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Leakage, the occupation of any state not used in the computation, is one of the of the most
devastating errors in quantum error correction. Transmons, the most common superconducting
qubits, are weakly anharmonic multilevel systems, and are thus prone to this type of error. Here
we demonstrate a device which reduces the lifetimes of the leakage states in the transmon by three
orders of magnitude, while protecting the qubit lifetime and the single-qubit gate fidelties. To do
this we attach a qubit through an on-chip seventh-order Chebyshev filter to a cold resistor. The
filter is engineered such that the leakage transitions are in its passband, while the qubit transition
is in its stopband. Dissipation through the filter reduces the lifetime of the transmon’s f state, the
lowest energy leakage state, by three orders of magnitude to 33 ns, while simultaneously keeping
the qubit lifetime to greater than 100 µs. Even though the f state is transiently populated during
a single qubit gate, no negative effect of the filter is detected with errors per gate approaching
1× 10−4. Modelling the filter as coupled linear harmonic oscillators, our theoretical analysis of the
device corroborate our experimental findings. This leakage reduction unit turns leakage errors into
errors within the qubit subspace that are correctable with traditional quantum error correction.
We demonstrate the operation of the filter as leakage reduction unit in a mock-up of a single-qubit
quantum error correcting cycle, showing that the filter increases the seepage rate back to the qubit
subspace.

I. INTRODUCTION

Leakage to states outside the computation subspace is
common in weakly anharmonic qubits like transmons, the
most commonly used superconducting qubit [1]. Even
basic operations such as one- and two-qubit gates and
measurement are known to cause leakage [2, 3]. This type
of error is one of the most serious threats to quantum
computation because quantum error correction (QEC)
algorithms do not correct for leakage errors. Minimizing
leakage often comes at the cost of slowing down the oper-
ation, thus increasing decoherence-related errors. Wait-
ing for leakage states to relax back to the qubit sub-
space, the most common method to remove leakage, has
become an untenable solution as qubit lifetimes have in-
creased, which has also increased the lifetimes of the leak-
age states. Furthermore, postselection, in which any data
that shows signs of leakage is discarded, has begun to fail
as a mitigation approach because the odds of a leakage-
free computation have shrunk as the number of qubits
and operations has increased; postselection now often re-
quires discarding most of the data in a large computa-
tion [4, 5]. Therefore, while recent increases in coherence
times and the number of qubits used in superconducting
quantum computers are enabling more complex quantum
computations, these same increases are also making leak-
age a more dangerous threat to superconducting quan-
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tum computation [4, 6, 7]. To build a quantum computer,
either leakage events must be eliminated or another ap-
proach is needed to cope with this type of error.

A leakage reduction unit (LRU) takes the second ap-
proach, converting leakage errors into errors that can be
corrected by QEC algorithms by quickly returning leak-
age back to the qubit subspace [8, 9]. In superconduct-
ing qubits, most LRUs require an active step during the
QEC cycle during which leaked transmon states are re-
turned to the qubit subspace. For example, if a mea-
surement detects the occupation of the f state, the first
state outside the qubit subspace, then a conditional π-
pulse at ωef can be applied to return the qubit to the
e state [10]. However, in a QEC algorithm only the
ancilla qubits are routinely measured, so this approach
cannot be used on the data qubits. For data qubits,
a microwave-driven Raman transition can swap popula-
tion from the f state of the qubit into the readout res-
onator, where it quickly decays [10–15]. While both of
these methods work for the f state, and sometimes the
h-state [10, 11, 14], they struggle for leakage to higher
levels because of the increasing charge dispersion. Un-
fortunately leakage to states higher than the f state is
common during strong microwave drives used in measure-
ment [3, 16–18], microwave-driven two-qubit gates [19–
21], and microwave pump tones [22, 23]. Reset of such
highly excited transmon states has been demonstrated
by pulsing a flux-tunable transmon through a lossy mode
[24]. However, this destroys the qubit state, so it can only
be applied to ancilla qubits. This limitation can be over-
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come by either swapping the quantum information from
the data qubits to the ancilla qubits before resetting the
data qubits, or by swapping the leakage from the data
qubits to the ancilla qubits before resetting the ancilla
qubits [25–27]. Moreover, each of these methods require
time during the quantum algorithm, time during which
the other qubits are suffering from decoherence.

The ideal LRU for a superconducting quantum com-
puter would reset any leakage state back to the qubit
subspace, not disturb the qubit subspace, not slow down
a computation by adding an additional steps the algo-
rithm, work for either flux-tunable or fixed-frequency
transmons, and be completely passive. In this paper
we demonstrate an LRU which satisfies all these require-
ments. It consists of a transmon connected to a resistor
through a high-order filter, as shown in Fig. 1. The fil-
ter is engineered such that the frequencies of the leakage
transitions of the transmon are in the passband of the
filter, so that the leakage states are short lived. The
frequency of the qubit transition, however, is in the stop-
band of the filter, protecting the lifetime of the qubit. We
engineered a seventh-order Chebyshev filter so that the
roll-off of the filter would be sharper than the small an-
harmonicity of the transmon. The filter reduces the life-
time of the f state by three orders of magnitude from T1,f

= 34 µs in the stopband of the filter to T1,f = 33 ns in the
passband of the filter, which is approaching the duration
of a typical single-qubit gate. Nevertheless the lifetime
of the qubit’s first excited state is over 100 µs, unaffected
by the filter. Even though the f state is transiently oc-
cupied during single qubit gates, we demonstrate high-
quality single-qubit gates on the qubit, as measured by
randomized benchmarking. We also study the filter from
a theoretical perspective, modelling it quantum mechan-
ically and performing full time-dependent simulations.
These simulations corroborate our experimental findings
that the filter does not significantly degrade our ability
to perform quantum computations. Finally, to demon-
strate operation as an LRU, we study the effect of the
filter on the leakage and seepage rates during a mock-up
of a QEC circuit which consists of repeatedly measuring
the qubit, often the most leaky operation in a quantum
computer [3, 4].

It is not obvious that such a filter can be coupled to
a transmon without negative effects on the qubit. In
weakly anharmonic qubits like transmons, fast single-
qubit gates require large-bandwidth microwave pulses
that also drive the ωef transition, transiently populat-
ing the f state during the gate [28]. The commonly used
derivative removal by adiabatic gate (DRAG) method
reduces the population in the f state at the end of the
gate, but the f state is still populated during the gate
[29–31]. This raises the question: if the f state is weakly
transiently-occupied during the gate, how much decoher-
ence on the ef -transition can be tolerated before it nega-
tively affects a single-qubit gate? Therefore we focus on
demonstrating high-quality single-qubit coherent opera-
tions in a qubit connected to a leakage reset filter. We
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FIG. 1. (a) A transmon (blue) is capacitively coupled to re-
sistor (black) thru a filter (red). (b) The leakage transitions
(ωef , ωfh ...) are situated in the passband of the filter, cou-
pling them to the resistor, reducing their lifetimes. While the
qubit transition, ωge, is in the stopband of the filter, isolating
it from the resistor, protecting its lifetime. Therefore the fil-
ter must have a very sharp rolloff so that the transition band
of the filter is smaller than the anharmonicity, α = ωef −ωge.
(c) If a transmon has leaked to the h-state, the dissipation in-
duced at ωfh induces relaxation to the f state, which quickly
decays to the e state, at which point the cascade stops be-
cause ωge is protected in the stopband of the filter. Once the
transmon has returned to the qubit subspace, the LRU has
been successful.

