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Implementing fast and high-fidelity quantum operations using open-loop quantum optimal control
relies on having an accurate model of the quantum dynamics. Any deviations between this model
and the complete dynamics of the device, such as the presence of spurious modes or pulse distortions,
can degrade the performance of optimal controls in practice. Here, we propose an experimentally
simple approach to realize optimal quantum controls tailored to the device parameters and envi-
ronment while specifically characterizing this quantum system. Concretely, we use physics-inspired
machine learning to infer an accurate model of the dynamics from experimentally available data and
then optimize our experimental controls on this trained model. We show the power and feasibility
of this approach by optimizing arbitrary single-qubit operations on a superconducting transmon
qubit, using detailed numerical simulations. We demonstrate that this framework produces an ac-
curate description of the device dynamics under arbitrary controls, together with the precise pulses
achieving arbitrary single-qubit gates with a high fidelity of ∼ 99.99%.

I. INTRODUCTION

The precise characterization and control of quantum
devices are central to the development of useful quantum
technologies. The powerful framework of quantum opti-
mal control (QOC) theory can be used to go from a given
description of the quantum dynamics, such as a charac-
terized model, to realizing arbitrary quantum operations
with maximal fidelity and minimal duration [1–3]. The
successful practical implementation of many QOC ap-
proaches, such as GRAPE [4] and Krotov [5], thus rely
on having an accurate model of the system dynamics to
produce the desired output quantum state or process [6].
In simulation, optimizing the input controls using these
methods can routinely yield quantum operations with
decoherence-limited or even machine-precision fidelity,
and these controls can have much shorter durations com-
pared to what is achievable with simpler, monochromatic
and flat, pulse shapes [7–11].
A critical problem with using open-loop QOC ap-

proaches in experiments is model bias, since the perfor-
mance of the resulting controls is intrinsically limited by
the underlying model accuracy. Indeed, any mismatch
between the model used to describe the quantum evo-
lution and the actual dynamics of the physical system
can cause the optimal controls to perform significantly
worse in practice. This performance degradation is rou-
tinely observed when considering parameter deviations
to the assumed model, and has led to the development of
robust QOC approaches [12–15]. These approaches sac-
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rifice some control performance for the benefit of robust-
ness under certain model parameter variations. However,
beyond being inaccurate with model parameters deviat-
ing from their “true” values due to finite characterization
precision and system drifts, the model used for QOC can
additionally be incomplete, which also leads to important
biases. Out-of-model dynamics typically originate from
unaccounted frequency- and power-dependent distortions
in the control lines, crosstalk between qubits and control
lines, and more generally coupling to spurious modes not
included in the system modeling such as material defects,
box modes, and neighboring couplers and readout appa-
ratus. Precisely characterizing and modeling the dynam-
ics associated with each of these potential interactions
is a challenging task, both experimentally and numeri-
cally. There is thus a need for alternative approaches to
optimally controlling quantum systems.

The shortcomings of using inaccurate models in the
control optimization has led to recent proposals of closed-
loop optimization approaches based on reinforcement-
learning (RL), which rely on direct interactions between
a controller and the quantum system of interest [16–
20]. Using such a feedback control approach, the QOC
problem can be made model-free, thus alleviating the
aforementioned problem of model bias. For example,
this approach was applied experimentally to realize high-
fidelity single- and two-qubit quantum gates, as well as
a quantum error correction stabilization protocol in su-
perconducting quantum devices [21–23]. Although use-
ful for precisely calibrating a specific operation, these
model-free approaches possess important drawbacks, no-
tably in terms of sample efficiency, generalizability be-
yond performing a single quantum operation, ease of ex-
perimental implementation given the need for real-time
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feedback, and performance of the control solutions. For
instance, Porotti et al. [20] demonstrated that model-
based gradient-ascent approaches, such as GRAPE, sig-
nificantly outperform model-free RL approaches on stan-
dard state preparation optimal control tasks, both in
terms of state fidelity and data efficiency. This can be
understood from the fact that in the model-free setting,
the task of the learning agent is much more complex, as
it needs to both resolve how a given control pulse (ac-
tion) impacts the state or process fidelity (reward), and
learn how to improve that control by navigating the enor-
mous control parameter space. The first part of this task
can be recognized as a quantum characterization prob-
lem, whereas the second part of finding the optimal con-
trol strategy can be directly achieved using one of the
many successful QOC approaches, instead of relying on
the trial-and-error exploration of the RL approach.

Based on this understanding, we propose in this work
to simplify the quantum optimal control problem by
breaking it down into two parts that we perform in suc-
cession. First, we frame the quantum characterization
problem, or model learning problem, as a supervised ma-
chine learning (ML) task. We use a parametrized repre-
sentation to learn a description of the quantum system
dynamics directly from experimentally available data.
Second, we use that trained model in a gradient-based
optimal control loop to find the external controls realizing
our target operations. In the following, we demonstrate
that this modular and easily implementable approach can
yield high-fidelity controls using experimentally realistic
data, while providing notable benefits in terms of data
efficiency, scalability to complex control problems, and
device characterization.

The paper is organized as follows. In Sec. II, we de-
scribe our machine-learning-based optimal control ap-
proach and its benefits over alternative control ap-
proaches. Using detailed numerical simulations, we then
present a case study implementation of our approach and
demonstrate its performance for realizing high-fidelity ar-
bitrary single-qubit gates in a transmon qubit in Sec. III.
In Sec. IV, we analyze the impact of out-of-model dynam-
ics on the optimal control performance, and demonstrate
the distinct advantages of our approach in the presence
of model bias. We conclude with a short discussion on
the relevance of this work in Sec. V.

