi = L̃Ji/Lsi
which accounts for a possible effective shunting inductance
Lsi = [lims→0 sYii(s)]−1 [31]. Importantly, a correction of
this form can only be systematically obtained from the
admittance response. When working with the impedance
representation, such an inductive correction could in prin-
ciple be obtained from lims→∞[Z(s)/s]. Nonetheless, as
we show in Appendix A, for realistic circuits in which
the ports are shunted by capacitances (e.g., transmons),
lims→∞ Z(s) = 0 and the correction vanishes. In short,
an inductive energy correction cannot be systematically
obtained from the impedance representation. However, in
order to use the impedance representation with a shunting
inductance, the latter must be taken out of the response and
be directly added to the bare junction inductance as part of
the dipole self-inductance.

Moving on to the second term of Eq. (3), the qubit
anharmonicity takes the form δi = −ECi(ωJi/ωi)

2 [16].
To second order in perturbation theory, the qubit-qubit
coupling Jij in the last term of Eq. (3) is

Jij = i
4

√
ωiωj

CJiCJj

[
Yij (ωi)

ωi
+ Yij (ωj )

ωj

]
, (7)

Jij = i
4

√
ωiωj

LJiLJj

[
Zij (ωi)

ωi
+ Zij (ωj )

ωj

]
. (8)

In these expressions, the admittance and impedance
account for both the reciprocal (symmetric) and nonrecip-
rocal (antisymmetric) responses, Y = YR + YNR and Z =
ZR + ZNR.

Crucially, the Jij coupling has a nontrivial phase result-
ing from the interplay of the reciprocal and nonrecipro-
cal responses. Indeed, writing Jij = |Jij |eiθij , the phase is
determined by the expression

tan θij = − ωj YNR
ij (ωi)+ ωiYNR

ij (ωj )

Im{ωj YR
ij (ωi)+ ωj YR

ij (ωi)}
, (9)

with an identical expression for the impedance response
obtained by substituting Y(ω) → Z(ω). In general, effec-
tive quantum models breaking time-reversal symmetry
require a nontrivial phase in the hopping between sites
[19]. Here, we find that this nontrivial phase can be manip-
ulated by adjusting the ratio between reciprocal and non-
reciprocal microwave responses between qubit ports at the
qubit frequencies. We note that Eqs. (7) to (9) can lead
to different interaction amplitudes |Jij | and hopping phases
θij when obtained from the admittance or the impedance
responses. This difference between the two approaches

arises from our perturbative derivation, which leads to
different final effective frames. Crucially, in the disper-
sive regime, where these expressions remain valid, any
discrepancies between them are negligible.

The second term of the Hamiltonian appearing in Eq. (2)
describes the cross-Kerr interactions between the qubit
modes and the inner circuit modes:

Ĥχ =
∑

i,μ

χiμb̂†
i b̂iâ†

μâμ (10)

with âμ the annihilation operator for the dressed inner
circuit mode μ. To second order in perturbation theory
and sixth order in the nonlinear terms of the junctions’
potential, the cross-Kerr coefficients are (see Appendix E)

χiμ = 2δi

(
1 − 2E(i)

C

ωi

)(
ωμ

ω2
μ − ω2

i

)2

[(gqQ
iμ )

2 + (gq�
iμ )

2],

(11)

χiμ = 2δi

(
1 − 2E(i)

C

ωi

)(
ωμ

ω2
μ − ω2

i

)2

[(gφ�iμ )2 + (gφQ
iμ )

2]

(12)

for the admittance and the impedance, respectively. In
these equations, ωμ is the frequency of mode μ obtained
from the ac poles of the response. The coefficients gqQ

iμ

(gφ�iμ ) and gq�
iμ (gφQ

iμ ) are the bare charge-charge (flux-flux)
and charge-flux (flux-charge) couplings between qubit
mode i and circuit mode μ and are proportional to the
residue of the admittance (impedance) at frequency ωμ.
Detailed expressions for these couplings can be found in
Eqs. (E24) and (E25) of Appendix E. Notably, the pres-
ence of nonreciprocity in the circuit, captured by these
charge-flux interactions, modifies the dispersive shifts.

Hamiltonian Ĥv(t) describes coupling of the qubits to
external drive ports and it is given by

Ĥv(t) =
n∑

i=1

nD∑

d=1

εid(t)b̂i + ε
id(t)b̂
†
i , (13)

where n and nD are respectively the numbers of qubit and
drive ports. Focusing on the situation where there is no
direct coupling between drive ports and assuming a single-
tone voltage drive Vd(t) = vd sin(ωdt) at each drive port d,
the drive amplitudes take the form

εid(t) = vd|Ydrive
dd (ωd)|−1

√
2ωiCJiZ0

{
[Yac

id (ωi)+ Ydc,NR
id (ωd)]

× sin(ωdt − φ)− iYdc,R
id (ωd) cos(ωdt − φ)

}
,

(14)
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when expressed using the admittance case, and

εid(t) = −vdi|Zdrive
dd (ωd)|−1

√
2ωiLJi

cos
(
ωdt − φ′)

×
[
Zac

id (ωi)+ ωd

ωi
Zdc

id (ωd)

]
. (15)

expressed using the impedance. In these expressions, φ =
arctan[Z0ImYdc

dd(ωd)] and φ′ = − arctan[Z0/ImZdc
dd(ωd)]

are the phase shifts introduced by the external transmis-
sion line Z0 at drive port d. Moreover, the reciprocal and
nonreciprocal components of the dc response take into
account possible direct couplings between qubit and drive
ports. Additionally, Ydrive and Zdrive respectively denote the
external admittance and impedance filtered by the capaci-
tances and inductances at drive ports. They are obtained
by adding the lower nD × nD block of the dc immit-
tance response Ydc

D (Zdc
D ) to the characteristic value of

the admittance (impedance) of the external transmission
lines located at each drive port, Ydrive(ω) = Z−1

0 + Ydc
D (ω)

and Zdrive(ω) = Z0 + Zdc
D (ω). For the sake of simplicity

and without loss of generality, we consider all the exter-
nal transmission lines to have the same characteristic
impedance Z0, that is, Z0 = Z01nD . More general expres-
sions accounting for arbitrary voltage pulse shapes as well
as direct capacitive and inductive couplings between drive
ports can be found in Appendix C.

The external ports also open decay channels for the
qubit, something that we model as baths of harmonic oscil-
lators following the Caldeira-Leggett approach [29,30].
Going to the dispersive frame as above, we obtain an
effective qubits-bath interaction, which in addition to the
usual flux-flux and charge-charge couplings include a non-
reciprocal flux-charge interaction responsible for breaking
time-reversal symmetry. Using the Born-Markov and par-
tial secular approximations, which allows us to account for
possible qubits quasidegeneracies (see Appendix F), we
then trace out the baths to obtain the correlated decay rates
of the qubits. As above, these rates are expressed in terms
of the admittance and impedance responses, yielding the
expressions

γij = 1√
CJiCJj

nD∑

d,d′=1

Re{Ydrive−1

dd′ (ωij )}Yid(ωi)Y

jd′(ωj )

(16)

and

γij = 1√
LJiLJj

nD∑

d,d′=1

Re{Zdrive−1

dd′ (ωij )}Zid(ωi)Z
jd′(ωj ),

(17)

where ωij = (ωi + ωj )/2 is the average frequency.
Notably, the Purcell decay rates of qubit i due to its
coupling to the drive ports can be determined from the
diagonal elements of matrix γij . In the absence of direct
stray coupling between drive ports, these rates are given
by

γiκ = 1
CJi

nD∑

d=1

Re{Ydrive−1

dd (ωi)}|Yid(ωi)|2, (18)

γiκ = 1
LJi

nD∑

d=1

Re{Zdrive−1

dd (ωi)}|Zid(ωi)|2, (19)

where |Iid(ωi)|2 = |IRid(ωi)|2 + |INR
id (ωi)|2 with I = Z, Y.

Here, we have omitted the coherent contribution from
the baths that in the dispersive and weak direct coupling
regime only leads to a small renormalization of the qubits’
Hamiltonian Ĥq. Notably, as shown in Ref. [32], this
coherent contribution is exactly canceled in our regime
of interest by second-order terms in the system-bath cou-
plings that enter the Caldeira-Leggett Hamiltonian (see
Appendix F).

Combining these expressions, we finally have the last
term Lγ ρ̂ of master equation (2), which takes the form

Lγ ρ̂ =
∑

ij

γijD(b̂i, b̂j )ρ̂. (20)

In this expression, D(b̂i, b̂j )ρ̂ = b̂j ρ̂b̂†
i − 1

2 {b̂†
i b̂j , ρ̂} and

the sum is on qubits i and j such that |ωi − ωj | �
min(γiκ , γj κ).

In summary, we have shown how the master equation
of a nonreciprocal circuit in the dispersive regime is
determined by the total linear response exhibited by the
microwave structure connecting the qubits and the drive
ports. That is, ˙̂ρ = Lρ̂ where the Lindblad superoperator
is a function of the circuit’s admittance or impedance. For
completeness, the cases with direct capacitive, inductive,
and nonreciprocal couplings between the qubit ports can be
found in Appendix C for both admittance and impedance
responses.

III. EXAMPLE OF APPLICATION

We now illustrate how the results of the previous section
can be used with a simple circuit example that consists
of three Josephson junctions coupled via filters to a non-
reciprocal scattering element; see Fig. 2(a). We take the
scattering matrix of the nonreciprocal circuit element to be

S(φ) = 1
3

⎛

⎝
r(φ) t(φ)− c(φ) t(φ)+ c(φ)

t(φ)+ c(φ) r(φ) t(φ)− c(φ)
t(φ)− c(φ) t(φ)+ c(φ) r(φ)

⎞

⎠

(21)
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(i)

(ii)

FIG. 2. (a) Three-port nonreciprocal linear coupler connect-
ing (i) three Josephson junctions or (ii) two Josephson junctions
and an Ohmic dissipative element (a resistor). (b) A π -capacitive
filter. (c) One-pole representation of a transmission line filter.

with r(φ) = 1 + 2 cos(φ), t(φ) = 1 − cos(φ), and c(φ) =√
3 sin(φ). Geometrically, this scattering matrix is a rota-

tion around the symmetric axis n = (1, 1, 1)T/
√

3 and, for
φ = 2π/3, it corresponds to an ideal circulator.

Focusing first on the case where the filter is a simple π -
capacitive filter [see Fig. 2(b)], we obtain the admittance
and impedance responses of the circuit in Appendix G 4.
Equipped with these responses, we use Eq. (9) to directly
obtain the hopping phase θij between qubit modes in the
circuit’s effective quantum Hamiltonian. We find that

tan θij (φ) = −
√

3ω/ωy(φ), (22)

where ω = ω̃J + δ [see Eq. (6)], with ω̃J = 1/
√

LJ C̃J the
junction’s plasma frequency, δ = −EC/(1 − EC/ω̃J ) the
anharmonicity, and EC the charging energy that we take
to be equal for all three junctions. Moreover, ωy(φ) =
tan(φ/2)/[R(Cc + Cg)] is the ac pole of the admittance
response, with R the characteristic impedance of the non-
reciprocal scattering element. As noted in Ref. [19], chiral
dynamics with complete population transfer is obtained for
θij (φ) = π/6, which leads to the condition

ω = ωy(φ)/3, (23)

valid for all values of φ �= 0,π . Therefore, we conclude
that, for the circuit of Fig. 2(a) with the filter of Fig. 2(b),
chiral dynamics can in principle be obtained with any

FIG. 3. Dynamics of qubit population transfer with an initial
state |ψ(0)〉 = |100〉 using the circuit in Fig. 2(a)(i) with (a)
the capacitive filter of Fig. 2(b), and (b) with the resonator fil-
ter in Fig. 2(c). The inner circulator phase is set to φ = π/3.
Solid (dashed) lines were obtained from the exact (effective)
Hamiltonian of the circuits. The approximate period is T =
2π/

√
3J (φ). The circuit parameters for (a) are CJ = 100 nF,

Cc = 0.1CJ , Cg = 1.5CJ , R = 50 �, EJ /h = 11.37 GHz, which
leads to EJ /EC � 64, δi � −0.05ω, and ωy(π/3) � 2π × 11.5
GHz. On the other hand, the parameters for (b) are CJ = 100 nF,
Cjr = 0.1CJ , Cg = 0.1CJ , Crs = CJ , 1/

√
LrCr = 2π × 7.0 GHz,√

Lr/Cr = 50 �, R = 50 �, EJ /h = 14.51 GHz, which leads to
EJ /EC � 82, δi � −0.04ω.

value of φ �= {0,π}, something that only requires a suitable
adjustment of the qubits’ frequencies.

As an illustration of this chiral dynamics, starting with
one excitation in the first qubit and all other modes in the
vacuum, we plot in Fig. 3(c) the evolution of the qubit
population Pj =1,2,3(t) = |〈0|b̂j =1,2,3|ψ(t)〉|2 for φ = π/3.
There, we compare the evolution obtained from the exact
Hamiltonian of the circuit obtained after the elimination
of the nondynamical modes (solid lines; see Appendix D)
with the expectation values obtained using the effective
Hamiltonian of the qubit sector constructed using the
formulas from the preceding section (dashed lines). The
agreement between the two approaches is excellent and
shows the expected circulation dynamics.

Other filters can be used instead of the capacitive filter
of Fig. 2(b). For example, consider the LC resonator filter
depicted in Fig. 2(c), which is equivalent to that studied in
Sec. II of Ref. [19]. In this case, the interaction between the
qubit modes is mediated by four bosonic modes instead of
one. However, under dispersive coupling, this additional
circuit complexity does not substantially increase the dif-
ficulty of the application of our formulas. As before, we
fix the qubit frequencies such that θij = π/6, and plot in
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Fig. 3(b) the resulting dynamics starting with one excita-
tion in the first qubit and all others in the vacuum state of
both exact and effective Hamiltonians. Once again, we find
excellent agreement between both approaches. Notably,
and in contrast with the analysis in Ref. [19], the inner
modes do not need to be weakly coupled to achieve the
desired chirality. Moreover, as in the previous example,
we find that, for any value of φ �= 0,π , the effective phase
between qubit modes can be adjusted to any desired value.
Details of the simulation are provided in Appendix G 5.

As an additional example of application, we now con-
sider the circuit of Fig. 2 where we replace the Josephson
junction of port 3 by a resistor of impedance Z0; see panel
(a)(ii). Following the above approach, the circuit parame-
ters can be optimized to obtain partial excitation transfer
between the ports. Indeed, in the absence of a drive,
Ĥv = 0, the master equation (2) leads to the following
equations of motion for the qubit operators b̂i [33]:

db̂1

dt
= −i

(
ω + δb̂†

1b̂1 − i
γ11

2

)
b̂1 −

(
iJ21 + γ12

2

)
b̂2,

(24a)

db̂2

dt
= −i

(
ω + δb̂†

2b̂2 − i
γ22

2

)
b̂2 −

(
iJ12 + γ21

2

)
b̂1.

(24b)

By imposing iJ21 + γ12/2 = 0, the qubit at port 1 can be
isolated from the qubit at port 2 [34]. Using Eqs. (16)
and (17), this condition is equivalent to

Y21(ω) = Z0

1 + ω2C
2
DZ2

0

Y13(ω)Y

23(ω), (25)

when expressed in terms of the admittance response,
with an analogous expression for the impedance response.
Isolation is possible only if 0 ≤ Y21(ω)/Y13(ω)Y


23(ω) ≤
1/ωCD, where CD = CD + CcCg/(Cc + Cg) and CD corre-
sponds to the shunting capacitance of the dissipative port.
For the π -capacitive filter, this leads to the constraints

ω � ωy(φ) = tan(φ/2)
R(Cc + Cg)

,

√
3

ωy(φ)Cc
= Z0

1 + ω2C
2
DZ2

0

.

The first condition results from the filter’s high-pass
behavior, while the second represents an impedance
matching condition for the dissipative port of impedance
Z0, and admits a solution only when Cc/CD ≥ 2

√
3ω/

ωy(φ). This inequality is satisfied when Cc � CD, Cg . In
that case, the matched load should be chosen such that
Z0 � √

3R/ tan(φ/2). For φ = 2π/3, we recover the usual
impedance matching condition Z0 = R of an ideal circu-
lator. Importantly, isolation can also be obtained for φ �=
2π/3 provided a suitable adjustment of the impedance
matching condition is made. Figure 4 shows the evolu-
tion of the initial 1-excitation state in (a) qubit 1 or (b)
qubit 2 for φ = π/3. Panel (a) shows the expected pop-
ulation transfer from qubit 1 to qubit 2, while panel (b)
illustrates the chirality of the evolution with the excitation
in qubit 2 not reaching qubit 1, but instead being lost to the
environment. These results are obtained from integration
of the master equation (24) using Eqs. (7) and (16) for Jij
and γij , respectively (dashed lines). In the same figure, the
solid lines are obtained by numerically solving the corre-
sponding classical Kirchhoff equations, yielding excellent
agreement.

The three-port network that we have considered here
represents a small nontrivial example of the general results
of the previous section. Naturally, extending the applica-
tion of the above results to an N -port network is straight-
forward. The underlying principles remain unchanged
[35], facilitating the use of our formulas to more com-
plex and larger multiport systems. Our results explicitly
show that a linear element with an arbitrary level of
nonreciprocity, e.g., the scattering matrix of Eq. (21), is
sufficient to reproduce all dynamics achievable with an
ideal circulator, provided a suitable adjustment of the

(a) (b)

FIG. 4. Isolatorlike behavior is realized through adequate tun-
ing of circuit parameters. (a) One excitation in mode b̂1 and mode
b̂2 in vacuum at t = 0. The population is transferred to mode
b̂2, and then lost to the resistive port. (b) Reversed situation
with qubit 2 having the excitation at t = 0. Because of chiral-
ity, qubit 1 remains underpopulated (less than 1%), while qubit
2 decays. The dashed lines are obtained from the master equa-
tions (24a) and (24b) (dashed lines). Those results are compared
to the exact dynamics obtained from classical Kirchhoff equa-
tions (solid lines). The circuit parameters are Cc = 0.01CJ , CD =
Cg = 0.01Cc, φ = π/3, Z0 = 3R, ω = 10ωy(π/3), δ = −0.05ω,
TD = 20RCJ .

034038-7



LAUTARO LABARCA et al. PHYS. REV. APPLIED 22, 034038 (2024)

circuit parameters is made. In other words, the design
of on-chip circulators could in principle be relaxed to
engineer the studied class of nonreciprocal synthetic mod-
els. We provide further examples with simple circuits in
Appendix G.

IV. SUMMARY AND OUTLOOK

We have shown that knowledge of the classical immit-
tance response together with qubit design parameters (e.g.,
Josephson’s energies) is sufficient to fully characterize the
dispersive master equation for transmon qubits even in
the presence of nonreciprocal elements. While we have
focused on transmon qubits, our results can be readily
extended to any weakly anharmonic qubit operating in a
single well potential, e.g., building upon the results of Ref.
[36]. Naturally, it can also account for the presence of
higher harmonics of the Josephson potential [37]. More-
over, having obtained expressions for both impedance
and admittance responses offers two significant advan-
tages. First, it enables the description of a wide range
of circuits, effectively eliminating some singularities that
may arise during the characterization of linear systems
(examples are provided in Appendix A). Second, this
dual approach allows us to use our results for qubits
that are dual to the transmons, i.e., for which the charge
degree of freedom is a good quantum number. Promi-
nent examples of such qubits include phase-slip junctions
[38–40].

Expanding beyond weakly anharmonic qubits, the for-
malism presented here could potentially be adapted to
inductively shunted qubits, such as the fluxonium qubit,
following Ref. [41]. In that case, the normal modes of
the electromagnetic environment can be extracted from
the poles of the impedance response, while the Joseph-
son junction is treated separately outside the response, as
we have done in this work. However, because a truncated
Taylor expansion of the Josephson energy is no longer a
good approximation to the potential, one should then con-
sider the full cosine operator, whose matrix elements in
the normal mode basis can be obtained from the zero-point
fluctuations of the junction phase [41]. Crucially, these
zero-point fluctuations can be directly computed from the
immittance response, akin to the approach detailed in
Ref. [13].

More generally, we expect that our work will facili-
tate the exploration of nonreciprocal models in circuit and
cavity QED platforms [20,21,42–44]. It can, for example,
be used to systematically explore novel designs for on-
chip nonreciprocal elements, building upon the principles
established in Refs. [19,45]. Moreover, apart from the dis-
persive shifts, the parameters of the master equation are
determined by the immittance response assessed at the fre-
quencies of the qubits. Hence, only finite-element simula-
tions around this range of frequencies are needed, making

this approach efficient with respect to energy-participation
ratio-based methods [17].

More broadly, our work bridges the gap between elec-
trical engineering via immittance design and quantum
simulation of nonreciprocal and topological models. This
connection relies on the mapping between the phase of
the tunneling rate and immittance parameters provided by
Eq. (9), highlighting that different nonreciprocal immit-
tance designs yield distinct topological models [46].
Finally, further work includes extending the treatment
of nonlinearities to higher-order corrections, incorporat-
ing weakly nonlinear elements within the nonrecipro-
cal response, and investigating tunable couplers in the
spirit of Ref. [47]. Furthermore, there will be a need
for additional work to extend the systematic construction
of effective models using the immittance-based paradigm
to be applicable to the waveguide QED context, where
the black-box structure would encompass a continuous
spectrum.