also examine how the filter affects single qubit operations
on neighboring qubits, but we do not study how the filter
affects two-qubit gates.
High-order filters already have many uses in supercon-

ducting quantum circuits, such as in Purcell filters [32–
35]. Similar multi-mode structures can also be referred
to as photonic crystals [36], photonic bandgaps [37], su-
perconducting metamaterials [38], and waveguides [39].
Such structures have been used to enable long-distance
qubit interactions [40], generate qubit interactions with
photonic bound states [41], engineer dissipation [36, 37],
engineer dispersion in traveling-wave parametric ampli-
fier [42], and for quantum simulation [35]. Photonic
bandgaps has previously been used to suppress of T1,f

of a transmon with respect to T1,e [38, 43, 44], but not
with a focus on high-quality qubit operations. A filter
has been previously proposed to reduce leakage in a qubit
with a large energy gap to the leakage states [45], how-
ever the engineering of the filter is very different in a
small anharmoncity qubit like the transmon.

II. ENGINEERING THE FILTER

To act as an LRU the filter must: 1) have a passband
broad enough to pass several leakage transitions, 2) a
stopband around the qubit frequency, 3) a sharp roll-off
to transition from passband to stopband over a transition
band smaller than the anharmonicity of the qubit, and 4)
minimal ripple in the passband. In this section we design
a filter for a typical qubit with ωge/2π = 4.7 GHz, with
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α/2π = -325 MHz. The anharmonicity, which is large
for a transmon, makes condition 3 easier to realize and
is beneficial for fast cross-resonant gates between qubits
[46].

First, as in Fig. 1(b), the passband should be broad
enough to contain multiple leakage transitions (ωef , ωfh,
...). This is because if the transmon has leaked to the h-
state, then dissipation from the resistor induced at ωhf

causes the h-state to quickly decay to the f state. It will
then quickly relax to the e state, at which point the cas-
cade will stop because ωge is protected in the stopband
of the filter, see Fig. 1(c). Now the LRU has success-
fully returned population in the leakage states back to
the qubit subspace and a leakage error has successfully
been converted to an error within the computational sub-
space, which can be corrected by QEC. The filter is not
designed to provide reset to the ground state from within
the qubit subspace, as often used in initialization. How-
ever, the filter can in principle be used to initialize the
qubit in the e state by driving the two-photon g−f tran-
sition, which can then be rotated to the g state with a
π-pulse.

Second, as shown in Fig. 1(b) the qubit transition ωge

should be in the stopband of the filter, protecting the
qubit from dissipation due to the resistor. The stopband
should be broad enough to protect the qubit given vari-
ations in qubit frequency [47], as well as frequency shifts
and broadening during gates and readout [48]. Here we
choose to implement the filter as a bandpass filter around
the leakage transitions. We set the bandwidth of the fil-
ter at ∆ω/2π = 1.8 GHz, to pass roughly the first five
leakage transitions, beyond which the charge dispersion
of the leakage transitions becomes very large. We engi-
neer the cutoff frequency of the filter to be at 4.5 GHz, in
between ωge/2π and ωef/2π. Although we focus on the
bandpass implementation of the filter other filter typolo-
gies would also work: a bandstop filter around the qubit
frequency, or a low-pass (high-pass) filter for qubits with
negative (positive) anharmonicity.

Third, the filter must have a steep rolloff between the
passband and the stopband because ωge and ωfe are de-
tuned by |α| ≪ ωge. In general higher-order filters have
steeper rolloff, at the expense of a larger physical foot-
print. Fourth and finally, excessive ripple in the passband
of the filter can result in a large spread in the lifetimes
of the different leakage transitions. This is undesirable
because the relaxation of leakage is a sequential process,
and so is limited by the slowest decay rate. Chebyshev
filters offer a good balance of steep rolloff and reasonable
ripple in the passband, with parameters that are easy to
design and fabricate [49]. Therefore we based our design
on a seventh-order Chebyshev filter with a 0.1 dB ripple
factor.

The final parameters of the LRU, the coupling between
the qubit and the filter g, and the resistance R determine
the lifetime of the leakage transitions in the passband of
the filter. We set R = 50 Ω because we used an off-chip
termination as the source of dissipation to simplify man-
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FIG. 2. Implementing the filter. (a) Diagram of the circuit for
quantization. The qubit (blue) is capacitively coupled, with
coupling strength g, to a filter (red), which is connected to off-
chip dissipation (black). To quantize the circuit, the seventh-
order filter can be represented with seven coupled lumped-
element resonators. (b) Cartoon of the physical layout of the
qubit and the filter, not to scale. The qubit (blue) is coupled
to a coupled-line filter (red) to off-chip dissipation (black).
The coupled mode filter consists of parallel transmission lines.
The modes consists of seven λ/2 sections, cascaded such that
half of each segment overlaps with the prior segment, and the
other half overlaps with the subsequent segment, to provide
the coupling. (c) Measured transmission S21 through a test
structure for the filter, not coupled to any qubits, showing a
passband ∼ 2 GHz broad. This measurement is not calibrated
to remove attenuation and dispersion in drive lines. (d) Den-
sity of states (DOS) for the filter calculated using Eq. (10), as
a function of frequency. Note that the regions of high density
of states correspond to regions of high transmission through
the filter.

ufacturing. Therefore, the desired lifetime of the leakage
states sets the value of g. We engineered this LRU to
suppress the lifetimes of the leakage states to less than
100 ns. To act as an LRU the filter likely only needs to
reset leakage on a timescale similar to the typical QEC
cycle time, which today is about 1 µs [4, 6, 7]. This is
because recent work in the surface code has shown that
the LRU can improve the logical error rate even if the
LRU does not perfectly reset leakage during every QEC
cycle [5]. We choose the lower lifetime target of 100 ns
for this filter to study detrimental effects of the filter on
qubit operations.
Once the filter parameters have been determined, the

design can be implemented in many ways using standard
microwave engineering [49]. A canonical form for a Lth-



4

order bandpass filter consists of L capacitively coupled
resonators, as shown in Fig. 2(a). Each resonator indi-
vidually would act as a single-pole bandpass filter near
its resonant frequency, ωi, and the coupled resonators
hybridize forming collective modes and creating a pass-
band. However, the large capacitances and inductances
required can be difficult to fabricate. Instead, we fabri-
cated a coupled-line filter implementation, see Fig. 2(b).
An Lth-order filter then consists of L half-wavelength,
open-circuited, coplanar waveguide (CPW) resonators
[49]. The resonators are cascaded by running the CPWs
in parallel to couple each resonator to its neighbors. The
amount of coupling between each resonator, Jn,n+1, can
be engineered by controlling the width of the CPWs, the
gaps between the CPWs, and the gap between the CPWs
and the ground plane. Because the purpose of this de-
vice is to test the basic concept, we did not focus on
reducing the size of the filter. In addition, lossy mate-
rials should be avoided in fabricating the filter; because
while the filter protects the qubit from dissipation due to
the resistor, the qubit will still partially hybridize with
the filter. Therefore internal loss in the filter reduces the
lifetime of the qubit.