II. MACHINE-LEARNING BASED QOC

The two main steps of our proposed quantum optimal
control approach based on machine-learning characteri-
zation are presented schematically in Fig. 1. The char-
acterization task consists of constructing a model that
captures the transformation from arbitrary input pulse
shapes to the resulting quantum state observables of in-
terest. In this work, we focus on qubit gates and there-
fore take these observables to be the Pauli matrices on
n qubits, which are informationally complete to describe
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FIG. 1. Optimally controlling a quantum system using
machine-learning characterization. (a) A supervised machine
learning approach is used to characterize the quantum dy-
namics produced by arbitrary input controls. The dataset is
constructed by applying a set of diverse pulses sequentially to
the quantum system and obtaining labels of the system ob-
servables using (projective) measurements. A parametrized
representation (blue box) learns this transformation from in-
put pulse shape to output quantum observables by minimizing
a loss function related to the distance between its predictions
and the data labels. (b) The trained model is used directly
in a gradient-based quantum optimal control loop to find the
pulses best realizing the quantum operations of interest. The
parametrized pulse shape is iteratively updated such as to
minimize a cost function associated with a state or process
infidelity.

qubit states. We can thus consider that the model we
want to construct outputs the full quantum state ρ(t).
Note that a more restricted set of observables could be
used if acquiring this information is prohibitive, for ex-
ample in the case of a large Hilbert space, as long as
the relevant metric to optimize can be described by the
model output observables.

The idea of our approach is to learn this model di-
rectly from data taken on the device of interest using a
supervised machine learning strategy. To construct the
dataset, we simply drive the quantum system sequen-
tially with a large set of different pulses, and perform
projective measurements to obtain bits of information
about how the quantum state was transformed by each
of these pulses. After averaging over a chosen amount of
shots, these measurement outcomes form the labels that
the model will be trained to predict, using a loss function
quantifying the distance between the model predictions
and the labels. As detailed in Sec. III, additional physi-
cally motivated loss terms can be added to regularize the
model’s training, as was done in our previous work [24].
We emphasize that this machine-learning training is per-
formed offline such that no real-time feedback between
the model and the quantum system is required.

The second step consists of directly using the trained
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model in a gradient-based optimal control loop to find
our control strategy. At this point after the learn-
ing stage, the model parameters are fixed and only the
parametrized pulse shapes are optimized. Given the
auto-differentiable nature of the model and its fast eval-
uation on graphics processing units (GPUs), these op-
timizations can be performed in less than a minute on
standard hardware. Additionally, the optimization can
be designed to include arbitrary experimental limitations
in the cost function [25], such as to directly find opti-
mal controls that are easily implementable in practice.
Importantly, in contrast to direct feedback control ap-
proaches, the trained representation is not tied to a spe-
cific quantum gate and we can use the trained model to
optimize for arbitrary quantum operations which can be
described and realized by the same input controls and
output observables as the model. For instance, using a
model outputting the quantum state of n qubits, we can
optimize for arbitrary qubit gates and qubit state prepa-
rations. This can be directly generalized to higher dimen-
sional systems such as qudits and bosonic modes, as long
as these additional degrees of freedom are observable in
the quantum system of interest.

An important advantage of our two-step approach to
quantum control is that it is highly modular and cus-
tomizable. First, having a trained model describing the
system dynamics for arbitrary input controls that is fast
to evaluate can be very valuable for understanding, cal-
ibrating, and improving the quantum system of inter-
est. Indeed, this model can be used as a heuristic digi-
tal twin of the device to perform simulations and proto-
type new protocols. This is especially useful given that
the trained model heuristically includes experimentally-
relevant imperfections that were learned from data and
that are typically not accounted for when modeling the
system. Additionally, this model is fully differentiable
which means one can replace typically used parameter
sweeps or gradient-free approaches with gradient-based
optimization of the controls, which are faster and yield
better solutions [26, 27].

The second aspect making our approach modular is
that the specific architecture used to learn from data,
together with the optimal control algorithm used sub-
sequently, can be explicitly engineered to satisfy the
specific data, speed and performance requirements of a
given quantum system. This is particularly useful to ex-
plore the bias-variance tradeoffs of learning an accurate
representation of the device dynamics and to perform
model selection. For instance, using a black-box learn-
ing model to remove any potential bias might require
too much data to be trained to reach the desired pre-
cision, whereas a fully principled approach based on a
physics description might be computationally prohibitive
to model or unable to describe the dynamics accurately
enough. Using a graybox approach [28] combining phys-
ical priors about the device properties together with ad-
ditional freedom might be optimal in such a realistic sce-
nario, which can be directly realized within our frame-

work. Indeed, our approach allows us to use as much
prior knowledge as desired in the learning model, any-
where from a parametrized master equation [24, 29] to a
fully general neural network, as long as the model outputs
are informationally-complete for quantifying the desired
quantum operations fidelity.
We note that approaches of directly combining charac-

terization (system identification) and control have been
studied in control theory [30] and applied to quantum
systems using a variety of models and data [28, 31–36].
Focused on experimental feasibility and on mitigating
the problem of model bias, this work provides a compre-
hensive framework for applying such an approach to su-
perconducting and other solid-state devices and demon-
strates its performance through detailed simulations. In
addition, an important distinction of our work is the
demonstration for the first time of using a trained neural
network as the model for performing open-loop quantum
optimal control, which allows us to significantly mitigate
any model bias in practice. In contrast to the similar ap-
proach by Youssry et al. [28], we show that learning an
explicit Hamiltonian description of the dynamics is not
required for performing arbitrary QOC with high fidelity.

III. TRANSMON SINGLE-QUBIT GATES

We now present a comprehensive case study of our
approach applied to realizing fast and high-fidelity mi-
crowave single-qubit gates in a fixed-frequency supercon-
ducting transmon qubit [37]. We emphasize that our
approach is agnostic to the specific physical implemen-
tation and could be applied to other platforms following
the steps detailed here. The available qubit controls in
the chosen superconducting qubit system are microwave
pulses generated at room temperature by classical control
electronics, which travel down a cryogenic fridge before
reaching the qubit. Information about the dynamics re-
sulting from the controls can be acquired via projective
measurement of arbitrary qubit operators using standard
dispersive qubit readout [38, 39]. Given these input con-
trols and available output observables, the task of inter-
est is to design the external microwave pulses such as to
realize arbitrary qubit unitaries with the highest fidelity
and minimal duration.
The following four subsections detail the four steps re-

quired for achieving this task using our machine-learning
based quantum optimal control approach (MLQOC).
Namely, the framework consists of (1) acquiring a dataset
on the device, (2) training a machine-learning model on
this data, (3) performing QOC optimizations using this
trained model, and (4) testing the performance of the
optimal controls on the device of interest. As a proof of
principle of the method, here the data set is generated
by numerical simulation of the device (step 1), and the
same is true for testing the performance of the optimized
controls (step 4). The other two steps remain unchanged
when working with an experimental device. In our simu-
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lations, we take special care not to make approximations
which would artificially simplify the model learning and
optimal control tasks considered, in an effort to provide
a convincing demonstration of our approach in an exper-
imentally realistic scenario.