All the codes to reproduce the main results are available
online [48].
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APPENDIX A: IMMITTANCE RESPONSE
FORMULAS, ELECTROMAGNETIC DUALITY,

AND SINGULAR CASES

In this appendix, we first provide a review of canon-
ical immittance matrix decompositions for lossless cir-
cuits. We then discuss the electromagnetic duality between
impedance and admittance responses, and analyze singu-
lar cases in both approaches. For more details on linear
response synthesis, the reader is referred to Ref. [18].
Linear systems can be generically characterized by a scat-
tering matrix in Laplace space S(s) and, in most cases, by
an impedance Z = R(1 − S)−1(1 + S) matrix, an admit-
tance Y = (1/R)(1 − S)(1 + S)−1 matrix, or both pro-
vided that the involved matrix inverses exist. Here, R is
a characteristic parameter in resistance units. These immit-
tance responses can be decomposed into their multipole
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FIG. 5. (a) Multiport canonical Cauer circuit for impedance (left) and admittance (right) responses. In this representation, U, V, R,
and N respectively correspond to the multiport Belevitch transformer that connects the capacitive, inductive, reciprocal, and nonrecip-
rocal stages to the rest of the circuit [18]. Additionally, E∞ represents the dc nonreciprocal response. The presence of a nonsingular
capacitive stage in the admittance picture, reflecting the shunting capacitances of the ports, implies that there is neither an inductive
stage V nor dc nonreciprocal response in the impedance decomposition. (b) Electromagnetic duality between the impedance and admit-
tance pictures, which is broken in the presence of Josephson junctions in the port terminals. However, full duality is recovered when
connecting admittance “qubit” ports to a phase-slip flux qubit described by its loop charge degree of freedom [38–40] in series with a
linear inductor, which is the dual circuit of a capacitive shunted JJ, as well as a current source-admittance representation of the drive
ports.

expansions

Z(s) = A0

s
+ A∞s + B∞ +

∑

β

Aβs + Bβ

ω2
β + s2

,

Y(s) = D0

s
+ D∞s + E∞ +

∑

β

Dβs + Eβ

ω2
β + s2

,
(A1)

where Aα and Dα with α ∈ {0, ∞,β} are N × N real sym-
metric matrices with N the number of ports. Similarly,
Bζ and Eζ with ζ ∈ {∞,β} are N × N real antisymmet-
ric matrices. These matrices are defined from the residues
of the impedance (admittance). Explicitly, we have

A0 = Res[Z(0)], (A2a)

Aβ = 2Re{Res[Z(ωβ)]}, (A2b)
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Bβ = −2ωβIm{Res[Z(ωβ)]}, (A2c)

A∞ = lim
ω→∞

∂Z(ω)
∂ω

= lim
ω→∞

Z(ω)
iω

, (A2d)

B∞ = lim
ω→∞[Z(ω)− iωA∞], (A2e)

where the residue is given by Res[Z(ω0)] = lims→iω0(s −
iω0)Z(s), and Z(ω) ≡ lims→iω Z(s). The same expressions
hold for Dα and Eζ exchanging Z with Y. The synthesis
of these responses can be done using their canonical Cauer
circuit; see Fig. 5(a). We now turn to important facts on
how this synthesis is done.

First, we note that the expansions in Eq. (A1)
are in general valid for any lossless causal lin-
ear response [18]. However, we consider all of the
ports to be capacitively shunted, a physically real-
istic assumption also taken in Ref. [16]. Hence,
from the definition of the impedance matrix Zij (s) =
vi(s)/ij (s)|ik=0 = vc

i (s)/ij (s)|ik=0 with vi(s) the voltage at
port i, ij (s) the current at port j , and vc

i = ici /sCi the volt-
age of the capacitor shunting port i, it follows directly that
lims→∞ Zij (s) = 0. As such, the impedance responses we
will be considering have no poles at infinity and A∞ =
B∞ = 0. Moreover, we define the reciprocal (nonrecipro-
cal) poles with frequencies ωrγ (ωgμ), where 1 ≤ γ ≤ m
(1 ≤ μ ≤ l), as those with zero (nonzero) imaginary part
in their residue; see Eqs. (A2). Doing so, the expansions of
Z and Y read

Z(s) = A0

s
+

m∑

γ=1

Aγ s
ω2

rγ + s2 +
l∑

μ=1

Aμs + Bμ

ω2
gμ + s2 , (A3a)

Y(s) = D0

s
+ D∞s + E∞

+
m∑

γ=1

Dγ s
ω2

rγ + s2 +
l∑

μ=1

Dμs + Eμ

ω2
gμ + s2 . (A3b)

The Cauer decomposition of these responses rests on two
key facts. First, with an appropriate choice of reactive ele-
ments, the circuit poles will be at the same frequencies
as the response poles. Importantly, the minimal number
of reactive elements necessary is directly given by the
rank of the response residues. Second, the residue matri-
ces Aα and Bζ (Dα and Eζ ) encode the topology of the
circuit. This topology is realized in the circuit with the
use of ideal transformer matrices [U, V, R, N in Fig. 5(a)]
and gyrators [18]. An ideal transformer matrix Tb×a is a
constraint between its a primary and b secondary port volt-
ages (va, vb) and currents (ia, ib), such that va = TTvb and
ib = −Tia. An ideal gyrator is a two-port nonreciprocal
constraint relating its left and right port voltages (vl, vr)

and currents (il, ir), such that

(
vl
vr

)
= R

(
0 −1
1 0

)(
il
ir

)
, (A4)

where R is the gyration resistance of the gyrator. In the
nondegenerate case, the rank of each residue at frequencies
ωrγ and ωgμ is one. We elucidate the process of obtaining
explicit expressions for the transformer matrices, gyration
ratios, and reactive element parameters in the subsequent
paragraphs.

We focus first on the impedance response synthesis; see
Fig. 5(a). The transformer matrix U is obtained from the
orthogonal decomposition of A0 = UTC

−1
U. The capac-

itances of the purely capacitive stage are given by the
inverse of the eigenvalues of A0 (the entries of the diag-
onal matrix C). The transformer matrix R is given by
RT = (r1, . . . , rm), where the transformer ratios rγ are
(N × 1) column vectors coupling the external ports with
the inner mode resonators of frequency ωrγ = 1/

√
Crγ Lrγ .

Such ratios are the electrical engineer’s equivalent [49] to
the energy-participation ratios and signs used in Ref. [17].
These transformer ratios are obtained from the residue
matrices Aγ = rγ rT

γ /Crγ . As there is a degree of freedom
in the choice of Crγ , following the standard convention we
set Crγ = 1 and Lrγ = 1/ω2

rγ . Therefore, the transformer
ratios are directly given by the normalized eigenvector
with nonzero eigenvalue (λγ , λγ ) of Aγ as rγ = √

λγλγ ,
and hence have units of [C]−1/2. The transformer matrix
N is given by NT = (nL

1, nR
1 , . . . , nL

l , nR
l ), where the trans-

former ratios nL,R
μ are (N × 1) column vectors coupling the

external ports with the left and right branches of the gyra-
tors, with gyration ratio Rμ capacitively shunted at each
branch with Cgμ , synthesizing the nonreciprocal resonators
of frequency ωgμ = 1/RμCgμ . These transformer ratios
are obtained from both Aμ = [nL

μ(n
L
μ)

T + nT
μ(n

R
μ)

T]/Cgμ

and Bμ = Rμω2
gμ[nR

μ(n
L
μ)

T − nT
μ(n

R
μ)

T]. As before, fol-
lowing standard convention, we set Cgμ = 1 and Rμ =
1/ωgμ . One can show that in the nondegenerate case, the

transformer ratios can be given by nL,R
μ =

√
λ

L,R
μ λL,R

μ ,
where λL,R

μ and λL,R
μ are the normalized eigenvectors with

nonzero eigenvalue of Aμ. In summary, we have

A0 = UTC
−1

U, (A5a)

Aγ = rγ rT
γ , (A5b)

Aμ = nL
μ(n

L
μ)

T + nR
μ(n

R
μ)

T, (A5c)

Bμ = ωgμ[nR
μ(n

L
μ)

T − nL
μ(n

R
μ)

T], (A5d)

RT = (r1, . . . , rm), (A5e)

NT = (nL
1, nR

1 , . . . , nL
l , nR

l ). (A5f)
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For the admittance [see the right panel of Fig. 5(a)], the
synthesis procedure is very similar and we directly provide
the summary

D∞ = VCVT, (A6a)

D0 = UL
−1

UT, (A6b)

Dγ = rγ rT
γ , (A6c)

Dμ = nL
μ(n

L
μ)

T + nR
μ(n

R
μ)

T, (A6d)

Eμ = ωgμ[nL
μ(n

R
μ)

T − nR
μ(n

L
μ)

T], (A6e)

E∞ = N∞YG
∞NT

∞, (A6f)

R = (r1, . . . , rm), (A6g)

N = (nL
1, nR

1 , . . . , nL
l , nR

l ). (A6h)

Here, we have used the convention Lrγ = Lgμ = 1, Crγ =
1/ω2

rγ , and Rμ = ωgμ . The capacitive stage is synthe-
sized analogously as in the impedance case. The inductive
stage is synthesized with the orthogonal transformer matrix
U, and the inductors given by the inverse of the eigen-
values of D0 (i.e., the diagonal entries of L). Similarly,
the transformer ratios are given by rγ = √

λγλγ (nL,R
μ =√

λ
L,R
μ λL,R

μ ), where the λγ (λL,R
μ ) are the normalized eigen-

vectors with nonzero eigenvalue of Dγ (Dμ), and have
dimension [L]−1/2. The nonreciprocal stage E∞ can be for-
mally synthesized with a transformer matrix N∞ and a
set of ideal gyrators represented by the block matrix YG

∞.
However, as we do not need this synthesis for any of our
results, we do not give explicit expressions for it here.

We stress that the transformer (gyration) ratios and
reactive elements for a given admittance and impedance
synthesis when one is the inverse of the other are differ-
ent. We have chosen the same notation for both to make
the duality apparent. However, in general, the inverse of
the impedance (admittance) is not its dual. We now make
this statement more precise. In the context of circuit the-
ory, electromagnetic duality refers to the invariance of
the equations of motion for voltages (v) and currents (i)
under the transformation v → z0i and i → v/z0, where
z0 depends on the units chosen for voltage and currents.
In particular, two immittance responses Z(s) and Yd(s)
are dual if the equations of motion for voltages (v) and
currents (i) at the ports are invariant under the transfor-
mation Z(s) → Yd(s), v → z0i, and i → v/z0. It follows
that Yd(s) = Z(s)/z2

0, where the Cauer representation of
Yd(s) is obtained from the Cauer representation of Z(s),
by changing capacitors to inductors (and vice versa),
transposing the transformer matrices, and using the LC
oscillators’ (gyrators’) admittance instead of impedance
representations.

FIG. 6. Generic two-port circuit coupled through an admit-
tance or impedance response plus direct inductive coupling.
For such circuits, unconstrained Hamiltonian dynamics can be
systematically constructed from the admittance, but not the
impedance, response.

For Josephson junction–based circuits, the shunting
capacitances accompanying these JJs introduce an asym-
metry in the poles between the impedance and admit-
tance approaches [see Eqs. (A3)], therefore breaking elec-
tromagnetic duality between the two approaches. This
leads to the possibility of encountering distinct singular
cases for the admittance and impedance representations
when constructing their respective Lagrangian. We pro-
ceed to show that this is indeed the case. Let us focus
first on the singular cases of circuits in which the exter-
nal ports are shunted by dipoles described by their flux
degree of freedom. In this context, the kinetic matrix
of the Lagrangian derived from the Cauer representa-
tion of the impedance (admittance) will be singular if
A0 (D∞) is singular. Specifically, circuits featuring direct
inductive coupling (as depicted in Fig. 6) between qubit
ports render A0 singular. This can be proven using the
current-voltage relation between the inductor ports, which
implies that, for dc current, the voltage drop across the
inductor is zero and thus acts as a short circuit between
the ports equaling their voltages. That is, lims→0 v1 =
lims→0 v2 implies that lims→0 Z1j (s) = lims→0 v1/ij |ik=0 =
lims→0 v2/ij |ik=0 = lims→0 Z2j (s) for all j . In other words
A0 = lims→0 sZ(s) has two linearly dependent rows and
is singular. Note that this statement is true even in the
presence of a parallel (shunting) capacitor to Lc. By the
same token, if there is a shunting inductance on port i
then lims→0 vi = 0, implying that (A0)ij = 0 for all j and
A0 is singular. However, this last case can be remedied
by extracting the shunting inductance out of the response
and dressing the bare inductance of the dipole with it. In
contrast, within the admittance framework, D∞ will
always be full rank due to the shunting capacitances at
the ports; hence, the derived Lagrangian is not singu-
lar and derivation of the corresponding Hamiltonian and
subsequent quantization can always be done.

Finally, we note that, thanks to electromagnetic duality,
our results extend to weakly anharmonic qubits described
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by their (loop) charge degree of freedom such as the
phase-slip flux qubit [38–40,50]. This is so because
the dual circuit of an impedance shunted by Josephson
junctions in parallel with capacitors corresponds to its dual
admittance with the ports shunted by phase slips in series
with inductors; see Fig. 5(b). Therefore, the formulas
found in this work for qubits described by their flux degree
of freedom can be easily adapted to the case where the
qubits are described by their loop charge degree of free-
dom. Singular cases for loop charge-based circuits are dual
to those presented above.

APPENDIX B: SYMPLECTIC
SCHRIEFFER-WOLFF TRANSFORMATION

Here, we develop a form of symplectic perturbation
theory in classical phase-space analogous to the standard
quantum Schrieffer-Wolff perturbation theory [51]. Con-
sider a Hamiltonian H defined by the quadratic form H
as

H = 1
2

XTHX, (B1)

where X is the vector of generalized phase-space coordi-
nates. Without loss of generality, we divide it into two
sectors A and B such that XT = (xT

A, pT
A, xT

B, pT
B), where

position and momenta obey the standard Poisson bracket
{xa, pb} = δa,b. With this division, the quadratic form H in
block form reads

H =
(

HA HAB
HT

AB HB

)
. (B2)

Consequently, its symplectic form J is also in block form,
i.e.,

J =
(

JA 0
0 JB

)
(B3)

with

JA =
(

0 1n
−1n 0

)
, JB =

(
0 1m

−1m 0

)
, (B4)

where n (m) corresponds to the number of conjugate pair
variables in A (B). The equations of motion of the sys-
tem read Ẋ = JHX [52]. We are seeking a symplectic

transformation S that block diagonalizes H,

(ST)−1HS−1 ≡ H̃ =
(

H̃A 0
0 H̃B

)
, (B5)

with X̃ = SX the transformed coordinates, such that the
Hamiltonian now reads

H = 1
2

XTHX = 1
2

X̃TH̃X̃. (B6)

This symplectic transformation must satisfy SJST = J
and, for any symmetric matrix A, it must hold that S =
exp(AJ) is a symplectic transformation [52]. Thus, any
symmetric matrix A is a generator of symplectic transfor-
mations, and we are interested in generator A such that
Eq. (B5) is satisfied.

Because (ST)−1HS−1 = exp(JA)H exp(−AJ), we can-
not use the well-known Baker-Campbell-Hausdorff
expansion of exp(B)H exp(−B) to directly evaluate the
transformation. Instead, we use the general expansion

exp{D}H exp{B} =
∞∑

n=0

1
n!

n∑

k=0

(
n
k

)
Dn−kHBk. (B7)

Substituting with JA = D and −AJ = B we have

H̃ =
∞∑

n=0

1
n!

n∑

k=0

(
n
k

)
(−1)k(JA)n−kH(AJ)k. (B8)

Furthermore, we define the transpose anticommutator of
two matrices {D, B}T ≡ DB + BTDT. With this notation,
we can show that

{D, . . . , {D,︸ ︷︷ ︸
n times

B}T, . . . }T =
n∑

k=0

(
n
k

)
(D)n−kB(DT)k

≡ {D, B}(n)T , (B9)

which can be easily proved by induction. As (JA)T =
−AJ, it follows that

H̃ =
∞∑

n=0

1
n!

{JA, H}(n)T . (B10)

Now, we write the off-diagonal block of H coupling the
two sectors as HAB ≡ λHAB with λ the customary pertur-
bation parameter. Additionally, we express the block diag-
onal quadratic forms as HA = H(0)

A + λH′
A, where H(0)

A and
λH′

A correspond to its diagonal and nondiagonal entries
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within that sector, respectively. With similar expressions
for sector B, we have

H =
(

H(0)
A + λH′

A 0
0 H′

B + λH(1)
B

)
+ λ

(
0 HAB

HT
AB 0

)

≡ H(0) + λH′
D + λHND. (B11)

As is customary, we also expand A as a power series in λ:

A =
∞∑

n=1

λnA(n). (B12)

Substituting Eqs. (B11) and (B12) into Eq. (B10) while
also imposing condition (B5), we obtain the set of equa-
tions for generator A order by order:

{JA(1), H(0)}T = −HND, (B13a)

{JA(2), H(0)}T = −{JA(1), H′
D}T, (B13b)

and so on. These expressions are analogous to those
obtained for the standard quantum Schrieffer-Wolff trans-
formation [53]. Using these results, we find that the trans-
formed quadratic form of the Hamiltonian up to third order
in λ reads

H̃ = H(0) + λH′
D + λ2

2
{JA(1), HND}T

+ λ3
[
{JA(2), HND}T + 1

2
{JA(1), H′

D}(2)T

]
. (B14)

Thus, up to second order in λ, only the first-order generator
is needed. From Eq. (B13b), we have A(2) = 0 (A(2) �= 0)
if H′

D = 0 (H′
D �= 0), and therefore taking into account

only the first-order generator the expansion of H̃ will be
accurate up to fourth (third) order in λ.

To solve Eq. (B13a) and find A(1), note that its diagonal
(even) sector will be zero and only its nondiagonal (odd)

block sector will be nonzero, and therefore we let

A(1) =
(

0 A(1)
AB

(A(1)
AB)

T 0

)
, (B15a)

A(1)
AB =

(
A(1)

xaxb
A(1)

xapb

A(1)
paxb

A(1)
papb

)
. (B15b)

We also write

HAB =
(

Kxaxb Kxapb
Kpaxb Kpapb

)
, (B16a)

H(0)
A = diag(wa

x1, . . . , wa
xn, wa

p1, . . . , wa
pn), (B16b)

where we have chosen the dimension of all the entries to be
of frequency for reasons that will become apparent below.
Substituting Eqs. (B4), (B15), and (B16b) into Eq. (B13a)
and setting the perturbation parameter λ = 1, we find after
some algebraic manipulations that

(A(1)
xaxb

)α,β = �−1
α,β(w

a
pαKα,β

xapb
− wb

pβKα,β
paxb

), (B17a)

(A(1)
xapb

)α,β = �−1
α,β(−wa

pαKα,β
xaxb

− wb
xβKα,β

papb
), (B17b)

(A(1)
paxb

)α,β = �−1
α,β(w

a
xαKα,β

papb
+ wb

pβKα,β
xaxb

), (B17c)

(A(1)
papb

)α,β = �−1
α,β(−wa

xαKα,β
paxb

+ wb
xβKα,β

xapb
), (B17d)

where�α,β ≡ wa
xαwa

pα − wb
xβwb

pβ = w2
α − ω2

β with wα (ωβ)
the oscillation frequency associated with the conjugate pair
xα , pα (xβ , pβ) when only H(0) is considered. As usual, we
call these frequencies the bare frequencies of the problem.
Here Kα,β

xaxb is the α,β entry of Kxaxb . The above expressions
for the first-order generator of the transformations gives us
the perturbative criteria

k
�ab

� 1, (B18)

where k is the largest entry of matrix H − H(0) and �ab is the smallest frequency gap |wa
α − wb

β | between the
bare oscillators in subsectors A, B. Continuing with the general derivation, we substitute Eqs. (B17) into Eq. (B11)
and, after some algebra, we obtain the corrections up to O(k3/�2

ab) of the quadratic forms of both subsectors A, B:

(H̃A
xx)α,α′ = 1

2

m∑

β=1

{(
wpβKα,β

xaxb
Kα′,β

xaxb
+ wxβKα,β

xapb
Kα′,β

xapb

)[
1

�α,β
+ 1
�α′,β

]
+ wxα

�α,β

(
Kα,β

papb
Kα′,β

xaxb
− Kα,β

paxb
Kα′,β

xapb

)

+ wxα′
�α′,β

(
Kα′,β

papb
Kα,β

xaxb
− Kα′,β

paxb
Kα,β

xapb

)}
, (B19a)
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(H̃A
xp)α,α′ = 1

2

m∑

β=1

{(
wpβKα,β

xaxb
Kα′,β

paxb
+ wxβKα,β

xapb
Kα′,β

papb

)[
1

�α,β
+ 1
�α′,β

]
+ wxα

�α,β

(
Kα,β

papb
Kα′,β

paxb
− Kα,β

paxb
Kα′,β

papb

)

+ wqα′
�α′,β

(
Kα′,β

xaxb
Kα,β

xapb
− Kα′,β

xapb
Kα,β

xaxb

)}
, (B19b)

(H̃A
pp)α,α′ = 1

2

m∑

β=1

{(
wpβKα,β

paxb
Kα′,β

paxb
+ wxβKα,β

papb
Kα′,β

papb

)[
1

�α,β
+ 1
�α′,β

]
+ wpα

�α,β

(
Kα,β

xaxb
Kα′,β

papb
− Kα,β

xapb
Kα′,β

paxb

)

+ wpα′
�α′,β

(
Kα′,β

xaxb
Kα,β

papb
− Kα′,β

xapb
Kα,β

paxb

)}
. (B19c)

To obtain the corrections to H̃B, we simply exchange
α with β, m with n, and use KT in the above formulas.
For H̃A

xp , the diagonal entry corrections α = α′ are equal to
zero.

1. Example of a symplectic SW transformation

As a simple example, take three LC oscillators. Two
of the oscillators are nonreciprocally coupled to the third
oscillator via gyrators. Moreover, all three oscillators are
capacitively coupled. Writing the Lagrangian using the
flux variable on the inductances of the oscillators one
readily obtains the Hamiltonian

H =
∑

i

[
qA

i
2

2Ci
+ φA

i
2

2Li

]
+ qB

1
2

2C3
+ φB

1
2

2L3
+ qA

1 qA
2

Ck

+
∑

i

[
qA

i qB
1

Ck

]
+ qA

1 qA
2

Ck
+

∑

i

kg(φ
A
i qB

1 − qA
i φ

B
1 ),

(B20)

where i ∈ {1, 2}. The phase space variables respect the
Poisson brackets {φa

i , qb
j } = δij δab, and thus we identify

φ → x, q → p . The forms of parameters Ci, Li, Ck, kg can
be easily obtained following the standard approach [27].