III. EXPERIMENTAL IMPLEMENTATION OF
THE FILTER

A. Measurements of a transmon connected to the
filter

To study the effect of the filter on a qubit as a func-
tion of the eg-qubit transition frequency we made the
qubit flux-tunable via a symmetric dc-SQUID. The re-
sults presented in this section are obtained with device
A. Fig. 3(a) shows the results of a measurement of T1,e,
T2,CPMG, and T1,f , as we sweep the qubit frequency over
500MHz in 10MHz steps from the maximum frequency
of ωge,max/2π = 4.970 GHz to a minimum frequency of
4.470 GHz. At each step we recalibrate the gates, and
then measure the coherence times and perform random-
ized benchmarking. Reported values are averaged over 19
sweeps, taken over the course of 5 days. As discussed in
the previous section, the passband of the filter begins at
4.5 GHz, therefore the maximum qubit frequency is deep
in the stopband of the filter. Furthermore, because the
anharmonicity of this transmon is α/2π = -325 MHz, the
maximum ef -transition frequency, ωef/2π = 4.645 GHz,
is also in the stopband of the filter. Therefore at the sweet
spot of the SQUID both the e state and the f state are
long lived, with T1,e = 119 µs and T1,f = 34 µs.
As we apply flux, we bring both ωge and ωef towards

the passband of the filter. As the qubit frequency de-
creases the qubit remains long-lived with T1,e ≈ 100 µs,
until ωge/2π ≈ 4.6 GHz, where the qubit transitions enter
the passband of the filter. We stop measuring at ωge/2π
= 4.470 GHz, because the T1,e is reduced to 1 µs, at
which point qubit calibrations and measurement become

expt.

coh. lim.

Device A: Bandpass Filter

(a)

(b)

FIG. 3. Effect of the filter on the transmon. (a) Measure-
ments of T1, T2,CPMG, and T1,f as a function of frequency.
For the x-axis we show both ωge in black on the bottom of
the plot and ωef in green on the top of the plot. Although
the passband of the filter begins at 4.5 GHz, because of the fi-
nite transition band of the filter, T1,e rolls off below 4.6 GHz.
However, the ef -transition enters the passband of the filter
when the qubit frequency is at 4.9 GHz, because of the an-
harmonicity of the transmon. The filter suppresses T1,f by
three orders of magnitude, from 34 µs to 33 ns, as the qubit
frequency changes by only 200 MHz. Therefore this filter
could act as an LRU for qubits frequencies between 4.6 GHz
and 4.8 GHz. In addition to effect of the filter, flux noise also
reduces T2,CPMG at lower frequencies. (b) Single-qubit gate
error as measured with randomized benchmarking compared
to the coherence limited predicted from coherence times in
(a). Negative effects of the filter on qubit operations should
appear as an excess of errors with respect to the coherence
limit. Over the range of the LRU, from 4.6 to 4.8 GHz, the
error can be well predicted by the coherence limit calculated
using Eq. (1), meaning that we do not detect an excess of gate
errors.

difficult. Moreover, tuning the qubit frequency via flux
makes the qubit succeptible to flux noise, which slowly
reduces T2,CPMG as the qubit frequency is tuned away
from the sweet spot. For a fixed-frequency transmon we
do not expect the filter to have an effect on the dephas-
ing rate, see Section IVE. However, as ωef decreases,
T1,f is rapidly suppressed. A change in frequency of only
200 MHz causes T1,f to decrease by more than three or-
ders of magnitude, from a maximum of 34 µs to a min-
imum T1,f = 33 ns at ωge/2π = 4.745 GHz (ωef/2π =
4.417 GHz). The extremely sharp roll-off of the filter can
be demonstrated by noting that at this operating point
where the ef -transition has been maximally suppressed
by the filter, the lifetime of the e state is unaffected, with
T1,e = 106 µs. As the frequency continues to decrease the
lifetime of the f state remains suppressed below 100 ns,
with visible ripple due to the density of states of the
filter. This filter can act as an LRU over a 200 MHz
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bandwidth, for qubit frequencies from 4.6 to 4.8 GHz.
For other filters, this operational bandwidth will vary
based on background T1,e, desired T1,f , anharmonicity
of the qubit, and the order of the filter. Moreover, the
operational bandwidth of this filter is large enough that
non-flux-tunable transmons can be used, as the band-
width is larger than the spread of qubit frequencies due
to junction variability [47].

Next we perform single-qubit randomized benchmark-
ing (RB), as shown in Fig. 3(b), to further characterize
the effect of the filter on single-qubit gate operations.
One potential source of gate errors during single qubit
gates in weakly anharmonic qubits like transmons due to
the filter is that the f state is transiently occupied during
the gate, because of the finite pulse bandwidth. DRAG
pulses with a duration of 4 standard deviations are used
to reduce the population in the f state at the end of the
pulse, but DRAG does not eliminate the population of
the f state during the gate [30, 31]. To test the poten-
tially detrimental impact of relaxation on the transient
f state population during the gate, we purposefully try
and maximize the f state population by minimizing the
duration of the pulse by choosing a total gate time tg
= 14.2 ns for both the X and Y gates. The Z-gate is
performed with a virtual frame change [50]. We need
to compare the measured RB values to the best RB we
could expect to do based on the coherence of the qubit.
We use the qubit coherences, T1,e and T2,CPMG, shown
in Fig. 3(a) to compute the coherence limit of the single-
qubit gate fidelity using [51]

E =
1

2

(
1− 2

3
e−tg/T2,CPMG − 1

3
e−tg/T1,e

)
. (1)

Note that this formula does not depend on T1,f , and is
not modified to account for any potential effects of the
filter. Therefore detrimental effects from the filter on
E will show up as an offset between the experimentally
measured gate fidelities and the coherence limit.

We see in Fig. 3(b) that in general the error rate in-
creases as the qubit frequency decreases, at first slowly
due to the flux-noise reduced T2,CPMG and then rapidly
due the reduced T1,e as the qubit frequency enters the
filter. At the highest qubit frequencies, above 4.8 GHz,
the experimental RB fails to achieve the coherence limit.
However, in this regime the filter is not heavily suppress-
ing T1,f , so this is not due to the filter. There are many
potential reasons for this, such as the very short gate
time which could mean that there is residual coherent
error, and interactions with strongly coupled two-level
systems are also not accounted for by Eq. (1). However,
in the range of qubit frequencies over which we want to
use the filter as an LRU, from 4.6 GHz to 4.8 GHz, the
experimentally measured single qubit gate fidelities are
well predicted by the coherence limit. Therefore, despite
making an aggressive filter to suppress T1,f to 33 ns, and
making the gates only 14 ns long to populate the f state
as much as possible during a gate, while maintaining a
qubit lifetime of 106 µs, we do not see a suppression of

the single qubit error rate to the resolution of the ex-
periment, about 1 × 10−4. Nevertheless, because the f
state is transiently populated, the filter should have an
effect on the gate fidelities. Therefore in Section IV we
theoretically explore analyze a qubit connected to the fil-
ter to understand the fundamental limits that the filter
imposes on the gate fidelities.