A. Simulation dataset

Physical model. We consider a transmon qubit capaci-
tively coupled to a microwave drive line described by the
Hamiltonian (ℏ = 1) [37]

Ĥtot(t) = 4EC(n̂− ng)
2 − EJ cos φ̂+Ω(t)n̂ (1)

= Ĥtrans +Ω(t)n̂ , (2)

with EC (EJ) the charging (Josephson) energy, Ω(t) the
applied microwave drive coupling to the transmon charge
operator n̂, and φ̂ the canonically-conjugate phase oper-
ator. Given that the qubit is operated in the transmon
regime, EJ/EC = 110, and that we are interested in
quantum operations limited to the qubit subspace, we
can safely ignore the gate charge ng [37]. Throughout
this work, we simulate this full Hamiltonian keeping the
first 5 eigenstates of Ĥtrans. We do not perform any
rotating-wave approximation (RWA) in order to capture
the fast-oscillating dynamics that are relevant for high-
fidelity and fast operations [7, 40].

We parametrize the drive pulses Ω(t) as the input to
the arbitrary waveform generator (AWG) that produces
in-phase (SI) and quadrature (SQ) signals. These signals
are then combined to a local oscillator (LO) of frequency
ωLO to be up-converted to the desired GHz-frequency sig-
nals, a process known as sideband mixing [41, 42]. This
pulse parametrization reflects the actual controls of a re-
alistic experiment, allowing our model to capture poten-
tial IQ-mixer imperfections and other pulse distortions,
in addition to allowing for precise control of the pulses
frequency spectrum. In the absence of imperfections in
the control electronics and pulse distortion in the control
lines, the microwave pulse reaching the qubit is described
by

Ω(t) = SI(t) cos(ωLOt) + SQ(t) sin(ωLOt). (3)

To drive the transmon on resonance at ωq and avoid IQ-
mixer imperfections producing distorted output signals
at frequencies close to ωLO, the AWG signals are typ-
ically generated by convolving the pulse envelope with
an intermediate frequency oscillation at frequency ωIF

such that ωLO + ωIF = ωq [42]. We reproduce this ex-
perimental condition here using ωIF/2π = 100MHz and
ωLO/2π = 6.198GHz to reach the qubit frequency at
ωq/2π ≈ 6.298GHz.

As shown in Appendix F, when restricting the descrip-
tion to the computational states of the transmon, the
effect of the drive Ω(t) takes the usual form in the rotat-

ing frame of the qubit, Ĥqubit = I(t)σ̂x + Q(t)σ̂y, for a

resonant drive and under the rotating-wave approxima-
tion. The real-valued signals I and Q can be expressed
as linear combinations of the AWG signals SI and SQ.
We thus understand how controlling SI and SQ allows us
to perform arbitrary single-qubit gates. Here, we avoid
the approximations mentioned above and simulate the
full transmon Hamiltonian Eq. (2) directly using Eq. (3)
with arbitrary time-dependent signals SI and SQ.
In the AWG as in our simulations, the pulse shapes

SI and SQ are specified by real amplitudes positioned
at a finite number of times during the operation, called
pixels. We take the size of these pixels to be 1 ns. Im-
portantly, we apply a Gaussian filter to these discrete
signals to (i) interpolate between pixels and simulate
experimentally-accurate continuous time evolutions be-
yond a piece-wise constant pulse approximation [7, 27],
and (ii) account for the finite bandwidth of the AWG and
the filters used in experiments. We use a Gaussian filter
standard deviation of 250MHz.

To simulate the full time dynamics of the system un-
der the application of the drives, we solve the Lindblad
master equation (ME)

dρ̂

dt
= −i

[
Ĥtot(t), ρ̂

]
+ γD[b̂]ρ̂+ 2γφD[b̂†b̂]ρ̂, (4)

which accounts for transmon relaxation and dephas-
ing [39]. In this expression, γ (γφ) is the relaxation (pure

dephasing) rate, and D[X̂]ρ̂ = X̂ρ̂X̂† − {X̂†X̂, ρ̂}/2 the
Lindblad dissipator. In the following, we use relatively
high relaxation and coherence times of T1 = T2 = 300 µs,
corresponding to γ/2π = 3.33 kHz and γφ/2π = 1.67 kHz.
This choice allows us to resolve the finite control preci-
sion of our MLQOC approach, beyond the gate fidelity
limit set by decoherence. We use the open-source library
dynamiqs to perform these simulations, which alows us
to use GPU acceleration and to efficiently batch the sim-
ulations over multiple pulse shapes in parallel [43].

Experiment and dataset generation. As illustrated
in Fig. 2(a), the experiment we consider consists of three
steps, where (i) the transmon is prepared in one of the
six cardinal states of the Bloch sphere, (ii) a microwave
drive with a given pulse shape and duration is applied
to the qubit, and (iii) the qubit is readout in the basis
σj ∈ {X,Y, Z}. This same experiment is repeated Nshots

times to acquire statistics, where Nshots ≥ 1, and the
label associated with this specific pulse shape and prepa-
ration is the qubit expectation value estimate resulting
from averaging these shots. We emphasize that we never
feed the full quantum state to the model and that this
label, i.e. the average measurement result, is a realistic
noisy estimate of the true qubit expectation value that
the model is trying to predict. State preparation and
measurement (SPAM) errors can add noise to these la-
bels. This noise can be made effectively unbiased using
standard error mitigation strategies based on inverting
the confusion matrix or on measuring half of the shots
with the negative measurement operator. For simplicity
in evaluating model performances, we did not model the
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FIG. 2. Learning driven qubit dynamics using supervised machine learning. (a) Model architecture. Preserving the structure
of the three-step experiment, the model uses a small fully connected neural network (FNN, Encode) to map the nominally
prepared quantum state (ρ0) to the initial hidden state representation of the model (h0). Each pixel of the input pulse shape is
fed sequentially to a recurrent neural network cell (RNN ). A second FNN (Decode) is used to produce the predicted quantum
state ρ̃n, here parametrized using Pauli expectation values. During training, the experimental readout outcomes are used as
labels and the model parameters are adjusted by minimizing a loss function, here principally composed of a mean squared
error (MSE) between the labels and predictions. (b) Loss on the training and validation datasets during a supervised LSTM
training. All hyperparameters and dataset characteristics are detailed in Appendix B. The dashed lines correspond to the
sampling noise floor of the noisy labels for both datasets, see text for details. (c) Mean squared error of the predicted quantum
state expectation values as a function of pulse duration, averaged over the entire test dataset. Dashed lines correspond to the
median over time, with values reported in the legend. The MSE is zero for the first 4 ns because we impose a zero padding
of 2 ns at the beginning and end of every pulse. (d) Sample model predictions (circles) and true quantum trajectories (full
lines) for three input pulse shapes unseen during training. The envelopes of the gaussian flat top (top), random (middle) and
sinusoidal (bottom) pulses are shown in inset, with axes corresponding to drive amplitude in MHz and time in ns. Note that
during training, the ML model never has access to the true quantum trajectories used here for evaluating model performance
in panels (c-d), but only to the noisy labels obtained from Nshots = 32 projective measurements.