Organizing the phase-space coordinate vector as X =
(φA

1 ,φA
2 , qA

1 , qA
2 ,φB

1 , qB
1 )

T, and rescaling them such that
φi → φi/

√
zi, qi → qi

√
zi with zi = √

Li/Ci, the quadratic
and symplectic forms read

H =
(

HA HAB
HT

AB HB

)
, J =

(
JA 0
0 JB

)
, (B21a)

with

HA =

⎛

⎜⎜⎝

ωA
1 0 0 0

0 ωA
2 0 0

0 0 ωA
1 kq

0 0 kq ωA
2

⎞

⎟⎟⎠ , HB = ωB
112, (B21b)

HAB =

⎛

⎜⎜⎜⎜⎝

0 k1,1
φaqb

0 k2,1
φaqb

−k1,1
qaφb

k1,1
qaqb

−k2,1
qaφb

k2,1
qaqb

⎞

⎟⎟⎟⎟⎠
, (B21c)

JA =
(

0 12
−12 0

)
, JB =

(
0 1

−1 0

)
. (B21d)

Here, we have defined ωA
i = 1/

√
LiCi, ωB

1 = 1
√

L3C3,
kq = 1/

√
z1z2Ck, ki,1

qaqb
= 1/

√
ziz3Ck, ki,1

φaqb
= √

zi/z3kg ,
and ki,1

qaφb
= √

z3/zikg .
Using these expressions, we can now obtain the per-

turbative corrections from Eqs. (B19) to find the effective
quadratic form of sector A:

(H̃A
φφ)i,j = 1

2
ωB

1 ki,1
φaqb

kj ,1
φaqb

[
1
�i,1

+ 1
�j ,1

]

− ωA
i

2�i,1
ki,1

qaφb
kj ,1
φaqb

− ωA
j

2�j ,1
kj ,1

qaφb
ki,1
φaqb

, (B22a)

(H̃A
φq)i,j = 1

2
ωB

1 ki,1
φaqb

kj ,1
qaqb

[
1
�i,1

+ 1
�j ,1

]

+ ωA
i

2�i,1

(
ki,1

qaqb
kj ,1

qaφb
− ki,1

qaφb
kj ,1

qaqb

)
, (B22b)

(H̃A
qq)i,j = ωB

1

2
(ki,1

qaφb
kj ,1

qaφb
+ ki,1

qaqb
kj ,1

qaqb
)

[
1
�i,1

+ 1
�j ,1

]

− ωA
i

2�i,1
ki,1
φaqb

kj ,1
qaφb

− ωA
j

�j ,1
kj ,1
φaqb

ki,1
qaφb

+ kq(1 − δi,j ), (B22c)
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with �i,1 = [(ωA
i )

2 − (ωB
1 )

2]. For these expressions to be
accurate, the perturbative criteria

max(ki,1
qaφb

, ki,1
qaqb

, ki,1
φaqb

, kq)

min(|ωA
i − ωB

1 |) � 1 (B23)

must be satisfied.
For the sake of completeness, let us briefly com-

ment on the connection of this approach to the stan-
dard quantum SW method used in Ref. [16]. There, due
to the presence of just a reciprocal (capacitive) connec-
tion, only flux-flux coupling terms had to be consid-
ered. Explicitly, after arranging the phase-space coordi-
nates as XT = (�T

a , �T
b , qT

a , qT
b), the quadratic form has the

structure

H =

⎛

⎜⎜⎝

�A Kφφ 0 0
KT
φφ �B 0 0
0 0 �A 0
0 0 0 �B

⎞

⎟⎟⎠ (B24)

with �A (�B) the normal mode frequencies of sector
A (B). With the rescaling φi → φi/

√
wi, qi → qi

√
wi, the

quadratic form is

H =

⎛

⎜⎜⎝

�2
A Mφφ 0 0

MT
φφ �2

B 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠ . (B25)

It follows that S will be both symplectic and orthogonal,
and Eqs. (B19) reduce to

(H̃A
φφ)α,α′ = 1

2

m∑

β=1

Mα,β
φφ Mα′,β

φφ

[
1

�α,β
+ 1
�α′,β

]
, (B26)

which is the same as Eq. (B.15) of Ref. [53]. Yet, in
scenarios involving both flux-flux and charge-charge cou-
plings, or flux-charge couplings, as shown here, Eqs. (B19)
deviate from conventional SW formulas.

APPENDIX C: DERIVATION OF THE MAIN
RESULTS INCLUDING DIRECT CAPACITIVE,

INDUCTIVE, AND NONRECIPROCAL
COUPLINGS

In this appendix, we obtain the effective Lindbla-
dians and Hamiltonians for the general case with
direct electrostatic and inductive coupling between the
ports. In the closed system, we introduce two different
approaches to include the direct capacitive (electrostatic)
and inductive (magnetostatic) couplings. First, for the
admittance (impedance) representation, in Appendix C 1
(Appendix C 3), we apply a numerical diagonalization of

both the kinetic and inductive matrices of the junction
sector and then decouple qubit modes from inner modes
using SW perturbation theory. Second, in Appendix C 2
(Appendix C 4) we obtain analogous coupling formulas by
treating the direct couplings as a perturbation. The main
advantage of the first method is that strong direct electro-
static and/or magnetostatic coupling can be accounted for
exactly, but at the cost of dressing the modes, something
which can potentially obscure the nonreciprocal coupling
between the external ports.

Subsequently, our focus shifts towards the derivation
of the perturbative dissipative contribution of the drive
ports by deriving closed admittance and impedance for-
mulas for the correlated decay rates in Appendices C 5 and
C 6, respectively. Finally, we compute the drive amplitudes
and classical crosstalks for the admittance (impedance)
representation in Appendix C 7 (Appendix C 8). To help
the reader navigate this appendix, Table I summarizes
some of the important definitions and the notation that is
used.

1. Admittance coupling formulas with numerical
diagonalization of direct coupling

We start by deriving the effective Hamiltonian from
the admittance response. Here, and up to Appendix C 5,
we will not consider the drive ports. Using the
Cauer circuit representation of the admittance, explained
in detail in Appendix A, we obtain the system of
equations

−iJ = OCiC + OLiL + RJ iR + NJ iG + N∞iG∞ , (C1a)

vC = OT
CvJ , (C1b)

vL = OT
LvJ , (C1c)

vR = RT
J vJ , (C1d)

vG = NT
J vJ , (C1e)

vG∞ = NT
∞vJ , (C1f)

where vx, ix with x = j , r, c, l corresponding to the voltage
and current vectors of the junctions, reciprocal resonators,
capacitors, and inductors, respectively. Vectors vG, iG,vG∞ ,
iG∞ correspond to the currents and voltages for the left-
right branches of each gyrator vG = (vL

g1
, vR

g1
, . . . , vL

gl
, vR

gl
).

Moreover, OC, OL, N∞, RJ = (r1, . . . , rm), and NJ =
(nL

1, nR
1 , . . . , nL

l , nR
l ) are the transformer matrices defined in

terms of the admittance response of the junction sector; see
Eqs. (A6). Here, we changed the notation of Appendix A,
U → OL and V → OC, for two reasons. First, to make
more apparent their orthogonality, and second, to stress
the difference with the full orthogonal decomposition of
D∞ = VCVT (D0 = UL

−1
UT) when the dissipative ports

are included. This will be important in Appendices C 5 to
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TABLE I. Summary of definitions and notation.

A−1
0 =

(
CJ CJD
CT

JD CD

)
D∞ =

(
CJ CJD
CT

JD CD

)

A∞ = 0 D0 =
(

L−1
J L−1

JD

(L−1
JD )

T L−1
D

)

B∞ = 0 E∞ =
(

YG
J YG

JD

−(YG
JD)

T YG
D

)

ZR(s) = [Z(s)+ Z(s)T]/2 YR(s) = [Y(s)+ Y(s)T]/2

ZNR(s) = [Z(s)− Z(s)T]/2 YNR(s) = [Y(s)− Y(s)T]/2
Zac(s) = ∑

β (Aβs + Bβ)/

(ω2
β + s2)

Yac(s) = ∑
β (Dβs + Eβ)/

(ω2
β + s2)

Zac,R(s) =
[Zac(s)+ Zac(s)T]/2

Yac,R(s) =
[Yac(s)+ Yac(s)T]/2

Zac,NR(s) =
[Zac(s)− Zac(s)T]/2

Yac,NR(s) =
[Yac(s)− Yac(s)T]/2

Zdc(s) = A0/s Ydc(s) =
D0/s + sD∞ + E∞

Zdrive(s) = Z0 + C−1
D /s Ydrive(s) =

Z−1
0 + sCD + L−1

D /s

Aγ = rγ rT
γ /Crγ Dγ = rγ rT

γ /Lrγ

RT =
(

RT
J

RT
D

)
= (r1, . . . , rm) R =

(
RJ

RD

)
= (r1, . . . , rm)

NT =
(

NT
J

NT
D

)
= (nL

1 , . . . , nR
l ) N =

(
NJ

ND

)
= (nL

1 , . . . , nR
l )

T = (TJ , TD), TJ = (RJ , NJ ), TD = (RD, ND)

Aμ = [nL
μ(n

L
μ)

T + nR
μ(n

R
μ)

T]/Cgμ

Bμ = Rgμω
2
gμ [nR

μ(n
L
μ)

T − nL
μ(n

R
μ)

T]

Dμ = [nL
μ(n

L
μ)

T + nR
μ(n

R
μ)

T]/Lgμ

Eμ = ωg2
μ
[nL
μ(n

R
μ)

T − nR
μ(n

L
μ)

T]/Rμ

(̃LJ )ij = δij L̃Ji , L̃Ji = φ2
0/EJi

CJδ = diag CJ , L−1
Jδ = diag L−1

J

(�̃J )ij = δij ω̃i, ω̃i = 1/
√

L̃Ji CJi

C 8. With an appropriate choice of flux and charge coor-
dinates, we obtain a Lagrangian describing the dynamics
of the circuit [28]. For junctions, capacitors, inductors,
and pure gyrators, we use flux variables in writing the
Lagrangian. On the other hand, for the reciprocal and non-
reciprocal resonators, we use charge variables. With this
choice, Eqs. (C1) read

−∂U(�J )

∂�J
= OC(CJ �̈C)+ OL(L

−1
J �L)

+ RJ Q̇R + NJ Q̇G + N∞YG
∞�̇G∞ , (C2a)

�̇C = OT
C�̇J , (C2b)

�̇L = OT
L�̇J , (C2c)

Q̈R + C−1
r QR = RT

J �̇J , (C2d)

Q̈G + ZgQ̇G = NT
J �̇J , (C2e)

�̇G∞ = NT
∞�̇J . (C2f)

In these expressions, CJ , L
−1
J , and Cr are diagonal matri-

ces with entries CJi , LJi , Crγ respectively. Moreover, YG
∞

is the admittance matrix of the ideal gyrators, and Zg
the impedance matrix of those forming the nonreciprocal
resonators

YG
∞ =

⎛

⎜⎝
iσyR1 0

. . .
0 iσyRk

⎞

⎟⎠ , (C3a)

Zg =

⎛

⎜⎝
−iσy/R1 0

. . .
0 −iσy/Rl

⎞

⎟⎠ = −i�g�y ,

(C3b)

�α =

⎛

⎜⎝
σα 0

. . .
0 σα

⎞

⎟⎠ , (C3c)

�g =

⎛

⎜⎝
ωg112 0

. . .
0 ωgl12

⎞

⎟⎠ , (C3d)

where, as above, we have used Lgμ = 1, implying that
ωgμ = 1/Rμ, and σα corresponds to the Pauli matrix α =
x, y, z. Substituting Eqs. (A6) into Eqs. (C2) and rearrang-
ing we obtain the set of equations

−∂U(�J )

∂�J
= L−1

J �J + CJ �̈J + TJ Q̇ + YG
J �̇J , (C4a)

Q̈R = RT
J �̇J − C−1

r QR, (C4b)

Q̈G = NT
J�J − ZgQ̇G. (C4c)

These Euler-Lagrange equations can be obtained from the
Lagrangian

L = 1
2
�̇T

J CJ �̇J − 1
2
�T

J L−1
J �J − U(�J )

+ 1
2
�̇T

J YG
J �J + �̇T

J TJ Q

+ 1
2

Q̇TQ̇ − 1
2

QTC−1
I Q + 1

2
Q̇TZeQ

(C5)

with QT = (QT
R, QT

G) the charges of the reciprocal
and nonreciprocal inner mode resonators, respectively,
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TJ = (RT
J , NT

J )
T the transformer matrix, and

CI =
(

Cr 0
0 0

)
,

Ze =
(

0 0
0 Zg

)
.

(C6)

Assuming that CJ is not singular, we immediately obtain
the classical Hamiltonian

H = 1
2
(
qJ − 1

2
YG

J �J − TJ Q
)T

C−1
J

(
qJ − 1

2
YG

J �J − TJ Q
)

+ 1
2
�T

J L−1
J �J + U(�J )

+ 1
2
(
� − 1

2
ZeQ

)T(
� − 1

2
ZeQ

) + 1
2

QTC−1
I Q,

(C7)

where qJ , � are the conjugate momenta of �J , Q, respec-
tively, with Poisson brackets {�J , qT

J } = 1n, {Q,�T} =
1m+2l, where n, m (l) are the numbers of qubit ports and
reciprocal (nonreciprocal) resonator modes, respectively;
see Eqs. (A3).

Linearizing the junction potential, we write the linear
part of the Hamiltonian in Eq. (C7) as H = XTHX/2, with
XT = (�T

J , qT
J , QT,�T) and the quadratic form

H =
(

HJ K
KT HI

)
, (C8a)

where

HJ =
(

L−1
J + L̃−1

J + (YG
J )

TC−1
J YG

J /4 YG
J C−1

J /2
C−1

J (YG
J )

T/2 C−1
J

)
,

(C8b)

HI =
(

ZT
e Ze/4 + CI + O(T2

J ) Ze/2
ZT

e /2 1m+2l

)
, (C8c)

K =
( O(T2

J ) 0
−C−1

J TJ 0

)
. (C8d)

In these expressions, L̃J is the diagonal matrix with entries
LJi = φ2

0/EJi obtained from the linear part of U(�J ),
with φ0 = �/2e the reduced flux quanta. We assume that
||TJ || ∼ ||YG

J || and ignore the second-order terms in the
coupling O(T2

J ), as they give rise to third- and higher-order
corrections. Furthermore, from now on, we also ignore
the second-order terms in the inner mode sector as these
would give fourth- and higher-order corrections in the
effective junction sector Hamiltonian after the symplectic
Schrieffer-Wolff block diagonalization; see Appendix B for
details.

For clarity, we separate the nonreciprocal sector from
the reciprocal sector of the inner modes H = XTHX/2
with XT = (�T

J , qT
J , QT

R,�T
r , QT

G,�T
g),

HI =
(

Hr 0
0 Hg

)
, (C9a)

Hr =
(
�2

r 0
0 1m

)
, (C9b)

Hg =
(

ZT
gZg/4 Zg/2
ZT

g/2 12l

)
, (C9c)

and the coupling matrix to first order then becomes

K =
(

0 0 0 0
−C−1

J RJ 0 −C−1
J NJ 0

)
. (C10)

Since every gyrator imposes a constraint in phase space,
there is only one dynamical pair of conjugate variables
(instead of two) per capacitor-gyrator-capacitor circuit. In
other words, we have redundant nondynamical variables
in the above Hamiltonian; see Ref. [28] for further details.
In Appendix D we exactly eliminate these nondynami-
cal modes to obtain a Hamiltonian that can be imme-
diately quantized. Here, we take an alternative approach
and approximately eliminate these nondynamical modes,
ignoring the second-order terms in the inner mode sector.
To second order in perturbation theory, both the exact and
the approximate eliminations give the same result.

Continuing our derivation, we now proceed with the
approximate elimination of the nondynamical modes with
the symplectic transformation

SI =
(

Sr 0
0 Sg

)
, (C11a)

Sr =
(
�

1/2
r 0
0 �

−1/2
r

)
, (C11b)

Sg =
(
12l/2 −�x
�x/2 12l

)(
�

1/2
g 0
0 �

−1/2
g

)
. (C11c)

For convenience, we have rescaled the inner modes such
that every entry in the transformed quadratic form has
dimensions of frequency. By mixing charge and fluxes of
the nonreciprocal resonators, Sg diagonalizes the nonre-
ciprocal sector and decouples dynamical from nondynam-
ical modes. Indeed, we have

(ST
g)

−1HgS−1
g ≡ Hg =

(
�g 0
0 �g

)
, (C12a)

�g =

⎛

⎜⎝
ωg1(12 + σz)/2 0

. . .
0 ωgl(12 + σz)/2

⎞

⎟⎠ .

(C12b)
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The flux-flux and charge-charge subsectors of HJ are
diagonalized with the additional symplectic transformation

SJ =
(
�

1/2
J OT

�C
1/2
J OT

C 0

0 �
−1/2
J OT

�C
−1/2
J OT

C

)
, (C13)

where O� is the orthogonal matrix that diagonalizes
C

−1/2
J OT

C(L
−1
J + L̃−1

J )OCC
−1/2
J , such that the dressed fre-

quencies of the junction sector due to the direct coupling
between junction ports excluding the coupling from YG

J are

�
2
J = OT

�C
−1/2
J OT

C(L
−1
J + L̃−1

J )OCC
−1/2
J O�. (C14)

After this transformation, the quadratic form in the junc-
tion sector (ST

J )
−1Hj S−1

J ≡ Hj reads

Hj =
(

�J +�YG
J

�
−1/2
J Y

G
J �

1/2
J /2

�
1/2
J (Y

G
J )

T�
−1/2
J /2 �J

)
, (C15a)

Y
G
J ≡ OT

�C
−1/2
J OT

CYG
J OCC

−1/2
J O�, (C15b)

with �YG
J

= �
−1/2
J (Y

G
J )

TY
G
J �

−1/2
J /4. Applying both trans-

formations,

S =
(

SJ 0
0 SI

)
, (C16)

we get the quadratic form

(ST)−1HS−1 ≡ H =

⎛

⎜⎝
Hj Kr Kg

K
T
r Hr 0

K
T
g 0 Hg

⎞

⎟⎠ , (C17a)

where

Kr =
(

0 0
KqQ

r 0

)
, (C17b)

Kg =
(

0 0
KqQ

g Kq�
g

)
, (C17c)

and

KqQ
r = −�1/2

J RJ�
−1/2
r , (C17d)

KqQ
g = −�1/2

J NJ�
−1/2
g , (C17e)

Kq�
g = −�1/2

J NJ�x�
−1/2
g , (C17f)

RJ = OT
�C

−1/2
J OT

CRJ , (C17g)

NJ = OT
�C

−1/2
J OT

CNJ . (C17h)

To get the effective junction sector Hamiltonian up to sec-
ond order in the couplings, we can now directly apply our
Eqs. (B19) derived in Appendix B. Doing so, we obtain
the effective quadratic form of the junction sector H̃J with
entries

(H̃qq
J )ij = δijωi + 1

2

m∑

γ=1

ωrγ (K
qQ
r )i,γ (KqQ

r )j ,γ

[
1
�i,γ

+ 1
�j ,γ

]

+ 1
2

2l∑

β=1

ωgβ [(KqQ
g )i,β(KqQ

g )j ,β + (Kq�
g )i,β(Kq�

g )j ,β]
[

1
�i,β

+ 1
�j ,β

]
, (C18a)

(H̃φq
J )ij = 1

2

2l∑

β=1

ωi

�i,β
[(Kq�

g )i,β(KqQ
g )j ,β − (KqQ

g )i,β(Kq�
g )j ,β)] + 1

2

√
ωj

ωi
(Y

G
J )ij , (C18b)

(H̃φφ
J )ij = δijωi + (�YG

J
)ij , (C18c)

where ωi are the diagonal entries of �J , and �i,γ = ω2
i −

ω2
rγ , �i,β = ω2

i − ω2
gβ . Moreover, ωgβ is the βth diago-

nal entry of �g , which, for odd β, is the nonrecipro-
cal oscillator frequency ωgβ = ωgμ with μ = (β + 1)/2,

while ωgβ = 0 for even β. From Eqs. (C17) we have

(KqQ
r )i,γ = −

√
ωi/ωrγ (rγ )i, (C19a)
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(KqQ
g )i,β =

{
−√

ωi/ωgμ(n
L
μ)i for odd β,

−√
ωi/ωgμ(n

R
μ)i for odd β,

(C19b)

(Kq�
g )i,β =

{
−√

ωi/ωgμ(n
R
μ)i for odd β,

−√
ωi/ωgμ(n

L
μ)i for odd β,

(C19c)

where rγ , nμ are the row vectors of R, N, and μ = (β +
1)/2 (μ = β/2) for odd (even) β. Substituting Eqs. (C18)
into Eqs. (C19) and rearranging the terms we obtain

(H̃qq
J )ij = δijωi

+
√
ωiωj

2

m∑

γ=1

(rγ )i(rγ )j

[
1
�i,γ

+ 1
�j ,γ

]

+
√
ωiωj

2

l∑

μ=1

{
[(nL

μ)i(n
L
μ)j + (nR

μ)i(n
R
μ)j ]

×
[

1
�i,μ

+ 1
�j ,μ

]}
, (C20a)

(H̃φq
J )ij = 1

2

√
ωj

ωi
(E∞)ij

+
√
ωiωj

2

l∑

μ=1

{
[(nL

μ)i(n
R
μ)j − (nR

μ)i(n
L
μ)j ]

× 1
ωgμ

[
1
ωi

− ωi

�i,μ

]}
.