B. Filter as an LRU

So far we have focused on demonstrating that the fil-
ter does not negatively affect the performance of sin-
gle qubit gates. We next demonstrate the usefulness
of the filter as an LRU. To do this, we use a circuit
that simulates the sort of leakage that would occur in
a QEC experiment. QEC relies on repeated measure-
ments of check qubits, and readout is one of the leakiest
qubit operations [3, 4, 17, 18]. Therefore we perform a
single-qubit mock-up of a QEC cycle, consisting of the se-
quence

(
Xπ/2 −Meas

)
, repeated back-to-back 60 times,

see Fig. 4(a). Because the measurements are repeated
back-to-back, leakage accumulates over the course of a
single run of the sequence, making even small amounts
of leakage easy to measure. This sequence is then re-
peated 5000 times, with 2 ms between runs, to ensure
that leakage from one sequence has relaxed before the
start of the next sequence. From this experiment we can
extract the leakage and seepage rate per measurement,
as previously demonstrated in Ref. [41].
In the device shown in Fig. 3(a) the T1,f is below 100

ns for much of the range of flux biases. This extremely
short lifetime makes it very challenging to measure the
population in the f state. Therefore to characterize the
performance of the LRU, we switched to device B, which
is a bandstop rather than a bandpass implementation of
the filter. The qubit has an upper sweet spot ωge/2π =
5.087 GHz where T1,e = 103 µs and T1f = 51.7 µs. Be-
low ωge/2π = 4.7 GHz, ωef enters the passband of the
filter. The minimum T1,f = 361 ns occurs at ωge/2π =
4.635 GHz. The reduction of T1,f in device B is not as ex-
treme as in device A, because this qubit is not as strongly
coupled to the filter as the in the previous device. The
aggressive suppression of T1,f in device A is engineered
to study potential negative effects of the filter on single-
qubit gates. In contrast, the less aggressive suppression
of T1,f in device B is appropriate to act as an LRU on a
quantum computer with a QEC cycle time of ∼ 1 µs.
To make the leakage easier to study, the readout is de-

liberately tuned up to be likely to induce leakage, by
choosing a fast measurement time with a large drive
amplitude.The dispersive shift of this qubit is χ/2π =
1.0 MHz at the flux sweet spot, and is connected to a
readout resonator of frequency ωr/2π = 7.309 GHz with
a linewidth κ/2π = 5.5 MHz. The readout pulse has a
duration τdrive = 142 ns, and the measurement integra-
tion time is τint = 300 ns. At the measurement amplitude
used in this experiment we are unable to reliably calibrate
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FIG. 4. Demonstration of filter as an LRU. (a) Experiment to measure leakage and seepage rates per measurement using a
mock-up single-qubit QEC-cycle. We repeat the sequence

(
Xπ/2 −Meas.

)
back-to-back 60 times. The total readout integration

time τint = 300 ns, although the resonator is only driven for τdrive = 142 ns. (b) The outcomes of interleaved calibrations of the
g (blue), e (orange), and f (green) states. The blue, orange, and green backgrounds, show how subsequent measurements get
binned into g, e, or f according to the nearest calibration state. The red points show the outcomes of the 60th measurement,
showing occupation both of the states in the qubit subspace, and occupation of several leakage states. Note that most of the
leakage states, even the leakage states above f , get binned into the f state during this process. Although 5000 points were
taken during each experiment, only 1000 points are shown to reduce clutter. (c) The blue points show the probability of the
mth measurement being binned into a leakage state, pleak. The leakage (ΓL) and seepage (ΓS) per measurement are can be
extracted from the fit (orange) to Eq. 2. (d) T1,e, T2,echo, and T1,f as a function of ωge as measured according to the procedure
used in Fig. 3. (e) Median leakage and seepage rates per measurement as extracted from the fits to Eq. 2. Notice how the
seepage rate increases around ωge/2π = 4.7 GHz as ωef enters the passband of the filter, reducing the lifetime of the last
leakage state.

the number of photons in the resonator. The readout is
assisted by both a traveling-wave parametric amplifier on
the mixing chamber stage and by the use of a matched
filter trained on measurements of the g and e states [52].

Interleaved with the sequence shown in Fig. 4(a), we
also perform a calibration consisting of measuring the
qubit when prepared in each of the g, e, and f states.
Figure 4(b) shows the IQ blobs for the calibration states.
Each of the 60 measurements in the experiment is then
assigned to g, e, or f according to which calibration has
the nearest median point as shown by the shaded regions
in Fig. 4(b). The red points in Fig. 4(b) show the results
of the 60th measurement, showing that the qubit popu-
lation has spread beyond the g and e states to occupy
multiple leakage states. We do not distinguish different
leakage states, with all of them being assigned to the f
state in our analysis. This data is taken at the upper
sweet spot of the qubit, where the f state is long lived
because the ef -transitions is in the stopband of the filter.
Therefore, at this flux bias we can easily see a clear sep-
aration between the e and f states. However, as T1,f is
reduced, relaxation from f to e reduces the distinguisha-
bility of the e and f states. To correct for relaxation
during readout and overlap of the IQ blobs, we adapt
the readout error mitigation technique from Ref. [53]
for multiqubit readout and apply it to single-qubit three-

level readout. To do so, we create a measurement-error
mitigation matrix that consists of the probability of each
measurement outcome for each of the initial states g, e,
and f , assuming perfect initialization in the calibration
measurements. We then apply the inverse of this ma-
trix to the ensemble of outcomes for each iteration of the
measurement, to undo measurement errors. Note that at
the upper sweet spot of device B, the filter does not act
as an LRU because ωef and ωfh are not in the passband
of the filter. Therefore we observe what appears to be
a large population in the h-state in Fig. 4(b), because
the higher leakage transitions are in the passband of the
filter.
Figure 4(c) shows pleak, the probability of each of the

measurement being in a leakage state, for each of the
60 measurements in the sequence in Fig. 4(a). This
probability grows rapidly as population builds up in the
leakage states. As population in the leakage states accu-
mulates, eventually the population approaches a steady
state where the amount of leakage and seepage is equal.
We fit to the function

pleak =
ΓL

ΓL + ΓS

(
1− exp−(ΓL+ΓS)m

)
(2)

for measurement number m, where ΓL is the leakage rate
per measurement and ΓS is the seepage rate per measure-
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ment. The curve in Fig. 4(c) is a fit yielding the rates ΓL