effect of the mitigated SPAM errors which would typi-
cally be significantly smaller than shot noise in our sim-
ulations (Nshots = 32).

To construct the supervised ML datasets, this experi-
ment is repeated for all of the pulse shapes in a chosen set
of pulses, while randomizing over the prepared state and
measurement axis for each of these pulses. Implemen-
tation details for constructing the pulse set such as to
efficiently sample the control space is presented in Ap-
pendix C. We have found that using a combination of
random pulse shapes together with physically motivated
envelopes, such as Gaussian, sinusoidal, and flat-top en-
velopes with DRAG components [44] was sufficient for
the ML models considered to learn an accurate and gen-
eralizable representation of the quantum dynamics.

Putting this data together in the form of supervised
learning datasets, each input consists of a one-hot en-
coded vector p⃗ describing which of the six cardinal states

was prepared, together with a two-dimensional real ar-

ray S = (S⃗I , S⃗Q) containing the pulse shape amplitudes
at each pixel of the evolution for the two drive quadra-
tures. The output labels are a combination of a one-hot
encoded vector m⃗ capturing which Pauli operator was
measured together with a single floating point number
representing the associated qubit expectation value esti-
mate Tr[σjρ(t)]. Finally, we split this dataset into train-
ing, validation and test sets, as is standard in supervised
learning approaches to both avoid over-fitting by select-
ing the best model from the performance on the vali-
dation set, and to obtain unbiased model performance
metrics by evaluating the chosen models on a separate
test set [45].
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B. Model learning

Model architecture. The parametrized representation
we use to learn the quantum dynamics from the data de-
scribed above is the physics-inspired neural-network illus-
trated in Fig. 2(a). It is principally composed of a recur-
rent neural network (RNN) architecture [45, 46], which
processes the input pulse shapes one pixel at a time such
as to preserve the time-ordered structure of the learning
problem. The RNN, composed here of a long short-term
memory (LSTM) unit cell [47], is performing the same
set of operations at each time step in a recurrent fash-
ion, using the new input together with a hidden state
(h) to encode information about the context of that in-
put. This vector allows the model to capture correlations
within the input data and to potentially keep a memory
of previous inputs. Given our quantum characterization
problem where the model needs to output the quantum
state at different times, we engineer a direct correspon-
dence between the hidden state of the model hn and the
quantum state of the system ρn. We thus use an encod-
ing layer, a small fully-connected neural network, to map
the initially prepared quantum state to the initial hidden
state of the model, and use a similar decoding layer to
map this hidden state back to the qubit state prediction
ρ̃(t).

To have a model that can efficiently train on a finite
and realistic dataset, we have designed the model archi-
tecture to explicitly preserve most of the structure of the
physical problem at hand. Nonetheless, the model is gen-
eral enough to go significantly beyond the usual assump-
tions of a Markovian, single-mode description of the qubit
dynamics. As demonstrated in Sec. IV, this choice is mo-
tivated by our objective of obtaining high-fidelity con-
trols in scenarios where the physical description used in
typical open-loop control approaches is insufficient. We
emphasize that many other architecture choices could be
directly used within our framework, such as a transformer
model [48] or a parametrized master equation.

To train the model, we use a loss function principally
composed of a Mean Squared Error (MSE) loss between
the model predictions and the labels, as is common for re-
gression tasks in supervised machine learning. Addition-
ally, following Ref. [24], we expand the loss function with
terms assuring that the RNN outputs are valid quantum
states, i.e. that they are positive, and that the initial
state predicted by the model corresponds to the known
prepared state of the qubit. These physically motivated
loss terms help regularize the model training, as it ex-
plores the parameter space of valid representations more
efficiently [49]. An explicit expression for the full loss
function, together with the hyperparameters used, can
be found in Appendix B.

Quantum characterization results. A typical training
of the RNN model is presented in Fig. 2(b) on a training
dataset comprising of 3.2 million pulse shapes of maxi-
mal duration of 30 ns, each measured for 32 shots. As
demonstrated in Appendix A, similar performances can

be reached using significantly less data. Both the training
and validation MSE losses reach a value close to the sam-
pling noise floor of about 5.6 × 10−3, which is obtained
by computing the same MSE metric assuming perfect
knowledge of the qubit expectation values, as given by
the simulation data. This imprecision is significant as
it corresponds to an average distance between the noisy
labels and the model output qubit state probabilities of
about 7%. Such a high noise floor raises the question of
whether the ML model is learning an accurate descrip-
tion of the quantum dynamics.

Leveraging the fact we are working with simulation
data, we can go beyond the experimentally-available
noisy labels and compare the model predictions directly
to the ground truth quantum trajectories obtained from
simulation. In Fig. 2(d), we can qualitatively observe
the high accuracy of the trained model at describing the
qubit dynamics for various input pulse envelopes, as the
model predictions (dots) match closely the true trajecto-
ries (full lines). This agreement is quantified in Fig. 2(c),
showing a median MSE of about 5×10−5 across the three
measurement axes and over different pulse lengths on the
previously unseen test dataset. This order of magnitude
improved accuracy on the predicted outcome probabili-
ties indicate that, remarkably, the ML model is able to
use the noisy labels that one can obtain experimentally
in order to learn the mapping from arbitrary pulse shapes
to highly accurate quantum dynamics. The error asso-
ciated with the model predictions is lowest at the initial
time where we have the most accurate information about
the qubit state given the finite number of prepared states
shared amongst all experiments. The finite model preci-
sion for evolving the quantum state for every pixel then
leads to a linear increase in the prediction error over time,
which is translated into a quadratic increase on the MSE
in Fig. 2(c). This behavior is expected for any model
with a finite accuracy, and is akin to evolving the state
using the ME with slightly inaccurate model parameters,
or to numerically solving a differential equation with a
finite precision solver.