(C20b)

Once again, rearranging and substituting Eqs. (A6) into
Eqs. (C20) (remembering our choice of Lgμ = Lrγ = 1) we
get

(H̃qq
J )ij = δijωi

+ i
2

√
ωiωj

[Y
ac,R
ij (ωi)

ωi
+ Y

ac,R
ij (ωj )

ωj

]
, (C21a)

(H̃φq
J )ij = 1

2

√
ωj

ωi
Y

NR
ij (ωi), (C21b)

with

Y(s) = OT
�C

−1/2
J OT

CY(s)OCC
−1/2
J O�, (C22a)

Y
ac,R

(s) =
∑

γ

Dγ s
ω2

rγ + s2 +
∑

μ

Dμs
ω2

gμ + s2 , (C22b)

Y
NR
(s) = E∞ +

∑

μ

Eμ

ω2
gμ + s2 , (C22c)

Dγ (μ) = OT
�C

−1/2
J OT

CDγ (μ)OCC
−1/2
J O�, (C22d)

Eμ(∞) = OT
�C

−1/2
J OT

CEμ(∞)OCC
−1/2
J O�. (C22e)

Hence, the classical effective Hamiltonian for the junction
sector will be

H̃J = 1
2

∑

i

[ωi(φ̃
2
i + q̃2

i )− Im{Yac,R
ij (ωi)}̃q2

i ]

+
∑

i�=j

( (�YG
J
)ij

2
φ̃iφ̃j + (H̃qq

J )ij

2
q̃ĩqj

+ (H̃φq
J )ij φ̃ĩqj

)
+ Unl(φ̃, q̃), (C23)

where Unl(φ̃, q̃) stands for the nonlinear part of the junction
potential, now a function of both flux and charges in this
new frame. These final frame coordinates are connected to
the original ones through the transformation

X̃ = SSWSX. (C24)

How to obtain SSW to any desired order is explained in
Appendix B. Promoting the classical variables to quantum
operators (� = 1)

φ̃i = (b̂†
i + b̂i)/

√
2, (C25a)

q̃i = i(b̂†
i − b̂i)/

√
2, (C25b)

rearranging, and applying the rotating-wave approxima-
tion, we finally obtain the effective quantum Hamiltonian

ĤJ =
∑

i

(
ωi − Im[Y

ac,R
ii (ωi)]
2

)
b̂†

i b̂i

+
∑

i�=j

(Jij b̂ib̂
†
j + J ∗

ij b̂†
i b̂j )+ Unl(φ̃, q̃) (C26)

with

Jij = i
4

√
ωiωj

[Y
�

ij (ωi)

ωi
+ Y

�

ij (ωj )

ωj

]

+ [(Y
G
J )

TY
G
J ]ij

8
√
ωiωj

, (C27)
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where Y
�
(s) = Y

ac,R
(s)+ Y

NR
(s). When including the

nonlinearities, the correction to the frequencies done in the
main text [Eq. (6)] will hold to first order if the nondiagonal
elements of the OC (OL) transformations are in the same
order as the transformer ratios. If that is not the case, a fully
numerical treatment of the nonlinearities can be done in a
systematic manner; see Appendix E for details. Finally, in
the case with neither direct capacitive, inductive, or non-
reciprocal coupling (OC = OL = O� = 1n, YG

J = 0) we
obtain Eq. (7) of the main text.

2. Fully perturbative admittance coupling formulas

We now proceed to derive the effective Hamiltonian for
the qubit sector, treating the direct coupling between qubit
ports as a perturbation. We let L−1

Jδ (C−1
Jδ ) and L−1

Jχ (C−1
Jχ )

respectively be the diagonal and off-diagonal entries of L−1
J

(C−1
J ). We treat these off-diagonal terms as first-order per-

turbations. The derivation follows the same steps as above
up to Eqs. (C12) and, as a result, the quadratic form of the
junction sector reads

HJ =
(

L
−1
J + L−1

Jχ YG
J C−1

J /2
C−1

J (YG
J )

T/2 C−1
Jδ + C−1

Jχ

)
, (C28)

where

L
−1
J = L̃−1

J + L−1
Jδ . (C29)

Hence, following Appendix B we simply add the direct
couplings at the end of our perturbative treatment to obtain
the effective Hamiltonian for the junction sector. Now,
instead of transforming the junction sector with Eq. (C13)
we simply rescale it with

SJ =
(

G
1/2
J 0

0 G
−1/2
J

)
, (C30)

where GJ = (CJδ /LJ )
1/2. Thus, for the rescaled junction

sector, we have

HJ = [(SJ )
T]−1HJ S

−1
J

=
(
�J +�Lχ +�YG

J
Kφq/2

KT
φq/2 �J +�Cχ

)
(C31)

with �J = (LJ CJδ )
−1/2,

�Lχ = �
−1/2
J C−1/2

Jδ L−1
Jχ C−1/2

Jδ �
−1/2
J , (C32a)

�Cχ = �
1/2
J C1/2

Jδ C−1
Jχ C1/2

Jδ �
1/2
J , (C32b)

�YG
J

= �
−1/2
J (YG

J )
TYG

J �
−1/2
J /4, (C32c)

and

Kφq = G
−1/2
J YG

J C−1
J G

1/2
J

= �
−1/2
J Y

G
J �

1/2
J + G

−1/2
J YG

J C−1
Jχ G

1/2
J , (C33)

where Y
G
J = C−1/2

Jδ YG
J C−1/2

Jδ .
The symplectic transformation S of Eq. (C16) here takes

the same form except for the replacement SJ → SJ , and
Eqs. (C17) are also the same under the mappings

�J → (LJ CJδ )
−1/2, (C34a)

R → (CJδ )
1/2C−1

J R = C−1/2
Jδ R + C−1/2

Jδ C−1
Jχ R, (C34b)

N → (CJδ )
1/2C−1

J N = C−1/2
Jδ N + C−1/2

Jδ C−1
Jχ N. (C34c)

Ignoring the second-order coupling terms proportional to
C−1

Jχ R, C−1
Jχ N, YG

J CJχ , which give rise to third-order cor-
rections and higher, it follows that Eqs. (C18c) and (C21)
here take the form

(H̃qq
J )ij = δijωi + (�Cχ )ij

+ i
2

√
ωiωj

[Y
ac,R
ij (ωi)

ωi
+ Y

ac,R
ij (ωj )

ωj

]
, (C35a)

(H̃φq
J )ij = 1

2

√
ωj

ωi
Y

NR
ij (ωi), (C35b)

(H̃φφ
J )ij = δijωi + (�Lχ )ij + (�YG

J
)ij , (C35c)

with Y
ac,R

(s), Y
NR
(s), Y

G
J respectively defined as in

Eqs. (C22) and (C15) with OC = O� = 1n.
Therefore, the effective quantum Hamiltonian for the

junction sector after applying the rotating-wave approxi-
mation is

ĤJ =
∑

i

(
ωi − 1

2
Im{Yac

ii (ωi)}
)

b̂†
i b̂i

+
∑

i�=j

(Jij b̂ib̂
†
j + J ∗

ij b̂†
i b̂j )+ Unl(φ̃, q̃) (C36a)

with

Jij = i
4

√
ωiωj

[Y
�

ij (ωi)

ωi
+ Y

�

ij (ωj )

ωj

]

+ 1
2

[(�Cχ )ij + (�Lχ )ij ] +
(�YG

J
)ij

2
(C36b)

and Y
�
(s) = Y

ac,R
(s)+ Y

NR
(s), i.e., the rescaled admit-

tance response excluding the reciprocal dc part of the
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admittance (D0, D∞). The frequencies in the second line
are given in Eqs. (C32), where �Cχ (�Lχ ) captures the
correction from direct capacitive (inductive) coupling, and
�YG

J
is a second-order correction from the direct nonrecip-

rocal coupling between the ports. In Appendix E, we shift
the frequencies entering Eqs. (C32), (C35), and (C36) to
include the nonlinearities up to first order in perturbation
theory.

3. Impedance coupling formulas with numerical
diagonalization of direct coupling

We now derive the effective Hamiltonian from the Cauer
representation (see Fig. 5) of the impedance response.
The derivation is similar to that above for the admittance
with some key differences that we highlight. From the
transformer constitutive equations we have

vJ = OT
CvC + RT

J vR + NT
J vG, (C37a)

iC = −OCiJ , (C37b)

iR = −RJ iJ , (C37c)

iG = −NJ iJ . (C37d)

We assume that CJ is of full rank, and thus OC is orthogo-
nal. Assigning flux variables for each junction and capac-
itive branch, the equations of motion of the circuit are
derivable from the Lagrangian

L = 1
2
�̇

T
C�̇ − U(�J )− 1

2
�TM0� + 1

2
�̇

T
G� (C38)

with �T = (�T
J , �T

I ), where the �J (�I ) correspond to
the fluxes in the external ports (inner mode resonators
and gyrators). The kinetic, inductive, and nonreciprocal
matrices read

C =
(

CJ −CJ TT
J

−TJ CJ 1n + TJ CJ TT
J

)
, (C39a)

M0 =
(

0 0
0 L−1

Re

)
, LRe =

(
LR 0
0 0

)
, (C39b)

G =
(

0 0
0 Ye

)
, Ye =

(
0 0
0 Y

)
, (C39c)

where CJ = OT
CCJ OC. Note that in Ref. [16] the orthog-

onality of OC is also assumed, and U used in Eq. (65) of
that reference corresponds to our OT

C. Moreover, LR is the
diagonal inductive matrix of the inner mode resonators Lrγ ,
TJ = (RT

J , NT
J )

T is the transformer matrix [see Eqs. (A5)],

and Y is the admittance matrix of the gyrators, given by

Y =

⎛

⎜⎝
iσyωg1 0

. . .
0 iσyωgk

⎞

⎟⎠ = i�y�g , (C40a)

�y ≡

⎛

⎜⎝
σy 0

. . .
0 σy

⎞

⎟⎠ , �g

≡

⎛

⎜⎝
ωg112 0

. . .
0 ωgl12

⎞

⎟⎠ . (C40b)

Linearizing the nonlinear potential, the Lagrangian reads

L = 1
2
�̇

T
C�̇ − 1

2
�TM� + 1

2
�̇

T
G� + Unl(�J ) (C41)

with

M =
(

L̃−1
J 0
0 �2

Re

)
, �Re =

(
�R 0
0 02l

)
, (C42)

where L̃J is the matrix of junction inductances Ljα =
φ2

0/Ejα obtained from the linear part of U(�J ), and �R
is the diagonal matrix with the inner mode reciprocal res-
onator frequencies. We focus here on the linear sector, and
treat the nonlinearities in Appendix E.

As discussed in the introduction of this appendix,
we now consider the numerical diagonalization approach
to include direct capacitive coupling. First, we dress
the external modes with the transformation �co = Pco�,
where

Pco =
(

C
1/2
J OC 0
0 1m+2l

)
, (C43)

after which the Lagrangian reads

L = 1
2
�̇

T
coCco�̇co − 1

2
�T

coMco�co + 1
2
�̇

T
coG�co (C44)

with the transformed matrices

Cco =
(

1n −TT
co

−Tco 1m+2l + TcoTT
co

)
, (C45a)

Mco =
(
�′2

J 0
0 �2

Re

)
, (C45b)

where �′2
J ≡ C

−1/2
J OCL−1

J OT
CC

−1/2
J , which is in general

not diagonal, and Tco = TJ OT
CC

1/2
J . Following Ref. [16]
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we diagonalize the kinetic matrix Cco with the triangular
point transformation

P� =
(
1n −TT

co
0 1m+2l

)
. (C46)

In this new frame, the capacitive matrix is transformed into
the identity Cco → 1n+m+2l; the gyration matrix remains
invariant, Gco → G; and the inductive matrix encodes the
coupling between inner and weakly dressed qubit modes,

Mco →
(

�′2
J �′2

J TT
co

Tco�
′2
J �2

Re
+ Tco�

′2
J TT

co

)
. (C47a)

To obtain the normal modes of the qubit port sector, we
apply the transformation � = P�P�Pco�, with

P� =
(

O� 0
0 1m+2l

)
, (C48)

where the orthogonal matrix O� diagonalizes the matrix
O��

′2
J OT

� = �
2
J . Matrix O� can be easily found numeri-

cally. The frequencies �J correspond to the normal modes
of the capacitively coupled external (qubits) ports. In this
frame, G = G, C = 1, and the inductive matrix reads

M =
(

�
2
J �

2
J T

T
J

TJ �
2
J �2

Re
+ TJ �

2
J T

T
J

)
(C49)

with TJ = TJ OT
CC

1/2
J OT

�. As C = 1, we directly obtain the
classical Hamiltonian

H = 1
2

(
q − G

2
�

)T(
q − G

2
�

)
+ 1

2
�

T
M �. (C50)

It is useful to express this as H = 1
2 XTHX with XT =

(�j , qj , �I , qI ) and

H =
(

HJ K
KT HI

)
, (C51a)

HJ =
(
�

2
J 0

0 1n

)
, (C51b)

HI =
(

YT
e Y/4 +�2

Re
Ye/2

YT
e /2 1m+2l

)
, (C51c)

K =
(
�

2
J T

T
J 0

0 0

)
. (C51d)

As in the case of the admittance, we now approximately
eliminate the nondynamical modes, ignoring the second-
order terms in the inner mode sector, as these will not
change the final effective Hamiltonian of the junctions

up to O[(k/�)4]. We note that the exact elimination of
the nondynamical modes provides equivalent perturbative
results; see Appendix D.

To proceed, we now perform the symplectic transforma-
tions

S =
(

SJ 0
0 SI

)
,

SJ =
(
�

1/2
J 0
0 �

−1/2
J

)
,

(C52)

where the submatrices are

SI =
(

Sr 0
0 Sg

)
, (C53a)

Sr =
(
�

1/2
r 0
0 �

−1/2
r

)
, (C53b)

Sg =
(
12l/2 �x

−�x/2 12l

)(
�

1/2
g 0
0 �

−1/2
g

)
. (C53c)

The resulting quadratic form is

H = (ST)−1HS−1 =

⎛

⎜⎝
Hj Kr Kg

K
T
r Hr 0

K
T
g 0 Hg

⎞

⎟⎠ (C54)

with

Kr =
(

Kφφ
r 0
0 0

)
,

Kg =
(

Kφφ
g Kφq

g
0 0

)
,

(C55a)

and

Kφφ
r = �

3/2
J R

T
J�

−1/2
r , (C55b)

Kφφ
g = �

3/2
J N

T
J�

−1/2
g , (C55c)

Kφq
g = −�3/2

J N
T
J�x�

−1/2
g , (C55d)

RJ = RJ OT
CC

1/2
J OT

�, (C55e)

NJ = NJ OT
CC

1/2
J OT

�. (C55f)

Here,

Hj =
(
�J 0
0 �J

)
, (C56a)

Hr =
(
�r 0
0 �r

)
, (C56b)

Hg =
(
�g 0
0 �g

)
, (C56c)
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with �g the same as in Eq. (C12b).
On these expressions we perform the symplectic

Schrieffer-Wolff transformation using Eqs. (B19), and in
an analogous way as was done above for the admittance,
we find the entries of the effective classical quadratic form

(H̃φφ
J )ij = δijωi

+ i
2

√
ωiωj [ωj Z

ac,R
ij (ωi)+ ωiZ

ac,R
ij (ωj )],

(C57a)

(H̃φq
J )ij = 1

2

√
ωiωjωiZ

NR
ij (ωj ), (C57b)

(H̃qq
J )ij = δijωi, (C57c)

where

Z(s) = O�C
1/2
J OCZ(s)OT

CC
1/2
J OT

�, (C58a)

Z
ac,R

(s) =
∑

γ

Aγ s
ω2

rγ + s2 +
∑

μ

Aμs
ω2

gμ + s2 , (C58b)

Z
NR
(s) =

∑

μ

Bμ

ω2
gμ + s2 , (C58c)

Aγ (μ) = O�C
1/2
J OCAγ (μ)OT

CC
1/2
J OT

�, (C58d)

Bμ = O�C
1/2
J OCBμOT

CC
1/2
J OT

�. (C58e)

Quantizing and rearranging as was done with the
admittance-based expressions, we obtain the effective
quantum Hamiltonian for the junction sector

ĤJ =
∑

i

ωi

(
1 − ωi

2
Im[Z

ac
ii (ωi)]

)
b̂†

i b̂i

+
∑

i<j

(Jij b̂ib̂
†
j + J ∗

ij b̂†
i b̂j )+ Unl(φ̃, q̃) (C59a)

with

Jij = i
4

√
ωiωj [ωiZij (ωj )+ ωj Zij (ωi)]. (C59b)

In the case without direct capacitive or inductive cou-
pling (OC = 1n, O� = 1n) we obtain Eq. (8) of the main
text. Moreover, when the response is purely reciprocal, we
recover the effective coupling given in Eq. (5) of Ref. [16].

4. Fully perturbative impedance coupling formulas

We now consider the case where there is direct capaci-
tive coupling between qubit ports, which we treat as a first-
order perturbation. Our starting point is the Lagrangian of

Eq. (C41). We first perform a triangular point transforma-
tion

P� =
(
1n −TJ
0 1m+2l

)
, (C60)

where the new coordinates are �� = P��, and the kinetic
and inductive matrices are

C� =
(

CJ 0
0 1m+2l

)
, (C61a)

M� =
(

L̃−1
J L̃−1

J TT
J

TJ L̃−1
J L−1

Re
+ TJ L̃−1

J TT
J

)
. (C61b)

Hence, we can immediately obtain the Hamiltonian

H = 1
2

(
q� − G

2
��

)T

C−1
�

(
q� − G

2
��

)
+ 1

2
�T
�M���.

(C62)

We let the matrices C−1
Jδ and C−1

Jχ respectively be the diago-
nal and off-diagonal entries of C−1

J . We rescale the junction
sector with

SJ =
(
(G̃J )

1/2 0
0 (G̃J )

−1/2

)
, (C63)

where G̃J = (CJδ /̃Lj )
1/2 such that the Hamiltonian in that

sector is

HJ = [(SJ )
T]−1Hj (SJ )

−1 =
(
�̃J 0
0 �̃J +�Cχ

)
(C64)

with�Cχ = G̃1/2
J C−1

Jχ G̃1/2
J and �̃J = (CJδ L̃J )

−1/2. We now
use the symplectic transformations of Eqs. (C53) for the
inner modes. Doing so, it is clear that the final effective
classical quadratic form entries are

(H̃φφ
J )ij = δij ω̃i

+ i
2

√
ω̃iω̃j [ω̃j Z

ac,R
ij (ω̃i)+ ω̃iZ

ac,R
ij (ω̃j )],

(C65a)

(H̃φq
J )ij = 1

2

√
ω̃iω̃j ω̃iZ

NR
ij (ω̃j ), (C65b)

(H̃qq
J )ij = δij ω̃i

+ i
2

√
ω̃iω̃j [ω̃iZ

dc
(ω̃i)+ ω̃j Z

dc
(ω̃j )](1 − δij ),

(C65c)

with the ω̃i the frequencies �̃J , and Z
ac,R

(s), Z
NR
(s) given

as in Eqs. (C58) with OC = 1n, OL = 1n, and Z
dc
(s)
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= C1/2
Jδ Zdc(s)C1/2

Jδ � C
1/2
J Zdc(s)C

1/2
J . With this choice, the

final effective quantum Hamiltonian reads exactly the same
as in Eqs. (C59). The above formulas hold up to third order
in perturbation theory when the direct capacitive coupling
between all external ports is a first-order perturbation.

5. Admittance dissipative rates and Purcell decays

In this section, we address dissipation resulting from
the coupling of qubit ports to external drive ports via
a nonreciprocal environment characterized by its admit-
tance response; see Fig. 5. As detailed in Appendix A,
the drive ports are defined as the terminals at the ends
of transmission lines that connect the circuit of interest,
including the junctions and inner modes, to external classi-
cal voltage sources. Furthermore, we model these external
transmission lines as purely Ohmic lumped elements with
a characteristic impedance Z0 [16].

Setting aside the voltage sources for the moment, the
multiport synthesis of the admittance response illustrated
in Fig. 5 leads to the dissipative classical equations of
motion

CJ �̈J = − ∂U
∂�J

− L−1
J �J + YG

J �̇J − TJ Q̇

− M��
D ∗ �J − M�Q

D ∗ Q, (C66a)

Q̈ = −C−1
I Q + TT

J �̇J − ZeQ̇ − MQ�
D ∗ �J − MQQ

D ∗ Q,
(C66b)

where �J and Q are respectively junction fluxes and inner
mode loop charges; U(�J ) corresponds to the junctions’
cosine potential. As already mentioned in Appendix C 1,
the loop charge variable is the natural parametrization
of the inner modes within the admittance representa-
tion. The matrices LJ , YG

J , TJ , CI , and Ze are defined
in Appendix C 1 and “∗” stands for time convolution,
f ∗ g(t) = ∫ +∞

−∞ dτ f (τ )g(τ − t). Moreover, the (n + m +
2l)× (n + m + 2l) dissipation matrix

MD(t) =
(

M��
D M�Q

D
MQ�

D MQQ
D

)

is defined by the Fourier transform MD(ω) =∫ +∞
−∞ dtMD(t)e−iωt of its submatrices as

M��
D (ω) = −(L−1

JD − ω2CJD + iωYG
JD)

×
(

iω
Z0

1nD − ω2CD + L−1
D

)−1

× (L−1
JD − ω2CJD − iωYG

JD)
T, (C67a)

M�Q
D (ω) = −iω(L−1

JD − ω2CJD + iωYG
JD)

×
(

iω
Z0

1nD − ω2CD + L−1
D

)−1

TD, (C67b)

MQ�
D (ω) = iωTT

D

(
iω
Z0

1nD − ω2CD + L−1
D

)−1

× (L−1
JD − ω2CJD − iωYG

JD)
T, (C67c)

MQQ
D (ω) = −ω2TT

D

(
iω
Z0

1nD − ω2CD + L−1
D

)−1

TD,

(C67d)

for which we assumed that there is no direct gyration
between drive ports (YG

D = 0). The nonzero block matri-
ces M��

D , M�Q
D , and MQ,�

D arise in the presence of direct
coupling between the qubit and drive ports characterized
by CJD, L−1

JD , YG
JD �= 0. This generalizes prior studies such

as Refs. [16,54–56], where only MQ,Q
D was considered as

the nonvanishing entry of the dissipation matrix.
At this point, it is important to note some general prop-

erties of the dissipation matrix. First, MD(t) is real because
MD(−ω) = MD(ω)


. Additionally, the poles of MD(ω) live
in the upper half of the complex plane defined by Im(z) >
0, ensuring the causality of MD(t) [i.e., MD(t) = 0 for
t < 0] [57]. Finally, unlike MQQ

D , M��
D is not symmet-

ric (M��T
D �= M��

D ), which reflects the presence of direct
nonreciprocal interaction (YG

JD �= 0) between the qubit and
drive ports.