= 1/67.9 measurements and ΓS = 1/54.9 measurements.
The purpose of the Xπ/2 in the circuit is to randomize
the state of the qubit between measurements. It has no
effect on the transmon if one of the leakage states is oc-
cupied. This simplifies the analysis because the leakage
rates from g and e can be very different [16, 17]. In our
procedure, we measure a single leakage rate per measure-
ment averaged over the rates from g and e.
Figure 4(e) shows the median ΓL and ΓS as a func-

tion of qubit frequency averaged over 19 runs. There is
structure in both ΓL and ΓS as a function of frequency.
The dependence of ΓL on qubit frequency has been a sub-
ject of recent study both experimentally and theoretically
[16, 17]. Here we focus on the structure in ΓS . We see
that above ωge/2π = 4.8 GHz, ΓS is fairly stable versus
frequency. Below ωge/2π = 4.7 GHz, ΓS increases as ωef

enters the passband of the filter, as can be seen in T1,f

in Fig. 4(d). We see a local maximum in ΓS at ωef/2π
= 4.64 GHz, corresponding to the minimum in T1,f . The
correspondence between ΓS and T1,f shows that the filter
is responsible for this increase in seepage back into the
qubit subspace. Because measurement-induced leakage
is often to states much higher than the f state, requiring
a multi-stage relaxation process to return to the qubit
subspace, it is likely that the filter is having an effect on
the relaxation of the higher states prior to ωef entering
the passband of the filter. However, because the f state
is likely to have the longest lifetime of the leakage states,
ωef entering the passband of the filter has the largest
effect on ΓS .

IV. FILTER THEORY

In this section we provide a theoretical description of
the device. First, we briefly review how we obtain a
quantum-mechanical description of the bandpass filter
under consideration. We then explain how we perform
simulations of the coupled qubit-filter system. Finally,
we discuss how one expects the filter to impact the per-
formance of logical operations on the qubit, and show
numerically that high-fidelity gates are possible in the
presence of this engineered dissipation.

A. Quantum description of a bandpass filter

We first summarize how to obtain a quantum descrip-
tion of a bandstop filter coupled to two output ports.
In the next subsection, we replace the first port by the
qubit we wish to protect from leakage. Although the
physical filter is implemented as a coupled-line filter as
shown in Fig. 2(b), we quantize the much simpler but
functionally-equivalent lumped-element implementation
of the filter as shown in Fig. 2(a).

As was previously mentioned, there is a standard de-
sign flow to build such a filter [49]. Given a set of target

filter parameters — which for a Chebyshev filter of order
L are the central frequency ω0, the bandwidth ∆ω and
the ripple factor η — one obtains a set of normalized
element values {gn} which correspond to capacitances,
inductances, and impedances of a lumped-element cir-
cuit. Quantizing this model through a standard proce-
dure [54], one obtains a 1D chain of nearest-neighbour
coupled linear bosonic modes. The length L of the
chain matches the order of the filter. The corresponding
second-quantized Hamiltonian within the rotating-wave
approximation (RWA) is

Ĥf = ω0

L∑
n=1

f̂†
nf̂n +

L−1∑
n=1

Jn,n+1

(
f̂†
n+1f̂n + h.c.

)
, (3)

where f̂n is a the mode annihilation operator of site n.
The coupling constants Jn are directly related to the de-
sign coefficients [54], which for the filter under consider-
ation takes the form

Jn,n+1 =
∆ω

4

| sin(n π
L + iβ)|√

sin (2n−1)π
2L sin (2n+1)π

2L

, (4)

where β = arcsinh(η−1)/L.
Momentarily ignoring the qubit, the first and last sites

are coupled to input-output waveguides which defines
port 1 and 2 of the device, respectively. This induces
Markovian damping on those two sites at a rate κf , whose
form is also determined by {gn} and here is given by

κf =
∆ω

2

sinhβ

sin π
2L

. (5)

Focusing exclusively on the modes f̂n of the filter, their
dynamics is described by a Lindblad master equation

with Hamiltonian Ĥf and dissipators κD[f̂1]ρ̂+κD[f̂L]ρ̂,

with D[X̂]· = X̂ · X̂† − {X̂†X̂, ·}/2. If our focus was,
however, on how signals entering port 2 are transmitted
to port 1, one would use quantum input-output theory
to compute the frequency-dependent scattering matrix
element S12[ω] [55]. The upshot is that with our choice
of Hamiltonian Eq. (3) and parameters Eq. (4)-(5), the
scattering matrix obtained from the fully quantum cal-
culation exactly matches the classical scattering matrix

|S12[ω]|2 =
1

1 + η2T 2
L(

2(ω−ω0)
∆ω )

, (6)

where TL is the Chebyshev polynomial of the first kind of
order L. Unless otherwise stated explicitly we fix L = 7,
although the following discussion easily generalizes to a
filter of arbitrary order.

B. Coupling the qubit to the filter

With a quantum description of the filter in hand, we
now bring back the coupling to the transmon qubit. We
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do so by replacing the Markovian input-output waveguide
on the first site by the qubit, and removing the term

κD[f̂1] from the master equation. This term is replaced
by a capacitive coupling between the transmon and a
resonator which enters the Hamiltonian. In what follows,
we will drop the qubit’s intrinsic decay and dephasing
rate for the sake of compactness; we keep them in all
numerical simulations throughout this work. With that
caveat, the master equation describing the full qubit-filter
density matrix then takes the form

∂tρ̂ =− i[Ĥt + Ĥf + ϵt(t)n̂t − ign̂t

(
f̂1 − f̂†

1

)
, ρ̂]

+ κfD[f̂7]ρ̂. (7)

Here, Ĥt = 4EC n̂
2
t − EJ cos φ̂t is the usual transmon

Hamiltonian, with EC the charging energy, EJ the flux-
tuneable Josephson energy, n̂t, and φ̂t the standard
charge and phase operators of the transmon satisfying the
usual canonical commutation relations [φ̂t, n̂t] = i. As is
standard, we have ignored any static gate charge on the
transmon [56]. The function ϵt(t) is the pulse shape of
the charge drive that we will use to perform gates. The
only source of decay comes from coupling the last site
n = 7 to a lossy element, which is a consequence of as-
suming the filter elements are purely reactive. Finally, g
is the transmon-filter coupling, which we note is the only
free parameter in the model. We use this free parameter
to match the experimentally-measured decay rate of the
f state, and for our parameters is g/2π = 20MHz.

The master equation Eq. (7) constitutes the full quan-
tum description of the coupled qubit-filter system. Be-
yond brute-force numerical simulation of Eq. (7), which
at first glance seem rather challenging given the numer-
ous bosonic modes, there are several other ways to an-
alyze the dynamics. First, one could think of the filter
as a highly-structured environment coupled to the qubit,
i.e. a non-Markovian bath. Following this line of rea-
soning, one could integrate out the linear filter modes
exactly and obtain a non-Markovian equation of mo-
tion for the qubit only. However, non-Markovian mas-
ter equations are more difficult to work with numerically
[57], and the theory of these master equations is not as
nearly well-developed compared to their Markovian coun-
terparts [58].