The accuracy of the ML model can be significantly im-
proved by extending the training dataset, for example us-
ing more shots such as to construct more precise labels,
and performing more experiments with different pulse
shapes such as to explore more of the control space. As
we will show next, the amount and quality of the training
data used here is sufficient to obtain high-fidelity controls
from the model. Additional results exploring how the
quality and quantity of training data impact the learned
representation and the performance of the resulting op-
timal controls are presented in Appendix A.

The neural network model takes about an hour to train
on a standard Nvidia RTX 3080 GPU. This time could be
significantly reduced if needed for a specific implementa-
tion, for example by pre-training the model on simulation
data before training on the experimental measurements.
This timescale is comparable to the experimental data
acquisition time for building the datasets using trans-
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(b) (c)(a)

FIG. 3. Quantum optimal control of a 20 ns RX(π) gate on a trained RNN. The optimal MLQOC pulse fidelity is 99.994%
on the 5-level transmon. (a) Parallel optimization of 30 randomly initialized pulse shapes. The optimization of the best
performing pulse is highlighted in red, with the inset showing its decomposition into individual costs. (b) Resulting raw (bars)
and gaussian filtered (dots with line) optimal pulse shape for the two drive quadratures I and Q. (c) Predicted (dots) and true
(lines) quantum state evolution when applying the optimal pulse shape on the initial state |1⟩.

mon qubits, which is a few hours per million pulse shapes
with 32 shots, including the overhead of pulse sequence
uploading on the control electronics.

C. Quantum Optimal Control

Having demonstrated that a RNN can be used to accu-
rately learn quantum dynamics from experimentally re-
alistic data, we now present how one can successfully use
that representation to perform quantum optimal control.
We focus on single-qubit quantum gates and optimize the
external controls such as to maximize the average gate
fidelity of a given unitary Utarget. As schematically il-
lustrated in Fig. 1(b), the optimization procedure simply
consists of making each pixel of the input pulse a free
parameter and computing the evolution of the quantum
system due to these controls using the trained ML model
with fixed internal parameters. By evolving a set of ini-
tial quantum states forming a unitary 2-design, one can
compute the average gate fidelity of the arbitrary black-
box quantum channel [50, 51], which is represented here
by a neural network. For the case of one qubit, the six
cardinal states used as preparations in our experiment
form a unitary 2-design [52]. Finally, an optimization al-
gorithm is used to update the input controls such as to
maximize the fidelity of the operation of interest.

Making use of the fact that the RNN is fully auto-
differentiable, we employ a gradient-based approach
and design the cost function to include a multitude of
experimentally-relevant constraints, without having to
analytically derive an expression for their gradient. In
addition to the cost associated with the average gate
infidelity of the operation of interest, we use regular-
izing costs that yield smooth and low amplitude con-
trols, which are desirable in the experiment to mitigate
crosstalk and pulse distortion effects [25, 53]. In particu-
lar, we use a cost term proportional to the average abso-
lute pulse amplitude to penalize for unnecessarily strong
pulses, a cost for amplitudes |Ω|/2π > 100MHz, together
with terms proportional to the first and second deriva-
tives of the pulse shapes to find smooth controls with a

limited frequency spectrum. The full cost function and
optimization parameters used here are presented in Ap-
pendix D.
A typical control optimization on the trained RNN is

shown in Fig. 3(a) for the case of a 20 ns RX(π) trans-
mon qubit gate. Benefiting from the fast forward and
backward evaluation of the RNN, 30 randomly initialized
pulses are optimized in parallel on a single GPU card in
under a minute. This batched optimization and ability
to perform a large number of iterations significantly mit-
igates the convergence issues that many GRAPE-like ap-
proaches face. As a result, we can use the trained model
to obtain optimal controls for a wide variety of gates on
a very short timescale, which can be used to create a
universal gate set of optimal pulses or to compile contin-
uously parametrized gates.
The optimal control found by our MLQOC approach

yields a 99.994% average gate fidelity on the full 5-level
transmon model. The pulse shape and resulting qubit
dynamics are illustrated in Fig. 3(b-c). Importantly,
this optimal pulse is smooth and easily implementable in
practice with limited bandwidth electronics. The main
sinusoidal oscillations seen in the optimal pulse corre-
spond to the expected intermediate frequency of about
2π×100MHz. Deconvolving this intermediate frequency,
we obtain a smooth envelope in the quadrature effectively
driving σX (black line), together with a small orthogonal
component (gray line) necessary to adjust the Z phase
of the resulting unitary and to mitigate leakage to the
|2⟩ state [44]. As shown in panel (c), the pulse produces
coherent dynamics on the qubit that resemble the one
of standard sinusoidal and Gaussian control pulses, both
according to the RNN model (dots) and the true master
equation dynamics (lines).

D. MLQOC performance

An important advantage of our approach is that the
trained model is not tied to a specific set of gates and
can be used to optimize for arbitrary quantum opera-
tions captured by the model inputs and outputs, here
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SQ gate Duration (ns) Fidelity (%)

RX,Y,Z(π) 20 99.993

RX,Y,Z(±π/2) 15 99.983

Haar random 20 99.984

TABLE I. Gate performance of the MLQOC approach, eval-
uated on the full 5-level transmon. The trained model can
be used to find arbitrary Clifford and Haar random unitaries
with high fidelity. Reported fidelities are the average over the
different axes (X, Y , Z) for Clifford gates and the median over
100 uniformly sampled gates for the Haar random gates. The
transmon coherence limits are 99.9975% and 99.9967% for
15 ns and 20 ns gates, respectively. Note that the gate dura-
tions include a 4 ns zero padding to avoid gate bleed-through.

any single-qubit unitary. As a demonstration, we use
the same trained RNN model presented in Fig. 2 to
optimize for a variety of gates and compile the results
in Table I. We first optimize for π and ±π/2 rotations
around the three axes of the Bloch sphere. This gate
set, together with the identity operation I realized by
applying no drive, generates the full single-qubit Clifford
group. We obtain an average fidelity of about 99.99% for
this gate set, demonstrating that finite-precision model
trained on realistic data can yield high-fidelity quantum
operations. We have also optimized 100 unitaries sam-
pled uniformly at random from the Haar measure [54],
and obtained gates with similar performances. This re-
sult further demonstrates that the trained RNN repre-
sentation is accurately capturing arbitrary dynamics on
the qubit subspace of our transmon model such that it
can be used directly for performing QOC.