To construct a classical Lagrangian L that captures dis-
sipation and reproduces classical equations of motion, we
use an extended Caldeira-Leggett model [29,30] by intro-
ducing a set of baths (collection of harmonic oscillators)
that are linearly coupled (minimal coupling) to our system
through all quadratures. This Lagrangian reads

L = LS + LB + LSB, (C68)

where LS, LB, LSB are respectively the system (junctions +
inner modes), bath, and interaction Lagrangians given by

LS = 1
2
�̇

T
J CJ �̇J + 1

2
Q̇TQ̇ + 1

2
Q̇TZeQ + 1

2
�̇

T
J YG

J �J

− 1
2
�T

J L−1
J �J − U(�J )+ �̇

T
J TJ Q, (C69a)

LB =
∑

i

(
1
2

ẋT
αmα ẋα − 1

2
xT
αmαw2

αxα

)
, (C69b)

LSB = −�T
J

∑

α

μαxα − �̇
T
J

∑

α

ηα ẋα − �T
J

∑

α

λα ẋα

− Q̇T
∑

α

ζαxα , (C69c)
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where xα = (xα1, . . . , xαB), mα = diag(mα1, . . . , mαB), and
wα = diag(ωα1, . . . ,ωαB) are respectively bath flux coor-
dinates, capacitances, and eigenfrequencies with B =
supω rank[Im{MD(ω)}] ≤ nD the number of baths needed
to model dissipation, where nD is the number of drive ports
[56]. The system-bath coupling matrices in LSB respec-
tively correspond to inductive (μα), capacitive (ηα), and
nonreciprocal (λα) couplings [27]. While these two first
types of coupling are invariant under time-reversal symme-
try � → −�, Q → Q, xα → −xα , the charge-flux cou-
pling arising from the gyrators breaks time-reversal sym-
metry, leading to nonreciprocal system-bath interaction.
Finally, the geometrical coupling (∝ Q̇ xα) that appears in
the last term of LSB emerges naturally as a consequence of
using a mixed flux-charge description to parameterize the
system (junctions and inner modes). The coupling matri-
ces μ, η, λ (of size n × B), ζ [of size (m + 2l)× B] and
their corresponding quadratures are chosen to reproduce
dissipative classical equations of motion. The resulting
dissipation matrix is given by

M��
D (ω) =

∑

α

(μα + ηαω
2 + iωλα)

× m−1
α (ω2 − w2

α)
−1(μα + ηαω

2 − iωλα)T,
(C70a)

M�Q
D (ω) = iω

∑

α

(μα + ηαω
2 + iωλα)

× m−1
α (ω2 − w2

α)
−1ζ T

α , (C70b)

MQ�
D (ω) = −iω

∑

α

ζαm−1
α (ω2 − w2

α)
−1

× (μα + ηαω
2 − iωλα)T, (C70c)

MQQ
D (ω) = ω2

∑

α

ζαm−1
α (ω2 − w2

α)
−1ζ T

α . (C70d)

However, it is important to note that this matrix is not
causal, since its poles are situated along the real line.
Typically, to address this issue, the poles are shifted to
the upper half of the complex plane following Ref. [58].
This involves redefining MD(ω) ≡ limε→0+ MD(ω − iε),
which now fulfills the requirement of dissipation matri-
ces discussed above [59]. Finally, it is worth noting that
in our case, system-bath coupling via a single quadrature,
as introduced in the seminal paper of Leggett [30], is insuf-
ficient to reproduce the dissipative Kirchhoff equations. It
is thus important to include all the other couplings in LSB
to match the classical dissipation matrix.

To obtain the Hamiltonian, we perform a Legendre
transform up to second order in system-bath couplings,
which leads to the usual form

H = HS + HB + HSB, (C71)

where

HS = 1
2

(
qJ − 1

2
YG

J �J − TJ Q
)T

× C−1
J

(
qJ − 1

2
YG

J �J − TJ Q
)

+ 1
2
�T

J L−1
J �J + U(�J )

+ 1
2

(
� − 1

2
ZeQ

)T(
� − 1

2
ZeQ

)
+ 1

2
QTC−1

I Q,

(C72a)

HB = 1
2

∑

α

(pT
αm−1

α pα + xT
αmαw2

αxα), (C72b)

HSB = �T
J

∑

α

c�,x
α xα + �T

J

∑

α

c�,p
α pα + qT

J

∑

α

cq,p
α pα

+ QT
∑

α

cQ,x
α xα + QT

∑

α

cQ,p
α pα + �T

∑

α

c�,x
α xα .

(C72c)

Here, the Hamiltonian coupling matrices {cα} are
expressed in terms of Lagrangian coupling matrices as

c�,x
α = μα , c�,p

α = λαm−1
α , (C73a)

cq,p
α = C−1

J ηαm−1
α , c�,x

α = ζα , (C73b)

cQ,x
α = −Ze

2
ζα , cQ,p

α = −TT
J C−1

J ηαm−1
α , (C73c)

which leads to the constraints cQ,x
α = −(Ze/2)c�,x

α and
cQ,p
α = −TT

J cq,p
α . Inverting the previous equations, the dis-

sipation matrix can be expressed in terms of {cα} matrices:

M��
D (ω) =

∑

α

(c�,x
α + ω2CJ cq,p

α mα + iωc�,p
α mα)

× m−1
α (ω2 − w2

α)
−1

× (c�,x
α + ω2CJ cq,p

α mα − iωc�,p
α mα)

T,
(C74a)

M�Q
D (ω) = iω

∑

α

(c�,x
α + ω2CJ cq,p

α mα + iωc�,p
α mα)

× m−1
α (ω2 − w2

α)
−1c�,xT

α , (C74b)

MQ�
D (ω) = −iω

∑

α

c�,x
α m−1

α (ω2 − w2
α)

−1

× (c�,x
α + ω2CJ cq,p

α mα − iωc�,p
α mα)

T,
(C74c)

MQQ
D (ω) = ω2

∑

α

c�,x
α m−1

α (ω2 − w2
α)

−1c�,xT

α . (C74d)
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Using the phase-space coordinates XT = (�T
J , qT

J , QT
R, QT

G,
�T

R,�T
G), the system-bath interaction Hamiltonian can be

written compactly as

HSB = XT
∑

α

cα

(
xα
pα

)
. (C75)

The coupling coefficients are regrouped as

cα =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c�,x
α c�,p

α

0 cq,p
α

0 cQR,p
α

cQG,x
α cQG,p

α

c�r,x
α 0

c
�g ,x
α 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (C76)

To analyze how the coupling coefficients transform when
diagonalizing the junctions and inner mode Hamiltonian
HS, we employ the symplectic transformations computed
in Appendix C 1. This process involves two sequential
steps. First, we perform the symplectic transformation

S =
(

SJ 0
0 SI

)

defined in Eq. (C16), allowing us to obtain normal
modes for both the junction and inner mode sectors sepa-
rately. Under this transformation, the coupling coefficients
become

cα �→ c′
α ≡ (ST)−1cα . (C77)

Expanding this transformation explicitly,

c′
α =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
−1/2
J O�C

−1/2
J OCc�,x

α �
−1/2
j O�C

−1/2
J OCc�,p

α

0 �
1/2
J O�C

1/2
J OCcq,p

α

0 �
−1/2
R cQR,p

α

�
−1/2
G cQG,x

α −�x�
1/2
G c�G,x

α /2 �
−1/2
G cQG,p

α

�
1/2
R c�R,x

α 0

�x�
−1/2
G cQG,x

α +�
1/2
G c�G,x

α /2 �x�
−1/2
G cQG,p

α

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C78)

The next step consists of eliminating the inner modes,
parameterized by the classical phase-space coordinates
(QR, QG,�R,�G), through the Schrieffer-Wolff transfor-
mation [see Eqs. (B17) in Appendix B], leading to effective
couplings defined by c̃α = (ST

SW)
−1c′

α . They are related to
the original coupling matrices {cα} as

c̃�,x
α = �

−1/2
J O�C

−1/2
J OCc�,x

α +��,�R
x c�R,x

α

+��,QG
x cQG,x

α +��,�G
x c�G,x

α , (C79a)

c̃�,p
α = �

−1/2
J O�C

−1/2
J OCc�,p

α +��,QG
p cQG,p

α , (C79b)

c̃q,x
α = �q,QG

x cQG,x
α +�q,�G

x c�G,x
α , (C79c)

c̃q,p
α = �

1/2
J O�C

1/2
J OCcq,p

α +�q,QR
p cQR,p

α +�q,QG
p cQG,p

α ,
(C79d)

where the Schrieffer-Wolff matrices {�x,�p} involved in
the previous equations are defined as

��,�R
x iγ = �

3/2
Ji

�
2
Ji

−�2
Rγ

(RJ )iγ , (C80a)

��,QG
x i2k = −�

−1/2
Ji

�Gk

�
2
Ji

−�2
Gk

(NJ )i2k−1, (C80b)

��,QG
x i2k−1 = �

−1/2
Ji

�Gk

�
2
Ji

−�2
Gk

(NJ )i2k, (C80c)

��,�G
x i2k = �

−1/2
Ji

2

(
1 + �

2
Ji

�
2
Ji

−�2
Gk

)
(NJ )i2k, (C80d)

��,�G
x i2k−1 = �

−1/2
Ji

2

(
1 + �

2
Ji

�
2
Ji

−�2
Gk

)
(NJ )i2k−1,

(C80e)

��,QG
p i2k

= −�
−1/2
Ji

�Gk

�
2
Ji

−�2
Gk

(N J )i2k−1, (C80f)

��,QG
p i2k−1

= �
−1/2
Ji

�Gk

�
2
Ji

−�2
Gk

(N J )i2k, (C80g)

�q,QG
x i2k = − �

1/2
Ji

�
2
Ji

−�2
Gk

(NJ )i2k, (C80h)
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�q,QG
x i2k−1 = − �

1/2
ji

�
2
Ji

−�2
Gk

(NJ )i2k−1, (C80i)

�q,�G
x i2k = − �

1/2
Ji
�Gk

2(�
2
Ji

−�2
Gk
)
(NJ )i2k−1, (C80j)

�q,�G
x i2k−1 = �

1/2
Ji
�Gk

2(�
2
Ji

−�2
Gk
)
(NJ )i2k, (C80k)

�q,QR
p iγ

= − �
1/2
Ji

�
2
Ji

−�2
Rγ

(RJ )iγ , (C80l)

�q,QG
p i2k

= − �
1/2
Ji

�
2
Ji

−�2
Rγ

(NJ )i2k, (C80m)

�q,QG
p i2k−1

= − �
1/2
Ji

�
2
Ji

−�2
Rγ

(NJ )i2k−1. (C80n)

In Eqs. (C79), the effective junction-bath coupling
matrices c̃α incorporate two contributions. The first one
arises from the dressing with inner modes as a result of SW
transformations (terms proportional to�x,p ), while the sec-
ond contribution comprises direct couplings between the
qubit and drive ports (terms proportional to the dressed fre-
quency �J ). The system-bath interaction Hamiltonian can
be expressed in this final frame as

HSB = �T
J

∑

α

c̃�,x
α xα + �T

J

∑

α

c̃�,p
α pα

+ qT
J

∑

α

c̃q,x
α xα + qT

J

∑

α

c̃q,p
α pα , (C81)

which captures the most general linear system-bath cou-
plings. Using the standard quantization method [58] and
the results of Appendix F, the correlated decay rates are
given in terms of these new effective couplings as

γjj ′ = π

2

B∑

b=1

∑

α

(sαjb + itαjb)

(sαj ′b + itαj ′b)δ(�j − ωαb),

(C82)

where

sαjb =
c̃�,x
αjb√

mαbωαb
+ √

mαbωαb c̃q,p
αjb

, (C83)

tαjb = √
mαbωαb c̃�,p

αjb
− c̃q,x

αjb√
mαbωαb

. (C84)

The squared terms in Eq. (C82) can be written as

π

2

B∑

b=1

∑

α

sαjb sαj ′bδ(�j − ωαb)+ tαjb tαj ′bδ(�j − ωαb)

= π

2

∑

α

[(c̃�,x
α + c̃q,p

α mαwα)m−1
α w−1

α δ(�j − wα)

× (c̃�,x
α + c̃q,p

α mαwα)
T

+ (c̃q,x
α − c̃�,p

α mαwα)m−1
α w−1

α

× δ(�j − wα)(c̃q,x
α + c̃�,p

α mαwα)
T]jj ′ , (C85)

where δ(�j − wα)≡ diag{δ(�j −ωα1), . . . , δ(�j −ωαB)}.
Expressing {c̃α} using Eqs. (C79), and within the disper-
sive regime �

1/2
j �p � 1, Eq. (C85) is equivalent to

π

2
[�J

−1/2
O�C

−1/2
J OC{c�,x

α + CJ cq,p
α mαwα

2}
+��,�R

x c�R,x
α +��,QG

x cQG,x
α +��,�G

x c�G,x
α ]

× m−1
α w−1

α δ(�J − wα)

× [�J
−1/2

C
−1/2
J OC{c�,x

α + CJ cq,p
α mαwα

2} +��,�R
x c�R,x

α

+��,QG
x cQG,x

α +��,�G
x c�G,x

α ]T
jj ′ . (C86)

The next step is to identify the terms present in the
last equation that also appear in the dissipation matrix
MD(ω). To achieve this, we use the causality requirement
limε→0+ MD(ω − iε) together with the Sokhotski-Plemelj
formula

lim
ε→0+

1
(ω − iε)2 − ω2

α

= P
(

1
ω2 − ω2

α

)
+ i

π

2
ω−1
α δ(ω − ωα), (C87)

where P(·) corresponds to the Cauchy principal value, and
we obtain the identifications

1
2
(
Im

[
M��

D

]+ Im
[
M��

D
T])= π

2

∑

α

(c�,x
α + CJ cq,p

α mαwα
2)

× m−1
α w−1

α δ(ω − wα)(c�,x
α + CJ cq,p

α mαwα
2)T

+ π

2
ω2

∑

α

(c�,p
α mα)m−1

α w−1
α δ(ω− wα)(c�,p

α mα)
T,

(C88a)

1
2

(
Im

[
M�Q

D

iω

]
+ Im

[
MQ�

D
T

−iω

])

= π

2

∑

α

(c�,x
α + CJ cq,p

α mαwα
2)

× m−1
α w−1

α δ(ω − wα)(c�,x
α )T, (C88b)
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1
2

(
Re

[
MQ�

D
T

−iω

]
− Re

[
M�Q

D

iω

])

= π

2
ω

∑

α

(c�,p
α mα)m−1

α w−1
α δ(ω − wα)(c�,x

α )T.

(C88c)

On the other hand, the classical equations of motion (C67)
enable us to evaluate this set of equations as a function of
the circuit’s admittance parameters,

1
2
(
Im

[
M��

D

] + Im
[
M��

D
T]) = −(L−1

JD − ω2CJD)Im
[(

iω
Z0

1nD − ω2CD + L−1
D

)−1]
(L−1

JD − ω2CJD)
T

− ω2YG
JDIm

[(
iω
Z0

1nD − ω2CD + L−1
D

)−1]
YG

JD, (C89a)

1
2

(
Im

[
M�Q

D

iω

]
+ Im

[
MQ�

D
T

−iω

])
= −(L−1

JD − ω2CJD)Im
[(

iω
Z0

1nD − ω2CD + L−1
D

)−1]
TD, (C89b)

1
2

(
Re

[
MQ�

D
T

−iω

]
− Re

[
M�Q

D

iω

])
= −ωYG

JDIm
[(

iω
Z0

1nD − ω2CD + L−1
D

)−1]
TD. (C89c)

Substituting these terms into Eq. (C85) and using the
definitions of the SW matrices {�x,�p} yields

π

2

B∑

b=1

∑

α

sαjb sαj ′bδ(�j − ωαb)+ tαjb tαj ′bδ(�j − ωαb)

= �j [Y
R
JD(�j )J(�j )Y

R
JD(�j )

†

+ Y
NR
JD (�j )J(�j )Y

NR
JD (�j )

†]jj ′ . (C90)

Here, kernel J(ω) is given by the nD × nD positive
semidefinite matrix

J(ω) = −Im
[(

iω
Z0

1nD − ω2CD + L−1
D

)−1]
, ω ≥ 0,

where nD is the number of drive ports. As defined previ-
ously in the nondissipative case, the dressed admittance Ȳ
is related to the bare Y via the similitude transformation

Ȳ(ω) = Õ�C̃
−1/2

J ÕCY(ω)ÕT
CC̃

−1/2

J ÕT
�, (C91)

where

Õ� =
(

O� 0
0 1nD

)
, (C92)

ÕC =
(

OC 0
0 1nD

)
, (C93)

C̃J =
(

CJ 0
0 1nD

)
, (C94)

with the n × n matrices OC, O�, and CJ were previously
defined in Appendix C 1 during the diagonalization of the
junction sector. As outlined in Appendix A, the recipro-
cal Y

R
and nonreciprocal Y

NR
parts of the admittance are

defined as the symmetric and antisymmetric responses

ȲR = 1
2
(Ȳ + ȲT), (C95)

ȲNR = 1
2
(Ȳ − ȲT). (C96)

On the other hand, the cross terms in Eq. (C82) are
computed similarly:

i
π

2

B∑

b=1

∑

α

sαjb tαj ′bδ(�j − ωαb)− tαjb sαj ′bδ(�j − ωαb)

= �j [ȲR
JD(�j )J(�j )ȲNR

JD (�j ))
†

+ ȲNR
JD (�j )J(�j )ȲR

JD(�j )
†]jj ′ . (C97)

Regrouping the square and cross terms together, we finally
obtain the correlated dissipation rates

γjj ′ = �j [YJD(�j )J(�j )YJD(�j )
†]jj ′ (C98)
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with Ȳ = ȲR + ȲNR the total dressed admittance. Further-
more, kernel J(ω) can be written as

J(ω) = 1
ω

Re{Ydrive−1
(ω)}, (C99)

where

Ydrive(ω) = Z−1
0 1nD + L−1

D

iω
+ iωCD

≡ Z−1
0 1nD + Ydc

D (ω). (C100)

We interpret Ydrive as the external admittance seen by the
inner modes, filtered by the shunting capacitances CD and
inductances LD located at the drive ports. Therefore, the
correlated decay rates are fully determined by the admit-
tance that connects qubit and drive ports Y as well as the
value of the characteristic impedance Z0 of the external
transmission lines according to

γjj ′ = [YJD(�j )Re{Ydrive−1
(�j )}YJD(�j )

†]jj ′ . (C101)

The Purcell decays are given by diagonal elements of the
dissipative rates, that is,

γj κ = [YJD(�j )Re{Ydrive−1
(�j )}YJD(�j )

†]jj . (C102)

6. Impedance dissipative rates and Purcell decays

In this section, we derive analytical expressions for cor-
related decay rates and Purcell decays, akin to what was
done in the previous section, but here as a function of the
impedance response. Applying Kirchoff’s equations to the
Cauer circuit of the impedance representation (see Appen-
dices A and C 3) we obtain the dissipative equation of
motion

C�̈ = − ∂U
∂�

− M0� − G�̇ − MD ∗ �, (C103)

where � = (�T
J , �T

I )
T regroups the junction and inner

mode fluxes, C, M0, G are defined in Appendix C 3, and
U = U(�J ) is the junctions’ cosine potential. Similarly to
the admittance case, the dissipation matrix

MD(t) =
(

MJJ
D MJI

D
MIJ

D MII
D

)
(C104)

is defined by its Fourier transform:

MJJ
D (ω) = −ω4CJD

(
iω
Z0

1nD − ω2CD

)−1

CT
JD, (C105)

MJI
D (ω) = ω4CJD

(
iω
Z0

1nD − ω2CD

)−1

CDTT
D, (C106)

MIJ
D (ω) = ω4TDCD

(
iω
Z0

1nD − ω2CD

)−1

CT
JD, (C107)

MII
D(ω) = −ω4TDCD

(
iω
Z0

1nD − ω2CD

)−1

CDTT
D.

(C108)

Here, J and I stand for the junction and inner mode sectors,
respectively. Unlike the admittance case, the dissipation
matrix here is symmetric, i.e., MT

D = MD. This symmetry
is a consequence of two factors. First, the absence of direct
gyration in the impedance response (B∞ = 0) results in
the symmetry of the diagonal blocks. Second, the use of
the same description (flux-flux, in this case) to parameter-
ize both the junctions and inner modes in the impedance
representation implies that the off-diagonal blocks of the
dissipation matrix only differ by transposition.

The equations of motion can be obtained from the
Caldeira-Leggett Lagrangian

L = LS + LB + LSB, (C109)

LS = 1
2
�̇

T
C�̇ − U(�J )− 1

2
�TM0� + 1

2
�̇

T
G�,

(C110)

LB =
∑

α

(
1
2

ẋT
αmα ẋα − 1

2
xT
αmαw2

αxα

)
, (C111)

LSB = −�̇
T ∑

α

λα ẋα , (C112)

where the minimal coupling LSB describes the direct
capacitive coupling between the qubit and drive ports.
The coupling matrices {λα} are chosen to reproduce the
classical dissipative equation of motion

MD(ω) = lim
ε→0+

M(ω − iε), (C113)

where

M(ω) = ω4
∑

α

λαm−1
α (ω2 − w2

α)
−1λT

α . (C114)
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Up to correction O(λ2
α), the classical Hamiltonian can be

expressed as H = HS + HB + HSB with

HS = 1
2

(
q − G

2
�

)T

C−1
(

q − G
2

�

)
+ U(�J )

+ 1
2
�TM0�, (C115)

HB =
∑

α

(
1
2

pT
αm−1

α pα + 1
2

xT
αmαw2

αxα

)
, (C116)

HSB = qT
∑

α

cq,p
α pα + �T

∑

α

c�,p
α pα , (C117)

where the Hamiltonian coupling matrices are now given by

cq,p
α ≡

⎛

⎝
cqJ ,p
α

cQR,p
α

cQG,p
α

⎞

⎠ = C−1λαm−1
α , (C118)

c�,p
α = G

2
cq,p
α . (C119)

Moreover, the dissipation matrix can be written in terms of
{cq,p
α } as

M(ω) = ω4C
(∑

α

cq,p
α (ω2 − w2)−1mαcq,p

α
T
)

CT.

(C120)

In contrast to Refs. [54,55], the system-bath Hamilto-
nian HSB in Eq. (C117) contains a charge-flux coupling
arising from the presence of gyrators in the inner mode
description (G �= 0).