Another option to capture the effects of the filter on
the qubit is perturbation theory. By assuming the cou-
pling g is weak enough, one could make the approxima-
tion that the density of states (DOS) at any transition
frequency is locally flat, and that this is sufficient to cap-
ture its dissipative effects [58]. One would be left with
a Markovian master equation with dissipators describing
different transitions in the transmon at different rates
determined by Fermi’s golden rule. However, the ideal
operating range of the filter is precisely when the f state
is near the edge of the filter’s passband, where the DOS
is decidedly not flat, see Fig. 2 (d). Further, the Marko-
vian approximation is uncontrolled. As a result, looking

FIG. 5. a) Decay rate of the qubit’s e and f state, obtained
either via a fit to the full master equation Eq. (7) (coloured
crosses) or Fermi’s Golden Rule Eq. (8) (full line). Only slight
deviations between the two appear when the ωef enters the fil-
ter, where we except the perturbative expression to fail in any
case. (b) Averaged infidelity of a DRAG-optimized 14.2 ns X
gate (solid line) using the full filter (blue) and keeping only
the g, e and f state of the qubit (orange) with correspond-
ing decay rates from (a). The discrepency between the two
is large when the DOS at the ef transition enters the filter
and the Markovian approximation is expected to fail. The
identity gate (dashed black line), also referred to as the co-
herence limit, for the same duration is also plotted. We see
that over a large range of frequencies ∼ 100MHz we have a
long-lived e state lifetime ∼ 100µs, short-lived f state life-
time ∼ 100 ns and low single qubit gate infidelity ∼ 10−4.
Further, all relevant qualitative features in these two theory
plots match their experimental counterparts in Fig. 3. As
one further decreases the qubit frequency it enters the filter
and starts to hybridize with the filter modes. This explains
the largening discrepency between the two gate fidelities as
we lower the qubit frequency. These numerical simulations
were run with a maximum number of excitation Nexct = 2.
Increasing this dimension to Nexct = 3 and Nexct = 4 (not
shown) does not change the result, the averaged infidelity be-
tween any of the three simulations differing by ∼ 10−7.

ahead towards implementing this architecture in a quan-
tum computer where one aims to achieve gate fidelities
on the order of 99.99%, a numerically-obtained averaged
gate fidelity to this level of precision using this Marko-
vian approximation cannot be trusted. Without a reason
a priori to believe in perturbation theory, to reach this
level of precision we are forced to treat the complete dy-
namics governed by the master equation Eq. (7).
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C. Partitioning the Hilbert space

While it is well known that measurement and other
strong microwave drives can populate very high states of
the transmon [3, 17, 18], to understand the effect of the
filter on the gates, here we focus on the states g, e, and
f . This is because only the f state has a significant tran-
sient population during the gate, and we want to study
the effect of the filter on single qubit gates. Since excita-
tions can be exchanged between the transmon and filter
via the coupling g, we must also keep the same number
of levels in all other filter states, that is up to 2 photons
in each mode. The Hilbert space dimension of the cou-
pled system for the 7-th order Chebyshev filter is thus at
minimum 3×37 ∼ 104. Although it is possible to numer-
ically time-evolve master equations with Hilbert spaces
of this size, performing any sort of parameter exploration
or optimizing over gates is numerically too demanding.
In addition, eventually including more leakage levels in
the transmon would only makes this problem worse. It
is thus clear that a sheer brute-force approach to solving
Eq. (7) is not practical.

We can, however, use the structure of the master equa-
tion to judiciously eliminate certain states which will be
irrelevant to the dynamics. Indeed, within the RWA the

Hamiltonian Ĥt + Ĥf − ign̂t(f̂1 − f̂†
1 ) preserves the to-

tal excitation number. Further, although the dissipation
is strong, it can only remove excitations from the sys-
tem. Thus if we start in e.g. the f state of the transmon
with no photons in the filter, |f, 0⊗7⟩, we can safely ig-
nore states with one photon in each filter mode such as
|e, 1⊗7⟩. This state has 8 excitations, and can be safely
dropped from the dynamics. Defining Nexct as the max-
imum total excitation number we will keep in our time
evolution, a simple combinatorial calculation reveals that
the dimension of this new partitioned Hilbert space is(
1+7+Nexct

Nexct

)
. For Nexct = 2, this corresponds to a Hilbert

space dimension of 45. We can then easily perform these
simulations in this reduced Hilbert space and confirm the
validity of our results by verifying that they are insensi-
tive to an increase in Nexct.

D. Effects of the filter on qubit decay rates

We are now in a position to explore the effects of the
filter on the qubit. By design, at the operating point
the transmon is weakly-coupled to the filter and the ge
transition is in the stopband. The qubit subspace is then
safely in the dispersive regime. This leads to a weak
dressing of the qubit eigenstates which we denote |g, 0⊗7⟩
and |e, 0⊗7⟩. These numerically-obtained states serve as
our computational basis. The coupling also leads to a
small dressing of the qubit’s frequency, in complete anal-
ogy to the standard coupling between a transmon and a
resonator [56]. We denote ω̄ge as the bare qubit frequency
and ωge as the dressed qubit frequency, which note is the
opposite notation for states.

To estimate the decay rate of our qubit’s excited state
and the leakage states, we can use Fermi’s Golden Rule
[59]. Under the usual RWA, the decay rate of the qubit
Γe→g and first leakage state Γf→e induced by the filter
take the form

Γe→g = 2π|geg|2ρf (ω̄ge),

Γf→e = 2π|gfe|2ρf (ω̄ge + α),
(8)

where gitjt ≡ g⟨it|n̂t|jt⟩, ρf (ω) is the local density of
states (LDOS) of the first site of the filter, and recall
that α < 0 is the transmon anharmonicity. The LDOS
is related to the linear response properties of the filter
and, in particular, can be determined by its frequency-
dependent retarded Green’s function

GR
f [n,m;ω] = −i

∫
dteiωtθ(t)⟨[f̂n(t), f̂†

m(0)]⟩, (9)

ρf (ω) = − 1

π
ImGR

f [1, 1;ω]. (10)

Here the filter creation and annihilation operators are in
the Heisenberg picture with g = 0, θ(t) is the Heavi-
side step function and the average is with respect to the
steady-state of the filter. The function GR

f (n,m;ω) char-
acterizes the frequency response of site n under a force
acting on site m. It is worth emphasizing that for the
linear filter considered here the density of states can be
computed directly from coupled-mode theory and is di-
rectly related to the filters impedance, see Refs. [33, 54]
for details.
In Fig. 5 we plot the predictions of Eq. (8) over a range

of qubit frequencies and compare with the numerically-
extracted decay rates obtained by solving Eq. (7). We see
an excellent agreement between the two methods over
essentially the whole range of frequencies. Placing the
qubit’s transition frequency in the stopband is thus suf-
ficient to protect it from unwanted additional decay. We
stress that being able to predict the correct decay rates
via perturbation theory does not imply that we can ob-
tain the infidelities using this method, i.e. with a Marko-
vian description of the qubit.

E. Effects of filter on qubit dephasing rate

Another relevant source of error that can be enhanced
by the filter is dephasing. To understand why, consider
the standard dispersive readout of a transmon coupled
to a readout resonator with mode annihilation operator â
leading to dispersive interaction χσ̂zâ

†â. It is well-known
that shot-noise fluctuations of the resonator photon num-
ber under this dispersive coupling leads to enhanced de-
phasing [60].
Naively, this effect is even worse here, where we pur-

posefully make the ef transition resonant with the filter:
the analogue to the χ shift here should thus be large,
given that its denominator precisely involves the detun-
ing between these two states [1]. It seems as though the
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presence of the filter necessarily involves an increase in
the pure dephasing rate of the qubit.