The fact that the trained ML model does not fully
reach the coherence-limited average gate fidelities of
∼ 99.997% can be attributed to the finite precision of the
heuristic that the RNN learns to represent the quantum
dynamics. As shown in Appendix A, reducing shot noise
and increasing the training dataset size does not signif-
icantly improve the control fidelity results, and impor-
tant stochasticity in the performance of similar models
remains, even for trained models performing the quan-
tum characterization task significantly better than the
one presented in Fig. 2. Given that it is possible to train
a model that would yield coherence-limited gates, such
as a model approaching the master equation used to gen-
erate the data, it would be interesting to try refining the
training data by sampling around the optimal pulses or
to explore the performance of different machine-learning
architectures. Despite this limitation, we show in the
next section that our MLQOC approach can significantly
outperform open-loop QOC approaches in practical sce-
narios by alleviating the problem of model bias.

(b)

(a)

FIG. 4. Demonstrating the robustness of the proposed
MLQOC approach under a realistic source of model bias in the
form of random pulse distortions. (a) Predicting the quantum
state dynamics of the test dataset using the master equation
model (blue) and RNN models trained on experimentally-
available data containing 1 million pulse shapes, each sam-
pled 32 shots (red). (b) Performance of the 20 ns RX(π)
gates found by optimizing on the models of panel (a), as eval-
uated on the full transmon model. The gate coherence limit
is indicated by a black line.

IV. COMPARISON WITH OPEN-LOOP QOC

Having presented proof-of-principle results of our ap-
proach on transmon single-qubit gates, we now demon-
strate the advantage of using MLQOC in realistic ex-
perimental settings where model bias will necessarily be
present. In particular, we show that the MLQOC ap-
proach studied here achieves significantly better quantum
gates than typical open-loop QOC methods under realis-
tic model bias. This improvement is achieved by learning
an accurate representation of the device dynamics from
data, and using that model to design high-fidelity con-
trols.
We consider model bias solely coming from out-of-

model dynamics, i.e. effects that are present in the quan-
tum device but not in the physical modeling used by the
open-loop QOC approach. We take these dynamics to be
unaccounted pulse distortions in the control lines, which
produce discrepancies between the pulse shape the qubit
receives and the one we model. Note that considering
pulse distortions is simply a choice for demonstrating the
performance of MLQOC in the presence of model bias,
although this choice is motivated by realistic experimen-
tal scenarios with superconducting qubits [55–58]. The
methodology used to generate the random pulse distor-
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tions is detailed in Appendix E.
In Fig. 4, we present the performance of the open-

loop (blue) and machine-learning-based (red) QOC ap-
proaches at performing the two tasks identified within
our framework, namely the quantum characterization as
reported by the MSE in panel (a) and the optimal con-
trol as reported by the obtained average gate infidelity
in panel (b), both as a function of the amplitude of the
random pulse distortions λ. Scaling this amplitude λ di-
rectly translates into scaling the magnitude of the model
bias. For instance, a distortion of λ = 0.2 corresponds
to pulses deviating on average by only 3% from their
original shape, which is less than 0.3MHz.
Since the model used for the open-loop QOC approach

is the full master equation used to describe the transmon
qubit, it perfectly describes the quantum system when
no model bias is present (λ = 0), and achieves coherence-
limited single-qubit gates. However, as we scale the am-
plitude of the pulse distortions (λ > 0), the mean-squared
error for predicting the true quantum states of our test
dataset grows sharply. Consequently, the controls opti-
mized using the ME model yields single-qubit gate fideli-
ties that rapidly drop below 99.9% when amplifying the
out-of-model dynamics, see panel (b).

In contrast, our proposed ML framework is designed to
learn the entire transformation describing our control of
the quantum system, from the input pulses of the AWG
all the way to the measurement bits we extract, which
includes pulse distortions as well as any other dynamics
of the quantum device that can affect our measurements.
As shown in panel (a), the MLmodel precision is then vir-
tually unaffected by the added pulse distortions, simply
because these dynamics are present in the data it learns
from. Using these trained models in panel (b) then allows
us to find optimal controls that remain close to 99.99%
fidelity, even under important pulse distortions.

These results constitute a clear demonstration that in
a realistic scenario where model bias limits our ability to
perform open-loop QOC, our approach of employing ML
can lead to a considerable gain in quantum control fi-
delity. We note that even in a well characterized system
where our physical model yields similar quantum char-
acterization performance to the trained ML model, our
MLQOC approach can still offer an advantage. This is
the case here for λ = 0.2 where the MSE are similar for
both approaches, see panel (a), but the resulting fidelity
is superior for MLQOC, see panel (b). This is explained
by the fact that the trained model can capture the full
device dynamics and thus provide optimal pulses that ac-
count for spurious effects such as pulse distortions. As
opposed to the physical ME model, the ML model is
providing an effectively unbiased estimator of the true
quantum dynamics, which for the same level of precision

can yield better performing controls in practice.
V. CONCLUSION

In this work, we have presented an experimentally sim-
ple two-step approach to quantum control aimed at suc-
cessfully realizing optimal quantum operations in prac-
tice. We tackled the problem of model bias by learning
a parametrized representation of the system dynamics
directly from experimentally available data, before us-
ing that representation to find optimal controls. Using
accurate transmon simulations, we have demonstrated
that our machine-learning based quantum optimal con-
trol (MLQOC) approach can leverage a practical amount
of experimental data to provide a precise characteriza-
tion of the qubit dynamics and produce high-fidelity
(∼99.99%) controls for arbitrary single-qubit gates, thus
going significantly beyond realizing a single operation
with high fidelity.