Similar to the nondissipative case, we successively
apply the transformations

Pcu =
(

C
1/2
J OC 0
0 1m+2l

)
, (C121a)

P� =
(
1n −TT

cu
0 1m+2l

)
, (C121b)

Po =
(

O� 0
0 1n

)
(C121c)

to obtain the normal modes of the junction sectors. Hence,
the couplings

cα =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c�J ,p
α

cqJ ,p
α

c�R,p
α

c�G,p
α

cQR,p
α

cQG,p
α

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(C122)

transform to

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0

O�C
1/2
J OCcqJ ,p

α − O�C
1/2
J OCRT

J cQR,p
α − O�C

1/2
J OCNT

J cQG,p
α

0
cQR,p
α

c�G,p
α

cQG,p
α

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(C123)

and the system-bath coupling is written compactly as HSB = XT ∑
α cαpα with X = (�T

J , qT
J , �T

R, �T
G, QT

R, QT
G)

T the
corresponding phase-space coordinates. The second step consists in diagonalizing the gyrator inner modes (and thus
eliminating the zero modes as well) via the symplectic transformations given by Eqs. (C53). Consequently, the new
effective couplings denoted c′

α are given by

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

O�C
1/2
J OCcqJ ,p

α − O�C
1/2
J OCRT

J cQR,p
α − O�C

1/2
J OCNT

J cQG,p
α

0

�
−1/2
G c�G,p

α +�x�
1/2
G cQG,p

α /2

�
1/2
R cQR,p

α

−�x�
−1/2
G c�G,p

α +�
1/2
G cQG,p

α /2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C124)
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Finally, we dispersively eliminate the inner modes
via the symplectic Schrieffer-Wolff transformation SSW =
exp(AJ); see Appendix B. Using Eqs. (B13a) and (C55),
the nonvanishing matrix elements of generator A are given
by

(Axp)αβ = −
�

5/2
Jα �

−1/2
Rβ

�
2
Jα −�2

Rβ

(R
T
J )αβ , (C125a)

(Apx)αβ =
�

3/2
Jα �

1/2
Rβ

�
2
Jα −�2

Rβ

(R
T
J )αβ , (C125b)

(Axx)α2k−1 = −�
5/2
Jα �

−1/2
Gk

�
2
Jα −�2

Gk

(N
T
J )α2k, (C125c)

(Axx)α2k = −�1/2
Jα �

−1/2
Gk

(N
T
J )α2k−1, (C125d)

(Axp)α2k−1 = −�
5/2
Jα �

−1/2
Gk

�
2
Jα −�2

Gk

(N
T
J )α2k−1, (C125e)

(Axp)α2k = −�1/2
Jα �

−1/2
Gk

(N
T
J )α2k, (C125f)

(Apx)α2k−1 = �
3/2
Jα �

1/2
Gk

�
2
Jα −�2

Gk

(N
T
J )α2k−1, (C125g)

(App)α2k−1 = − �
3/2
Jα �

1/2
Gk

�
2
Jα −�2

Gk

(N
T
J )α2k. (C125h)

To first order, this leads to the couplings

cα �→ c̃α = [1 + JA + O(A2)]c′
α . (C126)

Projecting on the junctions’ subspace, one obtains the final
couplings as a function of the original ones:

c̃�J ,p
α = ��,�G

p c�G,p
α +��,QG

p cQG,p
α , (C127)

c̃qJ ,p
α = �

1/2
J O�C

1/2
J OCcqJ ,p

α +�q,�G
p c�G,p

α

+�q,QR
p cQR,p

α +�q,QG
p cQG,p

α . (C128)

Here the SW matrices are defined as

(��,�G
p )α2k−1 = �

3/2
Jα

�
2
Jα −�2

Gk

(N
T
J )α2k−1, (C129a)

(��,�G
p )α2k = �

3/2
Jα

�
2
Jα −�2

Gk

(N
T
J )α2k, (C129b)

(��,QG
p )α2k−1 = − �

3/2
Jα �Gk

2(�
2
Jα −�2

Gk
)
(N

T
J )α2k, (C129c)

(��,QG
p )α2k = �

3/2
Jα �Gk

2(�
2
Jα −�2

Gk
)
(N

T
J )α2k−1, (C129d)

(�q,�G
p )α2k−1 = �

1/2
Jα �Gk

�
2
Jα −�2

Gk

(N
T
J )α2k, (C129e)

(�q,�G
p )α2k = − �

1/2
Jα �Gk

�
2
Jα −�2

Gk

(N
T
J )α2k−1, (C129f)

(�q,QR
p )αβ =

�
1/2
Jα �

2
Rβ

�
2
Jα −�2

Gk

(R
T
J )αβ , (C129g)

(�q,QG
p )α2k−1 = �

1/2
Jα �

2
Gk

2(�
2
Jα −�2

Gk
)
(N

T
J )α2k−1, (C129h)

(�q,QG
p )α2k = �

1/2
Jα �

2
Gk

2(�
2
Jα −�2

Gk
)
(N

T
J )α2k. (C129i)

Similar to the admittance analysis of Eq. (C127), the
effective junction-bath coupling matrices c̃α contain two
contributions: one coming from the dressing with inner
modes resulting from SW transformations (terms propor-
tional to �p ) and direct couplings between the qubit and
drive ports (terms proportional to the dressed frequency
�J ). Besides, these coupling matrices allow us to com-
pute the quantum dissipative rates (see Appendix F for the
derivation of the master equation)

γjj ′ = π

2

∑

α

[(c̃qJ ,p
α + ic̃�J ,p

α )
mαwαδ(�j − wα)

× (c̃qJ ,p
α + ic̃�J ,p

α )T]jj ′ . (C130)

Using the definitions of c̃α , the squared terms in the last
equation can be written in terms of the dissipation matrix
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as

π

2

∑

α

[c̃qJ ,p
α mαwαδ(�j − wα)c̃qJ ,pT

α ]jj ′

+ π

2

∑

α

[c̃�J ,p
α mαwαδ(�j − wα)c̃�J ,pT

α ]jj ′

=
[
(ζ J

1 , ζ R
1 , ζG

1 )C
−1Im

(
MD(�j )

�
2
j

)
C−T(ζ J

1 , ζ R
1 , ζG

1 )
T
]

jj ′

+
[
(0, 0, ζG

2 )C
−1Im

(
MD(�j )

�
2
j

)
C−T(0, 0, ζG

2 )
T
]

jj ′
,

(C131)

where

ζ J
1 = �

1/2
J O�C

1
J /2OC,

ζ R
1 = �q,QR

p ,

ζG
1 = �q,�G

p
Y
2

+�q,QG
p ,

ζG
2 = ��,�G

p
Y
2

+��,QG
p ,

with

Y =

⎛

⎜⎝
iσyωg1 0

. . .
0 iσyωgk

⎞

⎟⎠ , (C132a)

C−1 =
(

C−1
J TT

J
TJ 1m+2l

)
. (C132b)

Using the definitions of the SW matrices {�p} to evaluate
the last set of equations, we obtain

π

2

∑

α

[c̃qJ ,p
α mαwαδ(�j − wα)c̃qJ ,pT

α ]jj ′

+ π

2

∑

α

[c̃�J ,p
α mαwαδ(�j − wα)c̃�J ,pT

α ]jj ′

= �
2
j [Z

R
(�j )Re{Zdrive−1

(�j )}ZR†
(�j )]jj ′

+�
2
j [Z

NR
(�j )Re{Zdrive−1

(�j )}ZNR†
(�j )]jj ′ .

(C133)

The cross terms are obtained similarly:

i
π

2

∑

α

[c̃qJ ,p
α mαwαδ(�j − wα)c̃�J ,pT

α ]jj ′

− i
π

2

∑

α

[c̃�J ,p
α mαwαδ(�j − wα)c̃qJ ,pT

α ]jj ′

= �
2
j [Z

R
(�j )Re{Zdrive−1

(�j )}ZNR†
(�j )]jj ′

+�
2
j [Z

NR
(�j )Re{Zdrive−1

(�j )}ZR†
(�j )]jj ′ .

(C134)

Regrouping the squared and cross terms together, we
finally obtain the correlated decay rates

γjj ′ = �
2
j [ZJD(�j )Re{Zdrive−1

(�j )}Z†
JD(�j )]jj ′ , (C135)

and the Purcell decays are given by the diagonal elements

γj κ = �
2
j [ZJD(�j )Re{Zdrive−1

(�j )}Z†
JD(�j )]jj (C136)

with Zdrive given by

Zdrive(ω) = Z01nD + C−1
D

iω
≡ Z01nD + Zdc

D (ω). (C137)

Similarly to Eq. (C100), we interpret Zdrive as the exter-
nal impedance seen by the inner modes, filtered by the
capacitances CD connected in series with the drive ports.

7. Admittance formulas for driving amplitudes

We now compute the qubit-drive Hamiltonian Ĥv that
results from (time-dependent) classical voltage sources
V(t) = [V1(t), . . . , VnD(t)]

T present in the nD drive ports;
see Fig. 5. The classical equations of motion are given by

CJ �̈J = − ∂U
∂�J

− L−1
J �J + YG

J �̇J − TJ Q̇

− M��
D ∗ �J − M�Q

D ∗ Q − M�
V ∗ V(t),

(C138a)

Q̈ = −C−1
I Q + TT

J �̇J − ZeQ̇ − MQ�
D ∗ �J

− MQQ
D ∗ Q − MQ

V ∗ V(t), (C138b)

which differs from the equation of motion (C66) by sim-
ply adding a voltage source term MV ∗ V(t). Here, the
(n + m + 2l)× nD voltage-source matrix MV(t) is defined
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by its Fourier transform:

M�
V (ω) = −(L−1

JD − ω2CJD + iωYG
JD)

×
(

iω
Z0

1nD − ω2CD + L−1
D

)−1

Z−1
0 , (C139a)

MQ
V (ω) = iωTT

D

(
iω
Z0

1nD − ω2CD + L−1
D

)−1

Z−1
0 .

(C139b)

The existence of nonzero M�
V arises from the direct

coupling between the qubit and drive ports (CJD, L−1
JD ,

YG
JD �= 0). The Lagrangian is given by L = LV=0 + LV,

where LV=0 = LS + LB + LSB is the time-independent
Lagrangian (i.e., without drives) given in Eqs. (C69). The
drive Lagrangian is given by

LV(t) = −�T
J [M�

V ∗ V(t)] − QT[MQ
V ∗ V(t)], (C140)

where LV depends only on the generalized coordinates
{�J , Q}. We note that one could choose to drive the sys-
tem via {�̇J , Q̇}, both frames being related via a canonical
transformation [52]. However, in the former gauge, the
Hamiltonian takes a simpler form H = HV=0 + HV, where
HV=0 was computed previously in Eqs. (C8) and HV(t)
takes the form

HV(t) = �T
J [M�

V ∗ V(t)] + QT[MQ
V ∗ V(t)]

= XT[MV ∗ V(t)] (C141)

with XT = (�T
J , qT

J , QT
R, QT

G,�T
R,�T

G) the phase-space
coordinates and MV given by the 2(n + m + 2l)× nD
matrix

MV =

⎛

⎜⎜⎜⎜⎜⎜⎝

M�
V

0
MQR

V

MQG
V
0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (C142)

Here, we remind the reader that n, m, l are the num-
bers of junction ports, LC oscillators (reciprocal poles of
the response), and gyrators (nonreciprocal poles of the
response), respectively.

The voltage-source matrix transforms under a symplec-
tic transformation S as

MV(t) �→ M̃V(t) ≡ (S−1)TMV(t).

By linearity of the Fourier transform, it translates in the
frequency domain as

MV(ω) �→ M̃V(ω) ≡ (S−1)TMV(ω).

Successively applying

(
SJ 0
0 SI

)
(C143)

given by Eqs. (C52) and (C53) to diagonalize both the
junction and inner mode sectors, separately, and the sym-
plectic SW transformation SSW = exp(AJ) to dispersively
eliminate the inner modes (reciprocal and nonreciprocal
poles) as detailed in Appendix B, the transformed voltage-
source matrix M̃V(ω) projected on the junction subspace is
given by

M̃V
�J = �

−1/2
J O�C

−1/2
J OCM�

V + Apx

(
�

−1/2
R MQR

V

�
−1/2
G MQG

V

)

+ App

(
0

�x�
−1/2
G MQG

V

)
, (C144a)

M̃V
qJ = −Axx

(
�

−1/2
R MQR

V

�
−1/2
G MQG

V

)
− Axp

(
0

�x�
−1/2
G MQG

V

)
,

(C144b)

where the generators {Axx, Axp , Apx, App} are computed as
in Eq. (B13a) in Appendix B. This leads to

M̃V
�J
(ω) = �

−1/2
J [Y

NR
(�J )+ Y

dc
(ω)]Ydrive−1(ω)/Z0,

M̃V
qJ
(ω) = −�−1/2

J Im[Y
ac,R

(�J )]Ydrive−1
(ω)/Z0,

(C145)

where Ydrive is given by

Ydrive(ω) = Z−1
0 1nD + L−1

D

iω
+ iωCD. (C146)

Similarly, the off-diagonal dc part of the admittance is

Ydc
JD(ω) = 1

iω
L−1

JD + iωCJD. (C147)

Therefore, the quantum Hamiltonian due to the external
drives takes the form

Ĥv =
n∑

j =1

nD∑

d=1

[εjd(t)b̂j + ε
jd(t)b̂
†
j ], (C148)
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where the driving amplitude contribution of junction port
j from drive port d is

εjd(t) = 1√
2
(M̃V

�J − iM̃V
qJ
)jd ∗ Vd(t)

= �
−1/2
j

2π
√

2

∫ +∞

−∞
dωeiωt

× {[Yac
JD(�J )+ Y

dc
JD(ω)]Y

drive−1
(ω)/Z0}jdVd(ω)

(C149)

with the ac part of the admittance given by Yac = Yac,R +
YNR.

For a single-tone drive Vd(t) = vd sin(ωdt), we explic-
itly obtain

εjd(t) = −i
�

−1/2
j vd

2
√

2Z0
(αjd[ωd]eiωdt − αjd[−ωd]e−iωdt)

(C150)

with

αjd[ωd] = {[Yac
JD(�j )+ Y

dc
JD(ωd)]Ydrive−1

(ωd)}jd

=
nD∑

d′=1

[Y
ac
jd′(�j )+ Y

dc
jd′(ωd)]Ydrive−1

d′d (ωd). (C151)

For realistic pulse drives with finite rise and fall times, one
can either use the integral formula (C149) or decompose
the pulse into its Fourier series Vd(t) = ∑

ωd
vd sin(ωdt) to

account for the effect of other harmonics {ωd}, and the total
drive amplitudes are simply the sum of single-tone drive
amplitudes, i.e.,

εtot
jd (t) =

∑

ωd

εjd(t) (C152)

with εjd(t) the single-tone drive amplitude associated with
frequency ωd given by Eq. (C150).

The analytical formula obtained in Eq. (C149) allows
us to characterize the classical crosstalk Xij experienced
by qubit i while driving from port d(j ) associated with the
control line of qubit j , taking into account not only the pos-
sible coupling between junction port i and drive port d(j ),
but also the possible stray coupling between drive ports
d(i) and d(j ) that occurs whenever Ydrive is not diagonal.
Thus, we extend the definition of the classical crosstalk
Xij , as given in Ref. [16], to account for both direct and
nonreciprocal couplings:

Xij = 20 log10

∣∣∣∣
αid(j )

αjd(j )

∣∣∣∣ (dB). (C153)

The matrix element αjd is obtained from an n × nD matrix

α, defined as α = {Yac
JD(�J )+ Y

dc
JD(ωd)}Ydrive−1

(ωd), where

ωd is the drive frequency and using the notation
[Y(�J )]jd = Yjd(�j ). In summary, matrix α enables the
computation of drive amplitudes εjd(t) [see Eq. (C150)]
and classical crosstalks between qubit ports during drive
operations from different control lines [see Eq. (C153)].

8. Impedance formulas for driving amplitudes

We now obtain analytical expressions for the qubit-
drive Hamiltonian in terms of the impedance response.
Taking into account classical voltage sources V(t) =
[V1(t), . . . , VnD(t)]

T, Kirchhoff’s equations are given by

C�̈ = − ∂U
∂�

− M0� − G�̇ − MD ∗ � − MV ∗ V(t),

(C154)

where � = (�T
J , �T

R, �T
G)

T. The (n + m + 2l)× nD volt-
age matrix

MV(t) =
⎛

⎝
MJ

V(t)
MR

V(t)
MG

V (t)

⎞

⎠ (C155)

is defined by its Fourier transform:

MJ
V(ω) = −ω2CJD

(
iω
Z0

1nD − ω2CD

)−1

Z−1
0 , (C156a)

MR
V(ω) = +ω2RDCD

(
iω
Z0

1nD − ω2CD

)−1

Z−1
0 , (C156b)

MG
V (ω) = +ω2NDCD

(
iω
Z0

1nD − ω2CD

)−1

Z−1
0 . (C156c)

As in the admittance case, the Lagrangian can be divided
into two parts, namely, a time-independent Lagrangian
LV=0 given by Eq. (C109) and a time-dependent part LV:

L = LV=0 + LV(t) (C157)

with

LV(t) = −�T
J [MJ

V ∗ V(t)] − �T
R]MR

V ∗ V(t)]

− �T
G[MG

V ∗ V(t)]. (C158)

Also, as in the admittance case, we make a gauge choice in
which we drive the system via the generalized coordinates
(�J , �R, �G). This choice is to be contrasted to that in
Ref. [16] where the choice of driven quadratures is instead
(�̇J , �̇R). By definition, both pictures reproduce classical
equations of motion and the corresponding Lagrangians
are related by a total derivative.
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In this frame, the Legendre transform is simple to per-
form and we obtain a compact expression for the total
Hamiltonian,

H = HV=0 + HV(t), (C159)

where HV=0 is given in Eqs. (C51). The drive Hamiltonian
HV(t) is

HV(t) = �T
J

[
MJ

V ∗ V(t)
] + �T

R

[
MR

V ∗ V(t)
]

+ �T
G

[
MG

V ∗ V(t)
]

= XT[MV ∗ V(t)
]

(C160)

with

XT = (�T
J , qT

J , �T
R, �T

G, QT
R, QT

G), (C161)

MV =

⎛

⎜⎜⎜⎜⎜⎝

MJ
V

0
MR

V
MG

V
0
0

⎞

⎟⎟⎟⎟⎟⎠
. (C162)

After diagonalizing the junction modes, the voltage matrix
is transformed as

MV �→

⎛

⎜⎜⎜⎜⎜⎜⎝

O�C
−1/2
J OCMJ

V
0

MR
V + RJ MJ

V
MG

V + NJ MJ
V

0
0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (C163)

Repeating the same steps of diagonalizing the inner modes
and rescaling by dressed frequencies leads to

M′
V =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

�
−1/2
J O�C

−1/2
J OCMJ

V
0

�
−1/2
R MR

V +�
−1/2
R RJ MJ

V

�
−1/2
G MG

V +�
−1/2
G NJ MJ

V
0

−�x�
−1/2
G MG

V −�x�
−1/2
G NJ MJ

V

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (C164)

Finally, dispersively eliminating the inner modes via a SW
transformation yields the voltage matrix couplings

M̃V
�J = �

−1/2
J O�C

−1/2
J OCMJ

V

+ Apx

(
�

−1/2
R MR

V +�
−1/2
R RJ MJ

V

�
−1/2
G MG

V +�
−1/2
G NJ MJ

V

)

+ App

(
0

−�x�
−1/2
G MG

V −�x�
−1/2
G NJ MJ

V

)
,

(C165a)

M̃V
qJ = −Axx

(
�

−1/2
R MR

V +�
−1/2
R RJ MJ

V

�
−1/2
G MG

V +�
−1/2
G NJ MJ

V

)

− Axp

(
0

�x�
−1/2
G MG

V −�x�
−1/2
G NJ MJ

V

)
,

(C165b)

where A is the generator of the SW transformation given
in Eqs. (C125). Consequently, the previous equations can
be written in terms of the impedance response

(M̃V
�J
)jd = [{�−1/2

j ωIm[Z
dc
JD(ω)]

+�
1/2
j Im[Z

ac,R
JD (�j )]}Zdrive−1

(ω)]jd,
(C166a)

(M̃V
qJ
)jd = [

�
1/2
j Z

NR
JD (�j )Zdrive−1

(ω)
]

jd. (C166b)

After quantizing the junction modes [58], the quantum
Hamiltonian accounting for the external drives takes the
form

Ĥv =
n∑

j =1

nD∑

d=1

[εjd(t)b̂j + ε
jd(t)b̂
†
j ], (C167)

where the drive amplitudes between junction port j and
drive port d are

εjd(t) = 1√
2
(M̃V

�J − iM̃V
qJ
)jd ∗ Vd(t)

= − i�
1/2
j

2π
√

2

∫ +∞

−∞
dωeiωt

× {[Zac
JD(�J )+ ω�

−1
J Z

dc
JD(ω)]Z

drive−1
(ω)}jdVd(ω),

(C168)

where the ac part of the impedance is given by Zac =
Zac,R + ZNR. For a single-tone drive Vd(t) = vd sin(ωdt),
we explicitly obtain

εjd(t) = −�
1/2
j vd

2
√

2
(αjd[ωd]eiωdt − αjd[−ωd]e−iωdt)

(C169)

with

αjd[ωd] = {[Zac
JD(�j )+ ωd�

−1
J Z

dc
JD(ωd)]Zdrive−1

(ωd)}jd

=
nD∑

d′=1

[Z
ac
jd′(�j )+ ωd�

−1
j Z

dc
jd′(ωd)]Zdrive−1

d′d (ωd).

(C170)

Analogously to the admittance analysis, we can compute
the classical crosstalk Xij experienced by qubit i while
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driving from the control line d(j ) associated with qubit j
to find that

Xij = 20 log10

∣∣∣∣
αid(j )

αjd(j )

∣∣∣∣ (dB) (C171)

with αjd the matrix element of the n × nD matrix α =
[Z

ac
JD(�J )+ ω�

−1
J Z

dc
JD(ωd)]Zdrive−1

(ωd). Here, ωd is the
drive frequency, and we use the notation [Z(�J )]jd =
Zjd(�j ).

APPENDIX D: EXACT ELIMINATION OF
NONDYNAMICAL MODES

Because in the perturbative regime the approximate and
exact eliminations yield the same effective models, in
Appendix C we have approximately eliminated the nondy-
namical modes. Here, we perform an exact elimination of
these nondynamical modes, extending the validity beyond
the dispersive regime, partially in line with the approach
outlined in Ref. [28]. We emphasize that despite its ad hoc
nature this approach is equivalent to the novel method for
zero-mode elimination proposed in Refs. [60,61].