Crucially, however, it is fluctuations in â†â which
causes additional dephasing of the qubit. Consequently,
any enhanced dephasing on the qubit due to the filter
should vanish if the latter is in vacuum. By adding weak

incoherent pumping of the form κf n̄th

(
D[f̂7] +D[f̂†

7 ]
)
ρ̂

to Eq. (7) we verify numerically both of these effects,
see Appendix A. Namely, we show that the pure de-
phasing rate of the qubit is largely unaffected by the
presence of the filter at zero temperature and, further,
that the pure dephasing rate is indeed made worse when
the ef transition enters the bandpass of the filter. This
is confirmed by the experimental data presented in Ap-
pendix A, where a decrease in the T2 time is observed
when the filter’s temperature is purposefully increased.

F. Effects of the filter on single-qubit gates

Having characterized how the filter affects the qubit’s
decay and dephasing rates, we can now address how
single-qubit gate fidelities are changed in the presence of
the engineered dissipation. Before addressing this ques-
tion directly, however, we first examine how the filter af-
fects the transient f state population during a gate. As
we have emphasized, since the qubit subspace is largely
unaffected by the presence of the filter, this should be the
leading-order effect if the filter were to have any delete-
rious effects on single qubit operations.

In Fig. 6 we plot the population of the two-excitation
states (which includes the f state with no photons in the
filter) during a DRAG-optimized X-gate, obtained via a
numerical integration of Eq. (7). Here, the DRAG pa-
rameters are chosen to optimize the average fidelity of
the X-gate. We see that this population throughout the
gate is largely independent of whether or not we have
an engineered dissipative environment. It is worth em-
phasizing that the objective of the filter is not to remove
any of this transient population during the gate. Rather,
the purpose of this figure is to show that the impact of
the filter on the f state population should be minimal.
Consequently, we expect the impact on single-qubit gates
should also be negligible.

This expectation is borne out in Fig. 5(b) where we
plot the average infidelity of the X gate and identity
gate — also known as the coherence limit — as a func-
tion of qubit frequency. For each qubit frequency we
choose the DRAG parameters to optimize this aver-
aged infidelity. At the operational point of the filter
ωge/2π ≈ 4.7 ∼ 4.8GHz, where we have both a large
decay rate of the f state and large T1,e we obtain an
averaged infidelity ∼ 10−4 which is close to the coher-
ence limit. This demonstrates that the filter does not
have any major detrimental effects to single-qubit opera-
tions. This is, however, not the case if we were to simply
describe the effects of the filter on the qubit within a
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FIG. 6. Numerical simulation

comparing the transient two-excitation population during a
14.2 ns long DRAG-optimized X-gate with and without the
filter. The qubit frequency is such that the f state lifetime
obtained from the numeric fit T1,f ≈ 9.89 ns is minimal. We
see essentially no difference between the two plots during the
bulk of the gate, and only a very minor difference between

the two at the end.

Markovian approximation, see the orange line in Fig. 5.
This is not surprising, given that the DOS near the range
of frequencies is not flat, see Fig. 2 d).
As one lowers the qubit frequency, we see a large dif-

ference between the fidelity of the X gate and the co-
herence limit, unlike what is seen in experiments, see
Fig. 3. For this range of frequencies, the dressed states
we define as our computational subspace become more
and more filter-like. In a worst-case situation for in-
stance, the dressed qubit excited state is a superposi-
tion |e, 0⊗7⟩ ∝ |e, 0⊗7⟩ + |g, 0⊗6, 1⟩ while the orthogonal
state ∝ |e, 0⊗7⟩ − |g, 0⊗6, 1⟩ would be considered a leak-
age state. While our numerical simulations can resolve
these two states, the experiment presumably cannot. We
thus do not expect an agreement between theory and ex-
periment in this regime. This is however not in a range
of parameters one would want to operate the qubit in.

V. CONCLUSIONS AND OUTLOOK

We have demonstrated that a high-order filter between
a qubit and a source of cold resistance can be used as
an LRU. We have showed that the filter can reduce the
lifetime of the first leakage state by three orders of mag-
nitude, while protecting the qubit lifetime. Crucially,
high-quality single-qubit operations can be performed in
the presence of the filter. Even though the f state is
transiently occupied during a fast single-qubit, we do not
observe negative effects of decoherence on the f state of
the qubit on single qubit gate fidelities, despite the gate
time approaching the lifetime of the f state. Our an-
alytical and numerical results support the experimental
data, with a strong quantitative agreement between both
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lifetimes and single-gate fidelities.
Our approach to leakage reduction has several advan-

tages over other experimentally-implemented LRU’s. Be-
cause it is always on, it does not slow down the compu-
tation by adding an extra step for leakage reset. Further,
the passive nature of this bath-engineering approach does
not require additional control hardware and is compati-
ble with fixed-frequency qubits. Finally, the broadband
nature of the filter means that unwanted accumulation
of population to higher-leakage state is automatically ac-
counted for.

Future work is needed before our filter-based approach
to building an LRU is suitable in a full-scale quantum
computer. First, in this paper we did not address the
effect of the filter on two-qubit gates. Some implemen-
tations utilize the f state on at least one of the qubits.
In this case, unless the qubit or filter are tunable in fre-
quency, the ef -transition would need to be outside the
passband of the filter state. Second, the current imple-
mentation of the filter is too large to be scalable. More
compact implementations of filters can be achieved using
spiral resonators [34], nano-mechanical resonators [61],
or metamaterial transmission lines [35, 62, 63]. An alter-
nate approach would be to move the filter off-chip into a
multi-level wiring layer.
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Appendix A: Thermally-enhanced dephasing

In this appendix, we will demonstrate both experimen-
tally and numerically that the qubit experiences excess
dephasing when the filter is thermally-populated. This
is analogous to the usual shot-noise dephasing of a qubit
dispersively-coupled to a resonator, which depends on
the χ shift of the resonator. As we stressed in the main
text, a naive perturbative argument suggests that the
analogue of the χ shift should diverge [64], given that
a filter mode is resonant with the ef transition. While
non-perturbative corrections make the analogue of the
χ shift finite, crucially the enhanced density of states of

expt.

coh. lim.