The MLQOC framework promises to enable many
quantum optimal control applications where model bias
is an important bottleneck, without necessitating any
real-time feedback control or having to rely on data-
intensive blackbox optimizations of single operations.
Beyond experimental ease of implementation, our ap-
proach is applicable to a wide range of quantum control
problems because its modular features can be adapted
to the specificities and requirements of a given quantum
system. Importantly, our method of reducing the com-
plexity of the learning task to only the quantum char-
acterization, together with the use of powerful gradient-
based QOC techniques, suggests it might be more data
efficient and more scalable to complex control problems
than model-free approaches. It will be interesting to ex-
plore how these approaches perform as we expand to-
wards optimally controlling multi-qubit entangling and
parallel operations.
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(b)

(a)

FIG. 5. Impact of the quantity and quality of training data
on the model learning and optimal control performance. (a)
Mean-squared prediction error on the unseen test dataset of
RNN models trained on increasingly more pulse shapes with
different sampling repetitions (Nshots). (b) Average gate in-
fidelity of 20 ns RX(π) gate optimized on the models of panel
(a), as evaluated on the true 5-level transmon model. The
black line is the coherence limit of the gate.

sampling more measurements (Nshots), from the experi-
mentally inexpensive 32 shots (results of the main text),
up to the limit of perfect labels. See Appendix C for a
discussion on different approaches to sampling the pulse
shapes we use for training.

In Fig. 5, we present the impact of the training dataset
size and experiment repetitions (Nshots) used on both
tasks considered in this work: the ML-based character-
ization of the quantum dynamics in panel (a) and the
resulting quantum optimal control gate fidelity in panel
(b). Unsurprisingly, using more training data leads to
models with better prediction accuracy on the unseen
test data. However, we show that such an improvement
in the ML model is not necessarily needed to obtain high-
fidelity quantum controls. For example, we can get the
MSE on the model prediction down by a factor greater
than 2 (from 2.1× 10−4 to 8.5× 10−5) using 3.2 million
training pulse shapes instead of 1 million. However, the
optimal controls found by both of these models lead to
a single-qubit gate fidelity of about 99.99%, with most
of the variability in the resulting fidelities explained by
the stochastic nature of both the model training and the
control optimization. Similarly, increasing the number
of shots leads to significant improvements in the model
prediction accuracy (about an order of magnitude reduc-
tion in the MSE at 3.2 million pulses between the three
cases considered), but this improvement does not trans-

late into significant improvements in the resulting control
fidelities.
We explain this feature of our approach from the fact

that even though the ML model has a finite precision,
which can be thought of as error bars on the model pa-
rameter estimates, as long as the learned parametriza-
tion does not lead to a significant bias in the quantum
dynamics, the optimal controls on the finite precision
model should also be close to optimal on the true quan-
tum system. We can think of the QOC optimization
on the trained neural network, which has a finite preci-
sion but very small bias, as adding Gaussian noise to the
quantum state evolved using the master equation. The
controls that maximize the gate fidelity on average using
such a noisy model should also be optimal on the true
noiseless model. Here, we show that as long as we have
enough data to train a model with a mean-squared pre-
diction error of less than about 2× 10−4, we can obtain
quantum gates with 99.99% fidelity. Given the impor-
tant time cost associated with acquiring large amounts
of data on the quantum system, it is then desirable to
use as little data as required for the MLQOC protocol to
yield the desired control fidelities.
We emphasize that on the MHz-scale repetition rate

typical of quantum systems such as superconducting
qubits, only a few hours are required to acquire the
amount of data considered here. Given that our frame-
work can be easily extended to parallel single-qubit gates
with virtually no additional experimental time, optimiz-
ing quantum operations using MLQOC is easily achiev-
able with current experiments. Additionally, the lim-
ited data requirements we obtain for performing arbi-
trary single-qubit operations open the door to realisti-
cally using MLQOC for more complex control tasks such
as two-qubit gates, readout, and reset operations, which
is beyond the scope of this work.

Appendix B: Machine-learning trainings

In this section, we present the implementation details
of our machine-learning (ML) model trainings, whose ar-
chitecture is illustrated in Fig. 2. Our numerical imple-
mentation is based on PyTorch [59]. The recurrent neu-
ral network we use is the vanilla long-short term memory
unit implemented in torch.nn.lstm with a single layer
and a hidden size of 48, see the PyTorch documentation
for more details. The Encode transformation is a depth-
2 fully connected neural networks (FCNN) with a hid-
den size of 96 and a sigmoid activation function, whereas
the Decode transformation is a single-layer linear net-
work, using again a sigmoid activation function to map
the network output into proper probabilities ∈ (0, 1). We
emphasize that none of these hyperparameters were care-
fully optimized, as the objective in this work is to demon-
strate how our proposed MLQOC framework can be suc-
cessful with a simple implementation. Such an hyper-
parameter optimization, together with using more pow-
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erful neural network architectures such as transformer
models [48], could yield slightly better performances, but
would not change any of our conclusions.

We train this model using gradient-descent based on
the Adam optimizer [60] with a learning rate of 0.001.
During training, we use an initial batch size of 256 and
double it at epochs [100, 200, 500, 800] in order to reduce
the stochastic noise in the optimal model parameters
as training progresses. We use the following physics-
inspired loss function to train our model [24]

L = Lpred + wpositLposit + wprepLprep, (B1)

Lpred =
1

N

N∑
n=1

(
(Πj

n − Π̃j
n)

2
)
, (B2)

Lposit =
1

N(Nt + 1)

Nt∑
t=0

N∑
n=1

ReLU
(
|ρ̃t,n|2 − 1

)
, (B3)

Lprep =
1

N

N∑
n=1

|ρ̃0,n − ρ0,n|2 , (B4)

where ρ̃t,n = (x̃t,n, ỹt,n, z̃t,n) is the model prediction of
the qubit states for the nth quantum trajectory at time
index t, given N pulse shapes with Nt pixels. We use the
hyperparameters wposit = wprep = 1.0.
The prediction loss Lpred is a simple mean squared er-

ror between the labels and the model predictions for the
qubit population in the j ∈ {X,Y, Z} basis, given by

Π̃j
n = (1− ⟨̃σj⟩)/2 ∈ [0, 1]. Here the labels are also prob-

abilities of measuring the qubit state in the −1 eigenstate
of the operator σj , which are constructed from averaging
the Nshots = 32 projective measurements for each input
pulse shape. The MSE given by this loss term is the met-
ric we care most about to obtain an accurate quantum
characterization of the qubit dynamics. However, there is
more information about the RNN output that we can use
to quantify if it accurately describes our physical prob-
lem.