For the admittance, our starting point is Eq. (C7). From
there, we perform the symplectic triangular transformation

S�y :

{
�J → �J , qJ → qJ − TJ Q,
Q → Q, � → � − TT

J �J .
(D1)

To eliminate the nondynamical modes, we apply the
symplectic transformation used in the main derivation
[Eqs. (C11)]. It then follows that the quadratic form of the
Hamiltonian (excluding the linear terms from the junction
potentials) is

H =
(

HJ K
KT HI

)
(D2)

with

HJ =
(

TJ TT
J YG

J C−1
J /2

(YG
J C−1

J )T/2 C−1
J

)
, (D3)

HI =

⎛

⎜⎝

�r 0
�r

�g
0 �g

⎞

⎟⎠ , (D4)

and

K =
(

0 −RJ�
1/2
r NR

J�
1/2
g −NL

J�
1/2
g

0 0 0 0

)
, (D5)

NL(R)
J = (nL(R)

1 , . . . , nL(R)
l ). (D6)

As we have not linearized the junction potential
in this elimination, the full Hamiltonian is H =

XTHX/2 + U(φJ ) with the junction potential U(φJ ) =
−∑

n EJn cos
(
φJn/φ0

)
, and X = (�J , qJ , QR,�r, QD

G, �D
g ).

The superscript D stands for dynamical, as all the modes
in the gyrator sector now correspond to dynamical modes,
and its dimension has been reduced by half, from 2l → l.

For the impedance, we start directly from the
Lagrangian (C38). Instead of doing a triangular transfor-
mation, we directly obtain the inverse of C using known
formulas for the inversion of 2 × 2 block matrices [62]:

C−1 =
(

C−1
J + TT

J TJ TT
J

TJ 1m+2l

)
. (D7)

Then, the Hamiltonian is simply

H = 1
2

(
q − G

2
�

)T

C−1
(

q − G
2

�

)

+ 1
2
�T

r L−1
r �r + U(φJ ). (D8)

We eliminate the nondynamical modes applying the same
symplectic transformations as in the main derivation in
Eqs. (C53). The quadratic form of the Hamiltonian (once
again excluding the linear terms from the junction poten-
tials) finally reads as Eq. (D2), now with

HJ =
(

0 0
0 C−1

J + TT
J TJ

)
, (D9)

HI =

⎛

⎜⎝

�r 0
�r

�g
0 �g

⎞

⎟⎠ , (D10)

and

K =
(

0 0 0 0
0 RT

J�
1/2
r (NR

J )
T�

1/2
g (NL

J )
T�

1/2
g

)
. (D11)

The full Hamiltonian is H = XTHX/2 + U(φJ ) with X =
(�J , qJ , �r, QR, �D

g , QD
G) and U(φJ ) the junction poten-

tial.
We stress that, for a proper quantization of the whole

response beyond the perturbative regime, Hamiltonians
where the nondynamical modes have been exactly elimi-
nated must be used [28].

APPENDIX E: JOSEPHSON JUNCTIONS’
NONLINEARITIES

We now derive the first-order corrections from the
weakly anharmonic nonlinear potential of the Joseph-
son junctions. We obtain qubit anharmonicities, dispersive
shifts, and linear corrections from normal ordering of a
Taylor expansion of the junction potential. We do so with
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a general derivation of the corrections from the dressing of
the junction mode, which is valid for both admittance and
impedance approaches. Consider the general case in which
the initial Josephson flux variables �̃J are related to the
final frame variables X = (�, q), expressed in dimensions
of (energy × time)1/2, via a dimensionless transformation
matrix α of shape (n × t):

�̃J = Z1/2
J αX = Z1/2

J (αφ� + αqq) (E1)

with Z1/2
J the necessary diagonal rescaling to obtain dimen-

sions of flux, n the number of junctions, and t = (n + m +
l) the total number of dynamical modes. We have separated
the flux from charge sectors in the final frame to simplify
the following calculations.

The nonlinear terms in the original frame are

H̃nl = −
∑

i

1
24̃LJiφ

2
0
φ̃4

Ji
(E2)

such that in the final frame we have

Hnl = −
n∑

i=1

1
24̃LJiφ

2
0

z2
Ji

( t∑

k=1

α
φ

ikφk + α
q
ikqk

)4

. (E3)

Introducing

φ̂k =
√

�

2
(b̂†

k + b̂k),

q̂k = i

√
�

2
(b̂†

k − b̂k),

(E4)

substituting, and rearranging we get

Hnl = −
∑

i

E(i)
C

12

z2
Ji

z̃2
Ji

(∑

k

α̃ikb̂k + α̃∗
ikb̂†

k

)4

(E5)

with ECi = e2/2CJi , z̃Ji =
√

L̃Ji/CJi , α̃ = αφ − iαq. Here,
CJi is simply (CJ )ii obtained from either D∞ or A0.

We expand the series using the general formula

(∑

k

αkb̂k + α∗
k b̂†

k

)N

=
∑

j ,s

{
CN

j ,s

(∑

k

α∗
k b̂†

k

)s(∑

k

αkb̂k

)t(∑

k

|αk|2
)j }

,

(E6)

where t, j , s are nonnegative integers, CN
j ,s = (N !/j ! s! t! 2j ),

0 ≤ j ≤ N , 0 ≤ s ≤ N − 2j , and t = N − 2j − s. We
obtained the above expression with a rearrangement of

the formulas presented in Ref. [63]. Hence, expanding
Eq. (E5) we have Hnl = Hν + Hβ + O(ϕ6

J ) with

Hν = −
t∑

rs

(νrsb̂rb̂s + 2νrsb̂†
r b̂s + νrsb̂†

r b̂†
s )

Hβ = −
t∑

pqrs

[6βpqrsb̂†
p b̂†

qb̂rb̂s

+ (4βpqrsb̂†
p b̂†

qb̂†
r b̂s + H.c.)

+ (βpqrsb̂p b̂qb̂rb̂s + H.c.)], (E7)

where the coefficients are

βpqrs =
n∑

i

E(i)
C

12

z2
Ji

z̃2
Ji

α̃ip α̃iqα̃irα̃is,

νrs = 6
∑

p

βpprs.

The bar over subindexes refers to conjugation; for exam-
ple,

βpqrs =
n∑

i

E(i)
C

12

z2
Ji

z̃2
Ji

α̃∗
ip α̃

∗
iqα̃irα̃is. (E8)

The inclusion of these conjugate coefficients is crucial
because, in contrast to the expansion for the nonlinearities
given in Ref. [13] and used in Ref. [16], we are allowing α
to mix flux and charge variables.

Now, assuming that all the nondiagonal terms of α̃ are
α̃ik ∼ O(k/�) and that α̃ii = 1 + O(k2/δ2), then in a sim-
ilar fashion to what was done in Ref. [16], to first order, we
obtain

γij � E(i)
c

2

(
zJi

z̃Ji

)2

α̃iiα̃ij + E(j )
c

2

(zJj

z̃Jj

)2

α̃jj α̃
∗
ji (E9)

for the linear coefficients between qubit modes,

νik � E(i)
c

2

(
zJi

z̃Ji

)2

α̃iiα̃ik (E10)

between qubit and inner modes, and νrs � 0 + O(k2/δ2)

otherwise. This implies that we can write the coefficients
in matrix form as

ν̃ = α̃†Z1/2
J �Z1/2

J α̃ (E11)
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with

�=

⎛

⎜⎜⎜⎜⎜⎝

E(1)
c /2̃zJ1

√
ζ 1

. . . 0

E(n)
c /2̃zJn

√
ζ n

0 0(m+l)×(m+l)

⎞

⎟⎟⎟⎟⎟⎠
,

(E12)

where ζ i ≡ (̃LJi/LJi), such that νrs � (̃ν)rs. Therefore, to
first order, we obtain

Hγ = −2
�
(αφ� + αqq)TZ1/2

J �Z1/2
J (αφ� + αqq)

= −1
2
�T

J (L
nl
J )

−1�J , (E13)

where

Lnl
J = L̃J

⎛

⎜⎝
�ω1/2E(1)

c
. . .

�ωn/2E(n)
c

⎞

⎟⎠ , (E14)

similar to Eq. (138) of Ref. [16]. We note that ωi =
1
√

LJiCJi here corresponds to the frequencies in the bare

basis after including a possible frequency shift due to L−1
J ,

with LJi the diagonal entries of (LJ )ii defined in Eq. (C29)
[Eq. (C64) for the impedance], and not to the final frame
frequencies. Then, if at the beginning of our treatment to
Hamiltonian H0 defined in Eq. (C7) [Eq. (C62) for the
impedance] we add and subtract Hγ ,

H = H0 + Hγ − Hγ = H ′
0 − Hγ , (E15)

we can account for the linear corrections coming from the
nonlinearities to first order if we satisfy the condition

ω2
i = ω̃2

Ji

(
1 + ζi − 2E(i)

c

�ωi

)
(E16)

with ω̃Ji = 1/
√

CJi L̃Ji and ζi =
√

L̃Ji/LJi . Solving this
expression for small anharmonicities E(i)

c /�ωJi � 1 we
obtain

ωi = ω̃Ji

√
1 + ζi

(
1 − E(i)

c /�ω̃Ji

(1 + ζi)3/2 − E(i)
c /�ω̃Ji

)
, (E17)

which, for ζi → 0 (the case with no inductive poles),
reduces to

ωi = ω̃Ji − E(i)
c /�

1 − E(i)
c /�ω̃Ji

, (E18)

recovering as a special case Eq. (144) of Ref. [16]. These
formulas are valid for both the admittance and impedance
methods.

As for the self-Kerrs and dispersive shifts to first order
in the expansion of Eq. (E7) they are

δi = −12βiiii,

χik = −24βiikk.
(E19)

To explicitly obtain their values, we have to obtain the
entries of α. For convenience of notation, we divide α into
submatrices:

α = (α
φ
J ,αq

J ,α�R ,αQ
R ,α�NR,αQ

NR). (E20)

From the derivation carried out in Appendix C, for the
admittance, we have

α = (S̃φ
J )

−1Pφ
J S−1

SW, (E21)

where Pφ
J is the projector onto the junctions’ flux subspace,

(S̃φ
J )

−1 = Z
−1/2
J OCC

−1/2
J O��

−1/2
J , and ZJ = (LJ /CJ )

1/2.
In the full perturbative approach and taking S−1

SW to first
order we obtain

(α
φ
J )

φJ
ij = δij ,

(α
q
J )ij = 0,

(α�R )iγ = −�−1
i,γ

√
ωiωrγ (rγ )i,

(α
Q
R )iγ = 0,

(α�NR)iμ = −�−1
i,μ

√
ωiωgμ(n

L
μ)i,

(α
Q
NR)iμ = �−1

i,μ

√
ωiωgμ(n

R
μ)i,

with �i,γ = ω2
i − ω2

rγ . For the impedance, we have

α = (S̃φ
J , 0, S̃φ

I , S̃q
I )S

−1
SW (E22)

with

S̃φ
J = Z

−1/2
J OT

CC
−1/2
J OT

��
−1/2
J ,

S̃φ
I = (Z

−1/2
J RT

J�
−1/2
R , Z

−1/2
J NT

J�
−1/2
g ),

S̃q
I = (0, −Z

−1/2
J NT

J�x�
−1/2
g ).
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By simply substituting and rearranging we explicitly
obtain

(α
φ
J )ij = δij − Im[Zac,R

ij (ωj )]√
zJizJj

,

(α
q
J )ij = − 2ω2

j√
zizj

∑

μ

�−1
jμ

ωgμ
Im{Res[ZNR(ωgμ)]ij },

(α�R )ij = 1√
zJi

(rγ )i√
ωrγ

(
ω2

rγ

ω2
rγ − ω2

i

)
,

(α
Q
R )ij = 0,

(α�NR)ij = 1√
zJi

(nL
μ)i√
ωgμ

(
ω2

gμ

ω2
gμ − ω2

i

)
,

(α
Q
NR)ij = − 1√

zJi

(nR
μ)i√
ωgμ

(
ω2

gμ

ω2
gμ − ω2

i

)
,

with the residue given by Res[ZNR(ωgμ)] = lims→iωgμ (s −
iωgμ)Z

NR(s) = −iBμ/2ωgμ , the nonreciprocal part of the
impedance residue at frequency ωgμ . Thus, we recover as
a subset Eqs. (120)–(122) of Ref. [16] with the difference
stemming from the different final frame we are taking.

It follows that the self-Kerr anharmonicities for both the
admittance and the impedance approaches are

δi = −E(i)
C (ωJi/ωi)

2. (E23)

After rearranging, the dispersive shifts in the admittance
approach are

χiγ = 2δi

(
ωrγ gqQ

iγ

ω2
rγ − ω2

i

)2

, (E24a)

χiμ = 2δi

(
ωgμ

ω2
gμ − ω2

i

)2

[(gqQ
iμ )

2 + (gq�
iμ )

2], (E24b)

with

gqQ
iγ =

√
ωi/ωrγ (rγ )i/

√
Ci, (E24c)

gqQ
iμ =

√
ωi/ωgμ(n

L
μ)i/

√
Ci, (E24d)

gq�
iμ =

√
ωi/ωgμ(n

R
μ)i/

√
Ci, (E24e)

where the last three correspond to the bare cou-
plings between the qubit and inner modes given in
Eqs. (C17d)–(C17h) with OC = OL = O� = 1n. For the

impedance, the dispersive shifts are

χiγ = 2δi

(
ωrγ gφ�iγ

ω2
rγ − ω2

i

)2

, (E25a)

χiμ = 2δi

(
ωgμ

ω2
gμ − ω2

i

)2

[(gφ�iμ )2 + (gφQ
iμ )

2], (E25b)

with

gφ�iγ =
√
ωiωrγ (rγ )i

√
Ci, (E25c)

gφ�iμ =
√
ωiωgμ(n

L
μ)i

√
Ci, (E25d)

gφQ
iμ =

√
ωiωgμ(n

R
μ)i

√
Ci, (E25e)

where the last three correspond to the bare couplings given
in Eqs. (C55b)–(C55f) with OC = O� = 1n. For the recip-
rocal resonators, we recover the dispersive shift given in
Eq. (63) of Ref. [16]. The transformer ratios rγ , nL,R

μ can
be obtained directly from the residues of the response,
as explained in Appendix A. Moreover, if higher-order
nonlinear corrections are desired, these can be straight-
forwardly obtained using Eq. (E6). For example, if the
sixth-order terms of the expansion are included, the dis-
persive shifts are corrected to second order in perturbation
theory by the factor χiμ → (1 − 2E(i)

C /�ωi)χiμ.
Additionally, we note that the dispersive shifts for the

impedance and admittance approaches are different. This is
to be expected due to the different frames used for quanti-
zation in one approach or another; however, and as we have
highlighted several times throughout this work, this differ-
ence is negligible in the dispersive regime. Going further,
analytical formulas for qubit cross-Kerrs can in principle
be obtained by considering higher-order terms of S−1

SW, as
was done in Ref. [47]. Moreover, it is useful to note that
a numerical treatment beyond the perturbative regime can
be done using the exact Hamiltonians after elimination of
the nondynamical modes given in Appendix D.

APPENDIX F: DERIVATION OF THE MASTER
EQUATION

In this appendix, we derive a completely positive trace-
preserving (CPTP) master equation for the qubits, tak-
ing into account any possible quasidegeneracies. In the
standard approach to open quantum systems, the master
equation is derived from a microscopic model (sys-
tem, bath, and interaction Hamiltonians) using the Born-
Markov and secular approximations [64–67]. However,
the secular approximation turns out to be restrictive and
fails whenever the spectral gap �ω of the qubit Hamilto-
nian Ĥq is of the order of the natural linewidth  dictated
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by dissipation, i.e., �ω �  . In this case, the rotating-
wave approximation typically used to transform the Bloch-
Redfield equation into a master equation in Lindblad
form (CPTP) breaks down [68,69]. Recent works have
introduced the partial secular approximation to extend
Lindblad’s equation to systems whose energy levels are
not necessarily strongly separated (i.e., �ω �  ), while
preserving complete positivity [68–71].

The starting point of our derivation is the Caldeira-
Leggett Hamiltonian Ĥ = Ĥq + ĤB + ĤqB with the inter-
action term of the form of Eq. (C81) and where

Ĥq =
∑

j

�j

2
(q̂2

j + φ̂2
j ), (F1)

ĤB =
∑

αb

(
p̂2
αb

2mαb
+ 1

2
mαbω

2
αbx̂2

αb

)
, (F2)

ĤqB =
∑

j

(
φ̂j

∑

αb

c̃�,x
α x̂αb + φ̂j

∑

αb

c̃�,p
α p̂αb

+ q̂j

∑

αb

c̃q,x
α x̂αb + q̂j

∑

αb

c̃q,p
α p̂αb

)
. (F3)

Here, we consider the system-bath Hamiltonian ĤqB ∼
O( ) as a perturbation i.e., ||ĤqB|| � ||Ĥq||, ||ĤqB|| �
||ĤB|| (Born approximation), which is valid when the
qubits are coupled dispersively to the inner modes and
when direct capacitive, inductive, and nonreciprocal cou-
plings between the qubit and drive ports are weak, which
is the regime of interest here [72].

The main idea of the partial secular approximation con-
sists of separating the set of qubits (energy transitions)
based on their frequency difference. With that objective,
we define an equivalence relation F between qubit ports j ,
j ′ such that (j , j ′) ∈ F if and only if their energy difference
is smaller or of the order of the natural linewidth, that is,
|�j −�j ′ | �  . This separation of energy scales allows
us to perform the rotating-wave approximation whenever
(j , j ′) /∈ F . However, if (j , j ′) ∈ F , the qubits are consid-
ered to be degenerate to first order in perturbation theory
for the system-bath coupling [71]. Therefore, tracing out
the baths yields the master equation [73]

dρ̂
dt

= −i[Ĥq, ρ̂] +
∑

(j ,j ′)∈F
ε,ε′={φ,q}

γ εε
′

jj ′

(
Âε

′
j ′ ρ̂Âε

†

j − 1
2
{Âε†

j Âε
′

j ′ , ρ̂}
)

,

(F4)

where we have omitted the Lamb-shift Hamiltonian that
introduces, in the dispersive and weak direct coupling
regime, just a small renormalization on the system Hamil-
tonian Ĥq. Notably, as shown in Ref. [32], in the adiabatic
limit when Z0 � Ydc

D
−1, the Lamb-shift Hamiltonian is

exactly canceled by the second-order terms in the system-
bath couplings that we have neglected in our Hamiltonian
[Eq. (C71)]. In typical circuit parameters, this limit is sat-
isfied. In the previous equation, the collapse operators are
defined as [65]

Âφj =
∑

E ′−E=�j

�̂(E)φ̂j �̂(E ′), (F5)

Âq
j =

∑

E ′−E=�j

�̂(E)q̂j �̂(E ′), (F6)

where �̂(E) is the projector over the eigenspace of Ĥq

with energy E . The spectral densities γ εε
′

jj ′ are defined as
the Fourier transform of the bath’s correlation functions

γ εε
′

jj ′ =
∫ +∞

−∞
dτei�j τ 〈B̂ε†

j (τ )B̂
ε′
j ′ (0)〉. (F7)

Using Eq. (C81), the bath’s eigenoperators are defined as

B̂φj =
∑

α

(c̃�,x
α x̂α + c̃�,p

α p̂α), (F8)

B̂q
j =

∑

α

(c̃q,x
α x̂α + c̃q,p

α p̂α). (F9)

Writing the normalized flux and charge operators in
terms of the bosonic modes φ̂j = (1/

√
2)(b̂†

j + b̂j ), q̂j =
(i/

√
2)(b̂†

j − b̂j ), the master equation can be expressed in
a compact way as

dρ̂
dt

= −i[Ĥq, ρ̂] +
∑

(j ,j ′)∈F
γjj ′

(
b̂j ′ ρ̂b̂†

j − 1
2
{b̂†

j b̂j ′ , ρ̂}
)

(F10)

with

γjj ′ = 1
2
(γ

φφ

jj ′ + γ
qq
jj ′ − iγ φq

jj ′ + iγ qφ
jj ′ ). (F11)

At cryogenic temperatures β−1 = kBT � �j such that the
number of thermal photons is negligible, n = 1/eβ��j −
1 � 1, and the bath can be approximated to be in its
ground state. In this case, one can easily compute the bath
correlation functions and γ ε,ε′

jj ′ , which leads to

γjj ′ = π

2

B∑

b=1

∑

α

(sαjb + itαjb)

(sαj ′b + itαj ′b)δ(�j − ωαb),

(F12)
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where

sαjb =
c̃�,x
αjb√

mαbωαb
+ √

mαbωαb c̃q,p
αjb

, (F13)

tαjb = √
mαbωαb c̃�,p

αjb
− c̃q,x

αjb√
mαbωαb

. (F14)

By symmetrizing the delta function, i.e., δ(�j − ωαb) =
δ[(�j +�i)/2 − ωαb] + O( ), one can readily verify that
matrix γjj ′ is positive semidefinite within the Born approx-
imation. This ensures that the master equation represents a
CPTP map.

APPENDIX G: CIRCUIT EXAMPLES

In this appendix, we provide further examples of cir-
cuits demonstrating the application of our results. This
appendix is divided into four parts. First, we start with a
comparison of the admittance and impedance approaches,
revealing their equivalence in the dispersive regime. We
then focus on a specific singular circuit, relying solely on
the admittance response in a situation where the impedance
approach cannot be applied. In the third part of this
appendix, we show how to use our results to estimate
Purcell decay rates, and we compare these rates to mas-
ter equation simulations and previous one-port analyses.
Finally, we give a detailed analysis of the nonreciprocal
circuit presented in the main text. We provide here both
admittance and impedance responses of this three-port
device, and give a simple explanation for the conditions
that achieve chiral dynamics with complete population
transfer.