(a)

(b)

FIG. 7. Effect of thermal photons in filter, repeating proce-
dure from Fig. 3. In this case when the filter is maximally
suppressing T1,f , there is a dip in T2,CPMG, and a correspond-
ing peak in the single-qubit error rate, indicative of errors
from the thermal photons in the filter.

the bath that lead to an enhanced f state decay rate also
leads to an increase in the pure dephasing rate.
Let us begin with the experimental results. To put a

thermal photon population in the filter, we exposed the
output of the filter to a microwave drive line. Atten-
uation on the drive line on the mixing chamber of the
fridge provided a 50 Ω termination for the filter. How-
ever, the attenuation of the drive line was chosen to be
insufficient to protect the qubit from the thermal noise
from higher temperature stages of the fridge [65]. Figure
7 repeats the experiment from Fig. 3 with a hot filter.
While T1,e and T1,f are not affected by the thermal pho-
tons, we see additional dephasing in T2,CPMG. There is
a dip in T2,CPMG, and peak in the single qubit error rate
at ωge/2π = 4.75 GHz, at the same point where there is
a dip in T1,f . This suggests an enhanced dephasing from
thermal photons in the filter when the ef -transition is
near resonant with a mode of the filter. Because this en-
hanced dephasing potentially affects the operation of the
qubit, in this section we seek to understand the source of
this dephasing.
To describe the heating of the filter, we assume the

thermal photons enter through the last mode, which is
coupled to a Markovian bath with an average photon
number n̄th. The master equation then takes the stan-
dard form

∂tρ̂ = −i[Ĥt + Ĥf − ign̂t

(
f̂1 − f̂†

1

)
, ρ̂]

+ κf (n̄th + 1)D[f̂7] + κf n̄thD[f̂†
7 ]ρ̂, (A1)

where as in the main text for notational convenience we
have suppressed all intrinsic decay and dephasing pro-
cesses on the transmon, which we keep in all simulations
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FIG. 8. Top : Pure dephasing time T2 of the as a function of
qubit frequency with and without thermal excitations present
in the filter. A thermal occupation of n̄th = 2.04×10−5 corre-
sponds to the average occupation of a 4.5GHz bosonic mode
coupled to a bath at 20mK. We define the pure T2 in the
standard way: we start in the superposition state |ψ(0)⟩ =

(|g, 0⊗7⟩ + |e, 0⊗7⟩)/
√
2 and fit T2 to the expectation value

of the off-diagonal matrix element |⟨g, 0⊗7|ρ̂(t)|e, 0⊗7⟩| =
exp(−t (1/(2T1,e) + 1/T2))/2. The qubit has an intrinsic T2

of 100µs. The increase in T2 at lower frequencies is a con-
sequence of the qubit frequency entering in resonance with
a filter mode. As the modes hybridize, the dressed qubit be-
comes more filter-like, which does not suffer from pure dephas-
ing, leading to this slightly-enhanced dephasing rate. Bottom:
Pure depahsing rate T−1

2 /2π as a function of thermal popula-
tion evaluated at the point where the dephasing time is small-
est ωge/2π ≈ 4.745GHz. Additional dephasing larger than the
qubit’s intrinsic depahsing time of T int

2 = 100µs scales linearly
with temperature and is the same order of magnitude as the
decay rate of the f state.

throughout this work. As was stressed in the main text,
we expect a finite n̄th to increase the pure depahsing rate
Tϕ of the qubit when the ef transition enters the filter,
a consequence of the enhanced χ shift at that transition.
This is borne out in simulations, where in Fig. 8 we com-
pare a numerical fit of the T2 of the dressed qubit |g, 0⊗7⟩,
|e, 0⊗7⟩ with and without thermal excitations. We see a
decrease of the qubit’s Tϕ rate around 4.75GHz, which
is precisely when then decay of the f state is maximal,
see Fig. 5.

Appendix B: Impact on spectator

So far we have only studied the effect of the filter on
a qubit directly coupled to the filter. To understand the
effect of the filter in a realistic quantum computer, we
need to understand the effect of the filter on neighboring
qubits. Here we use a second qubit on device A, called

the spectator, not directly coupled to a leakage-reset fil-
ter. In Fig. 9, we repeat the experiment from Fig. 4
on a spectator qubit coupled with a coupling strength
g/2π = 1.6 MHz to the test qubit via a short capaci-
tive coupling. To ensure a realistic coupling between the
spectator qubit and the filter, we position the test qubit
near its optimal working point, where T1,f is minimized.
Figure 9(a) shows T1,e, T2,CPMG, and T1,f on the spec-
tator qubit. If the filter were having an effect on the
spectator qubit, we should see a reduction in T1,f in the
passband of the filter, below ωge/2π = 4.75 GHz, how-
ever, we see that T1,e and T1,f are flat as a function of
frequency. As expected T2,CPMG is reduced at lower fre-
quencies because of flux noise. In Fig. 9(b) we show the
single qubit error rate as measured with RB. We see a
spike in the error around ωge/2π = 4.75 GHz, where the
spectator and test qubits collide.

Appendix C: Experimental procedures

We measure T1,e using the sequence Xπ−Wait−Meas.
We use the sequence Xπ −Xef

π −Wait−Xπ/2 −Meas to
measure T1,f . We found that this sequence gave reliable
measurements over a broad range of values for T1, e and
T1, f . To measure the dephasing rate, we used a CPMG
sequence with necho = 11, alternating between X and
Y echo pulses [66].

expt.

coh. lim.

(a)

(b)

FIG. 9. Effect of the filter on a spectator qubit, measured us-
ing the same method from Fig. 3. (a) Measured T1,e, T2,echo

and T1,f as a function of qubit frequency, averaged over 19
runs. (b) Single-qubit error rate as measured with RB, com-
pared to the coherence limit. The large spike in the middle
of the plot is when the spectator qubit collides with the test
qubit.
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A. A. Houck, J. M. Gambetta, and J. M. Chow, Broad-
band filters for abatement of spontaneous emission in
circuit quantum electrodynamics, App. Phys. Lett. 107
(2015).

[33] H. Yan, X. Wu, A. Lingenfelter, Y. J. Joshi, G. Anders-
son, C. R. Conner, M.-H. Chou, J. Grebel, J. M. Miller,
R. G. Povey, H. Qiao, A. A. Clerk, and A. N. Cleland,
Broadband bandpass purcell filter for circuit quantum
electrodynamics, Appl. Phys. Lett. 123 (2023).

[34] S. H. Park, G. Choi, G. Kim, J. Jo, B. Lee, G. Kim,
K. Park, Y.-H. Lee, and S. Hahn, Characterization of
broadband purcell filters with compact footprint for fast
multiplexed superconducting qubit readout, App. Phys.
Lett. 124 (2024).

[35] X. Zhang, E. Kim, D. K. Mark, S. Choi, and
O. Painter, A superconducting quantum simulator based
on a photonic-bandgap metamaterial, Science 379, 278
(2023).

[36] P. Harrington, M. Naghiloo, D. Tan, and K. Murch, Bath
engineering of a fluorescing artificial atom with a pho-
tonic crystal, Phys. Rev. A 99, 052126 (2019).

[37] Y. Liu and A. A. Houck, Quantum electrodynamics near
a photonic bandgap, Nat. Phys. 13, 48 (2017).

[38] M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee,
A. Sipahigil, A. J. Keller, and O. Painter, Superconduct-
ing metamaterials for waveguide quantum electrodynam-
ics, Nat. Commun. 9, 3706 (2018).

[39] E. Kim, X. Zhang, V. S. Ferreira, J. Banker, J. K.
Iverson, A. Sipahigil, M. Bello, A. González-Tudela,
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