1. Effective coupling rates: admittance versus
impedance

The circuit we consider is the two-port circuit of Fig. 7,
already studied in Ref. [47]. It consist of two linearized
qubits (J ) interacting via an inner mode (r) that we take to
be a simple LC circuit. Our objective here is to compare the
admittance and the impedance methods. The impedance
can be obtained with an ABCD analysis to find that

Z(s) = A0

s
+ A1s
ω2

rz
+ s2 , (G1a)

A0 =
(

1/C̃J 0
0 1/C̃J

)
, (G1b)

A1 = r2
z

(
1 1
1 1

)
, (G1c)

with C̃J = (Cc + CJ ), ωrz = ωr(rcj + 1)1/2/(2rcr + rcj +
1)1/2, ωr = 1/

√
LrCr, rz � rcj /

√
Cr, where rcr = (Cc/Cr)

FIG. 7. (a) Two (linearized) Josephson junctions coupled by a
transmission line resonator and (b) an effective circuit with only
one inner mode of the latter. Canonical circuit representations of
the (c) impedance (Z) and (d) admittance (Y) response matrices
from the Josephson ports.

and rcj = (Cc/CJ ). On the other hand, the admittance
response is

Y(s) = sD∞ + D1s
ω2

ry
+ s2 , (G2a)

D∞ =
(

CJ C
C CJ

)
, (G2b)

D1 = r2
y

(
1 1
1 1

)
, (G2c)

with CJ � C̃J (1 − rcj rcr), C � Ccrcr,ωry � ωrz (1 − rcj rcr),
and ry � rcr/

√
Lr. These approximate values are accurate

in the dispersive regime where rcj , rcr � 1.
To compare the two approaches, we show in Fig. 8(a)

the normalized difference between the normal mode fre-
quencies obtained from the effective classical Hamil-
tonian derived in Appendix C and the exact normal
modes of the circuit obtained from the standard Hamil-
tonian circuit analysis (dark blue, admittance; light blue,
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(a) (b)

FIG. 8. (a) Difference between the effective and exact nor-
mal modes of the circuit in Fig. 7(b) as a function of Cc/CJ
with Ck = 0. Dark (light) blue lines are the normalized differ-
ences from the admittance (impedance) methods. (b) Difference
between the effective and exact normal modes of the circuit in
Fig. 7(b) as a function of Ck with Cc = 0.1CJ . We plot the
differences obtained from the numerical diagonalization of the
direct coupling (full perturbative) method with dashed (solid)
lines. Circuit parameters are CJ = 51.0 fF, ωJ /2π = 5.57 GHz,
ωr/2π = 7.07 GHz, zr = 50 �.

impedance). This is plotted as a function of Cc/CJ with
the qubit-resonator coupling in the dispersive limit; see
the parameters in the figure caption. We find excellent
agreement in the dispersive regime, where Cc/CJ � 1.
As Cc/CJ increases, the accuracy diminishes because the
coupling between the qubit and resonator modes g =√
ωJωrCc/

√
CJ Cr increases and we get out of the per-

turbative regime. It is worth noting that the larger error
of the admittance approach can be attributed to the direct
capacitive coupling in its dc response between the external
ports [see C in Eq. (G2c)], in contrast to the impedance’s
dc response that is directly diagonal such that the exact
dressing of the capacitances is in this case automatic. As
already mentioned in the main text, we stress that this
difference between the two approaches arises from our
perturbative derivation, which leads to different final effec-
tive frames. Of course, when an exact Hamiltonian from
the impedance and the admittance responses can be con-
structed, the normal modes of both are exactly the same
[28,74–76].

In Fig. 8(b) we compare the fully perturbative approach
(solid) with the previous diagonalization method, where
the direct coupling is treated exactly (dashed), as devel-
oped in Appendix C. There, we plot the normalized normal
mode frequency difference for both approaches when vary-
ing the Ck/CJ ratio. Clearly, even in the strong coupling
regime Ck � CJ , the previous diagonalization approach
maintains its accuracy.

2. Direct inductive coupling and JJs’ nonlinearities

We now turn to the circuit of Fig. 9 where we replace
the direct capacitive coupling of Fig. 7 between the lin-
earized qubit modes with a direct inductive coupling.

This is the simplest circuit that allows us to verify our
extension of Ref. [16] to include direct inductive cou-
pling between qubit ports. As discussed in Appendix A,
for circuits with direct inductive coupling between the
qubit ports, we have A0 = lims→0 sZ(s) in the impedance
characterization. Because of this, the Lagrangian obtained
from the Cauer representation is singular, preventing us
from directly obtaining the Hamiltonian. In contrast, the
Lagrangian for the Cauer representation of the admittance
response is not singular at any pole and the circuit Hamil-
tonian can thus can be systematically obtained. Hence, we
study only the admittance response. To do so, we note that
Y(s) is the same as that given in Eq. (G2a) with the addition
of the inductive poles D0/s, where D0 = (1/Lc)(1 − σx).
Figure 10(a) compares the normalized difference between
the normal modes in the effective and exact linear sec-
tors, similar to the above example. It is evident that our
approach achieves a remarkably high level of precision.

To benchmark the effective nonlinearities presented in
the main text and derived in Appendix E, we compare the
effective ZZ interaction obtained from numerical diago-
nalization of the effective Hamiltonian with that obtained
from numerical diagonalization of the Hamiltonian after
full exact circuit quantization. In the qubit subspace, the
diagonalized Hamiltonian takes the form

Ĥ = ω1

2
σ 1

z + ω2

2
σ 2

z + ωZZσ
1
z σ

2
z . (G3)

The effective and exact ZZ interactions (ωZZ) are shown in
Fig. 10(b). The figure shows how a zero ZZ interaction can
be obtained by tuning the ratio between the junction and
coupling inductances LJ /Lc. Importantly, the results above
show that the effective ZZ interaction is accurate when
deep in the dispersive regime and under weak direct cou-
pling, but this accuracy decreases quickly with increasing
coupling strength. This discrepancy arises from the omis-
sion of both higher-order terms in the expansion of SSW
and the nonrotating terms in the nonlinear expansion (E7).
For reciprocal impedances, these higher-order corrections
are given in Ref. [47]. For the most general nonreciprocal

FIG. 9. Two-port example circuit with direct inductive cou-
pling between qubit ports. For circuits with direct inductive
coupling between inductive qubit ports (i.e., described in the con-
figuration space by their flux), A∞ = 0, A0 will be singular, and
unconstrained Hamiltonian dynamics cannot be systematically
obtained from the impedance response.
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case for both impedance and admittance, analytical inclu-
sion of these higher-order corrections remains an open task
that can be completed following the guidelines provided in
Appendix B. We also note that if the residues of the admit-
tance response can be obtained then a complete numerical
treatment beyond the dispersive regime using the exact
classical Hamiltonians we give in Appendix D is feasible.

3. Readout and drive-induced Purcell decays

We use the circuit in Fig. 11 to present a comparison
between the analytical formulas derived for dissipation
in Eqs. (18) and (19) and those resulting from the cou-
pling between the qubit and drive ports, incorporating both
impedance and admittance responses. We assess the accu-
racy of these formulas by comparing them to a master
equation simulation and previous one-port results pre-
sented in Ref. [77]; see Fig. 12. For the circuit of Fig. 11,
the numbers of qubit and drive ports are n = 1 and nD = 2,
respectively. Once the 3 × 3 immittance response matrix is
determined, which we do not present here due to its non-
compact form, we can apply our results given in Eqs. (18)
and (19) to estimate the qubit-relaxation rate 1/T1. To
do so, we first extract the dc part of the immittance
response given by Ydc = D∞s, Zdc = A0/s with D∞ =
lim|s|→∞ Y(s)/s and A0 = lims→0 sZ(s). This allows us to

(a)

(b)

FIG. 10. (a) Difference between normal modes of the linear
effective and exact Hamiltonians of the circuit in Fig. 9. (b) The
ZZ interaction obtained from the diagonalization of the effective
and exact quantum Hamiltonians as functions of LJ /Lc. Circuit
parameters are CJ = 100 fF, Cc = 0.1CJ , EJ 1/h = 20.4 GHz,
EJ 2/h = 12.6 GHz, and ωr/2π = 7.8 GHz.

compute Ydrive, Zdrive given by

Ydrive = Z−1
0 12 +

(
Ydc

22 Ydc
23

Ydc
32 Ydc

33

)
, (G4)

Zdrive = Z012 +
(

Zdc
22 Zdc

23
Zdc

32 Zdc
33

)
, (G5)

where Z0 is the characteristic impedance of the external
transmission lines. Here, index 1 represents the qubit port,
whereas the drive and readout ports are 2 and 3, respec-
tively; see Fig. 11. Equipped with these matrices, we can
now express the Purcell decay rates as

1
T1,Y

= 1
C

2∑

d,d′=1

Re{Ydrive−1

dd′ (ω)}Y1d+1(ω)Y

1d′+1(ω),

(G6)

1
T1,Z

= 1
LJ

2∑

d,d′=1

Re{Zdrive−1

dd′ (ω)}Z1d+1(ω)Z
1d′+1(ω),

(G7)

where C is the first entry of D∞ and C−1 that of A0,
i.e., C = (D∞)11 such that, for weak values of the cou-
pling capacitances, it is approximately given by Cj +
Cjd + Cjr. The qubit frequency is expressed as ω = ω̃J {1 −
Ec/ωJ [1 − (Ec/ωJ )]}, where ω̃J = 1/

√
LJ C, Ec = e2/2C,

and LJ = 1/(Cω2). In the case of the circuit of Fig. 11,
the drive ports are decoupled, as evidenced by the diago-
nal nature of Ydrive, Zdrive, i.e., Ydc

23 = Ydc
32 = 0 and Zdc

23 =
Zdc

32 = 0. Consequently, the total relaxation rate can be
decomposed into the sum of a Purcell decay rate result-
ing from the readout line and a drive-induced decay rate
originating from the direct coupling with the drive line, i.e.

1
T1

= 1
TRO

1
+ 1

TD
1

, (G8)

where

1
TRO

1,Y
= 1

C
Re{Ydrive−1

11 (ω)}|Y12(ω)|2, (G9)

1
TD

1,Y
= 1

C
Re{Ydrive−1

22 (ω)}|Y13(ω)|2; (G10)

similar expressions are obtained for the impedance. In the
limit of weak couplings Cjd, Cjr, Crp , Ck � Cj , Cr, Cp , we
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obtain

1
TRO

1
= Z0C2

rpC2
jrC

2
k

[1 + ω2(Cd + Ck)2Z2
0 ]Cj C2

pC2
r

× ω10

(ω2
r − ω2)2(ω2

f − ω2)2
, (G11)

1
TD

1
= Z0ω

2C2
jd

C[1 + Z2
0ω

2(Cd + Cjd)2]
. (G12)

To facilitate comparison with prior studies, we rephrase
the Purcell decay rate in terms of the qubit-readout
resonator coupling strength g, the readout resonator-
Purcell filter coupling J , and κf , the bare decay rate of
the Purcell mode. Using our Eqs. (6) and (18) in the
weak coupling regime, we obtain g � Cjr(ωωr/4Cj Cr)

1/2,
J � Crp(ωrωf /4CrCp)

1/2, and κf � (ω2
f C2

kZ0)/Cp [1 +
ω2

f Z2
0(Cd + Ck)

2] ≡ κ(ωf ). Using these expressions,
Eq. (G11) can be concisely written as

1
TRO

1
= κq

(
gJ

�rq�fq

)2

(1 − ζr)
2(1 − ζf )

2

×
(

1 − ζr

1 + ζr

)2(1 − ζf

1 + ζf

)
, (G13)

where κq = (ω2C2
kZ0)/Cp [1 + ω2Z2

0(Cd + Ck)
2] = κ(ω),

�rq = ωr − ω, �fq = ωf − ω, and ζμ = �μq/�μq with
�μq = ωμ + ω and μ = r, f . From this equation, we
obtain corrections to the usual Purcell protection formula
given by (gJ/�rq�fq)

2κf of Refs. [78,79] coming from
two distinct contributions. First, the qubit probes the bath
at its own frequency, rather than at the filter frequency,
which is reflected in κq = κ(ω), in accordance with Ref.
[80]. This correction is significant when the bath is not
entirely flat, something that cannot be captured by the stan-
dard master equation, as discussed in, e.g., Sec. IV of Ref.
[9]; see also Fig. 12. Second, there is a correction of order
ζμ originating from the counter terms in the interaction
between the qubit and the resonator-filter modes. Notably,
this correction becomes particularly relevant in the deep
dispersive regime (i.e., when �μq ∼ �μq), as highlighted
in Ref. [81].

In Fig. 12, we present a quantitative comparison
between our immittance results (light and dark blue) and
the integration of the master equation (brown) obtained
after the exact quantization of the three-mode system
(qubit, readout-resonator, Purcell filter). In this simula-
tion, the values of κf and TD

1 are taken from previ-
ous one-port results; in particular, here from Eqs. (2.18)
and (3.1) of Ref. [77], yielding κf = Re{iωf Ck(Z−1

0 +
iωf Cd)/Cp [Z−1

0 + iωf (Cd + Ck)]}, and a similar expres-
sion for 1/TD

1 by substituting Cp by CJ , Ck by Cjd, and
ωf by ω.

FIG. 11. Example of a three-port circuit for a typical qubit
control and dispersive readout routine. It consists of a capac-
itively coupled qubit to its control line with characteristic
impedance Z0 = 50 � connected to a voltage source Vd(t). The
qubit is also coupled to its Z0 = 50 � readout line via two
LC oscillators, corresponding to a standard scheme involving
a capacitively coupled readout resonator and Purcell filter. The
readout line is typically driven by a classical voltage source
VRO(t).

4. Three-port circulator circuit from the main text
with capacitive filter

We provide the calculations required to obtain the results
for the example of Fig. 2 of the main text. We obtain the
admittance of the circuit in Fig. 2(a) with the π -capacitive
filter of panel (b) using the admittance representation
of the ideal circulator described by a scattering matrix
S(φ), and the combination of additional parallel and series
capacitors:

Y(s)(φ) = D∞s + E∞(φ)+ D1(φ)s + E1(φ)

ωy(φ)2 + s2 ,

D∞ = CJ13,

E∞(φ) = −G(φ)[S(2π/3)− S(−2π/3)],

D1(φ) = α(φ)[2 − S(−2π/3)− S(2π/3)],

E1(φ) =
√

3ωy(φ)α(φ)[S(2π/3)− S(−2π/3)].

In the dispersive regime, and up to second order
in rcg , rcj � 1 with rcg = Cc/Cg and rcj = Cc/CJ , we
have CJ � [CJ (1 + rcj )− Cgr2

cg], G(φ) � tan(φ/2)r2
cg/√

3R, ωy(φ) = tan(φ/2)/(Cc + Cg)R, and α(φ) � tan
(φ/2)2r2

cg/3R2Cg . Matrix S(φ) corresponds to the scatter-
ing matrix defined in Eq. (21) of the main text. The inverse
of the admittance gives the impedance response

Z(s) = A0

s
+ A1s + B1

ω2
z + s2 ,

A0 = C̃J13 − C̃k[S(2π/3)+ S(−2π/3)],

A1 = β[213 − S(2π/3)− S(−2π/3)],

B1 =
√

3ωz(φ)β[S(2π/3)− S(−2π/3)],

with C̃J � CJ + 2C̃k, C̃k � Ccrcg/3, ωz(φ) � ωy(φ)(1 −
rcgrcj ), and β � r2

cj /3Cg . As is clear from the above,
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(b)

( 
)

( 
  
 )

FIG. 12. Analyzing circuit Fig. 11: (a) Purcell decay TRO
1 from

the readout line, (b) drive-induced relaxation TD
1 , as a function of

the coupling capacitances Cjr = Cc, Cjd = 0.1Cc. We compare
our results obtained with both impedance and admittance for-
mulas (18) and (19) (light and dark blue) with those obtained
from integrating the master equation of the three-mode sys-
tem (brown). We used realistic circuit parameters LJ = 10 nH,
CJ = 77 fF, giving a plasmon frequency ω̃J /2π = 5.73 GHz.
The frequencies of the readout resonator and Purcell filter are
ωr/2π = 7.50 GHz, ωf /2π = 7.51 GHz, respectively, and their
impedances are zr = zf = Z0 = 50�. The external coupling and
shunting capacitances to the ground are Ck = 20 fF, Cd = 100 fF,
respectively.

the frequencies of the poles are slightly different in both
immittance presentations. This clearly leads to Hamilto-
nians with different frequencies for the inner modes after
the exact circuit quantization. This difference however is
insubstantial, as the quantization is done with different
frames for each response. When accounting for the exact
frames within which each response is defined, all observ-
ables are predicted to be identical regardless of the chosen
approach.

Furthermore, the one-third ratio needed to achieve full
chiral population transfer dynamics can be readily under-
stood by examining the exact Hamiltonian of the cir-
cuit. By introducing the quasimomentum mode operators

B̂k = ∑
j ei2πkj /3b̂†

j /
√

3 for the qubit modes, the linearized
Hamiltonian in terms of φ reads

Ĥ(φ) =
∑

i

ωB̂†
i B̂i + ωy(φ)â†â

− J (φ)(B̂†
−1a + B̂†

1â† + H.c.), (G14)

where J (φ) = √
ωJωy(φ)

√
rcj rcg/6 . By separately con-

sidering the beam-splitter-like (two-mode squeezing)
interaction between the k = −1 (k = 1) mode with the
inner resonator mode, the elementary shifts λ±1 in the fre-
quencies of the modes B̂±1 are λ−1 � −2J (φ)2/� and
λ+1 � −2J (φ)2/[2ωy(φ)−�]. Complete chiral popula-
tion transfer is obtained when the quasimomentum mode
energies are equally spaced [19]. This equal spacing is
approximately obtained for a detuning � � 2ωy(φ)/3,
which leads to ω = ωy(φ)/3. For this condition to be
accurate, the perturbative criteria k(φ)/�(φ) � 1 must
be satisfied, where k(φ) ∼ {[|α(φ)|/CJ ][ω/ωy(φ)]}1/2

is the coupling between the qubits and the inner
mode, and �(φ) = |ω − ωy(φ)|. In particular, when ω =
ωy(φ)/3, the perturbative criteria reads k(φ)/�(φ) �
(3Cg/4CJ )

1/2rcg/(1 − rcg) � 1. If Cg ∼ CJ and rcg � 1,
it will remain accurate for all values of φ. Finally, it is note-
worthy that the couplings within the Hamiltonian provide
a clear explanation for the feasibility of achieving chiral
dynamics for any value of φ, contingent on a straightfor-
ward frequency condition. Explicitly, as φ changes, the
Hamiltonian in Eq. (G14) remains invariant, with only the
strength of the coupling J (φ) and the frequency ωy(φ)

changing; hence, by setting ωi = ωy(φ)/3, only the time
scale of the resulting dynamic changes.

5. Three-port circulator circuit from the main text
with resonator filter

Here, we provide details of the simulation performed
to obtain the qubit population transfer dynamics shown
in Fig. 3(b) using the LC filter shown in Fig. 2(c). Addi-
tionally, we show how our simple formulas can be used
to engineer the linear response of multimode nonrecipro-
cal systems. In particular, we obtain an ideal circulator
response for the circuit with the LC filter in Fig. 2(c) and
match the effective scattering matrix given in Sec. II of
Ref. [19].

The full Hamiltonian was constructed using the
impedance representation following Appendix D. The
admittance approach is equally valid, but the former is
preferred due to the lack of poles at infinity, a feature
that simplifies the construction. The effective Hamiltonian
(3) is constructed as prescribed in the main text. We fix
the parameters Cjr, Crs, Cg , and R, as well as the fre-
quency and impedance of the filter resonators ωrf and zrf .
Using Eq. (9), we solve for ω of Eq. (6) such that θij =
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FIG. 13. Comparison of the classical scattering response S
(solid) computed from the impedance matrix Z of the circuit in
Fig. 2(a)(i) using the LC filter Fig. 2(c) with reference probe
transmission lines with characteristic impedance R0 = 50 �,
with the effective one (dashed) obtained as in Sec. II of Ref.
[19]; see the text for details. The frequency at which ideal cir-
culation is achieved (ωc) is shifted from the bare frequency of
the filter resonators (ωrf ). The system parameters are CJ = 10.0
nF, Cjr = 10.0 nF, Crs = 5.6 nF, ωrf = ωy(φ)/3 = 2π × 12.08
GHz, zrf = 50 �, R = 100 �, φ � 0.081π , which leads to ωc �
0.977ωrf .

π/6. In particular, the resulting expression is a second-
degree polynomial in the qubit frequency ω, which admits
a physical solution for any degree of nonreciprocity in the
central element (i.e., φ �= {0,π}) provided one can tune the
remaining circuit parameters (e.g., resonator frequencies,
coupling strengths, capacitances to ground). The quan-
tum simulations are performed by truncating the maximum
photon number to four, and convergence was checked by
comparing with simulations with five photons.

Figure 13 shows the classical linear response (solid),
and the desired quantum linear response (dashed) obtained
using Eq. (21) of Ref. [19]. To obtain the classical
response, for simplicity, we first take the limit Cg → 0,
where the nonreciprocal circuit becomes identical to that
studied in Sec. II of Ref. [19]. Then, we set the filter res-
onator frequency using Eq. (22) such that the effective hop-
ping phase between the resonators is θij = π/6. Finally,
the response is obtained from the impedance matrix Z(ω)
of the circuit [18,82], as measured with reference probes
of R0 = 50 �, i.e., S(ω) = (Z + R01)−1(Z − R01). The
quantum mechanical response from Ref. [19] is com-
puted here by setting its two free parameters to ωr = ωc
and κ = |J | [see Eq. (13) of that reference together with
the condition κ ′ = 2κ]. Here, ωc is the frequency where
the ideal circulator response is obtained, and J is the
effective coupling between the resonator modes obtained
using Eq. (8). The observed small discrepancy between
the two approaches arises because the targeted response
(dashed line) assumes symmetric spacing between the
three harmonic modes obtained after diagonalizing the
effective Hamiltonian for the three resonators. Specifically,

if λ0 < λ1 < λ2 are the three lowest eigenvalues of the
effective Hamiltonian in the ideal case, it holds that λ1 −
λ0 = λ2 − λ1. However, when the full Hamiltonian is
taken into account, the resulting eigenvalues exhibit a
slight asymmetry, such that λ1 − λ0 = λ2 − λ1 +�. This
small � is the source of the observed minor discrepancy.
This, however, does not prevent ideal circulation.

Remarkably, the desired circulator response can be
obtained for arbitrary small values of φ, i.e., low nonre-
ciprocity in the central element. This example shows how
our methods can be useful not only in designing effec-
tive quantum Hamiltonian models, but also in engineering
desired scattering responses.
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