We leverage that information with the following two
loss terms, which allow to make our model training
more accurate and more data efficient. The positivity
loss Lposit insures that the ML model predictions corre-
spond to valid quantum states, i.e. that the predicted
density matrices are positive. The rectified linear unit
ReLU(x) = max(0, x) allows us to penalize only for non-
physical states and not for mixed state predictions, given
that we are learning from data with relaxation and de-
phasing. Finally, the preparation loss Lprep makes the
RNN predictions accurate at the beginning of the quan-
tum trajectory, t = 0, by using our knowledge of the
finite set of prepared initial states. When dealing with
experimental data, or more generally with data contain-
ing state preparation and measurement (SPAM) errors,
we can set the targeted prepared states ρ0,n to be consis-
tent with our best estimate of these errors. For example,
we can average over subsets of the data where the pro-
jective readout immediately follows the preparation, and

effectively perform quantum state tomography of the six
cardinal states of the Bloch sphere [61].
We note that the model architecture, together with the

loss functions we use, can easily be extended to model-
ing the dynamics of n qubits or multi-level systems. For
example, the input dimension of the RNN could be 2n
for n microwave drives with two quadratures, and the
prepared and output quantum states can be represented
using 4n − 1 expectation values for n qubits. This nat-
ural extension would be sufficient to apply our frame-
work to optimize for two-qubit gates and parallel single-
qubit gates. Of course, the data requirements and model
complexity necessary for successfully applying MLQOC
to controlling a quantum system with an exponentially
large Hilbert space should also scale unfavorably with the
number of qubits. However, using the heuristic represen-
tation of a machine-learning model might be beneficial
for tackling such complex control problems.

Appendix C: Pulse datasets

The quantum characterization task is achieved by
training a parametrized representation, such as a neu-
ral network acting as a universal function approximator,
to describe the transformation from arbitrary input pulse
shapes into the dynamics of the quantum systems under
study. Given the enormous size of the input control pa-
rameter space, with every pixel taking an arbitrary float-
ing point value, and the fact that we want to acquire
a finite dataset in a reasonable experimental time, it is
natural to try uniformly sampling at random the input
controls to form our ML datasets. This approach works
well and the trained ML model can predict the dynam-
ics for random pulse shapes accurately. However, with
that choice the model performs poorly at predicting the
dynamics of smooth pulses, which for example possess
a very different frequency spectrum than random pulses
(data not shown). Given that in an experimental scenario
we want to use smooth control pulses, such as to respect
the bandwidth limitations of the control electronics and
avoid crosstalk problems arising from having signals with
a wide frequency spectrum, having a trained model that
is inaccurate at capturing the dynamics of smooth pulses
is practically not useful.
To remedy the situation, we simply include smooth

pulses in the training data. Here, we generate these
smooth pulses using physically-motivated envelopes that
are commonly used to perform single-qubit gates. Specif-
ically, in addition to uniformly sampled random en-
velopes, our set of pulses is composed of flat, gaussian,
gaussian with a flat top, gaussian with an orthogonal
DRAG component, and sinusoidal pulses. Heuristically,
we chose proportions of 25% of flat pulses with random
amplitudes, 25% of flat-top gaussian pulses with random
widths, amplitudes, and standard deviations, 25% of uni-
formly sampled random pulses, 12.5% of gaussian pulses
with an orthogonal DRAG component with random am-
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plitudes, and 12.5% of sinusoidal pulses with random
amplitudes and frequencies. We generated a total 4.25
million pulses, and used 75% for the training set, 15%
for the validation set used to avoid overfitting, and 10%
for the test set used to evaluate and compare model per-
formances.

Given our pulse parametrization at the level of the
AWG before IQ mixing, our pulses should have a main
sinusoidal oscillation corresponding to the intermediate
frequency, here around 100MHz, such that the resulting
pulses reach the qubit frequency and produce non-trivial
dynamics. We thus generate all of the aforementioned
pulses at the envelope level, i.e. without any explicit os-
cillating component. We then convolve these envelopes
with the intermediate frequency oscillations, which result
in the final pulses of the dataset. In order to explicitly
sample the impact of detuned drives on the qubit dy-
namics, we randomly sample the intermediate frequency
we use to convolve with our envelopes, using a gaussian
distribution centered at the nominal ωIF/2π = 100MHz
with a standard deviation of 1MHz.

We note that fine tuning the quality of the training
dataset by using pulses that are known to achieve the tar-
get operations with good fidelity, and perhaps increasing
the sampling (Nshots) for these pulses, could be beneficial
to the performance of the MLQOC approach. However,
as we have demonstrated in the main text, such fine tun-
ing is unnecessary and the approach works well as long
as the pulses seen during training have the same char-
acteristics as the controls we implement in the end. In
that sense, although such an informed construction of the
training dataset will necessarily bias the model learning
towards a given set of dynamics, this bias should be ben-
eficial for learning a good model efficiently, as long as the
bias is consistent with the constraint we put on the fol-
lowing QOC optimizations. Indeed, it is desirable to have
a trained model that is good at predicting the dynamics
of smooth pulses, even if it is somewhat specialized and
not fully generalizable, since ultimately this is what our
optimal control task requires. This bias is enforced ex-
plicitly in this work by using a cost function minimizing
the first and second derivatives of the optimal controls.

Appendix D: QOC implementation details

In this section, we present the implementation details
of our quantum optimal control (QOC) approach illus-
trated in Fig. 1(b). We use an open-loop optimization
where the pulses are parametrized at every pixel, the
trained ML model with fixed parameters is used to com-
pute the dynamics resulting from the pulses, and the cost

function is expressed as follows [25]

C = Cfidel + wclampCclamp + wmeanCmean (D1)

+ wfirstCfirst + wsecondCsecond, (D2)

Cfidel =
1

N

N∑
n=1

1−AGF (ρn,T ) , (D3)

Cclamp =
1

N(Nt + 1)

Nt∑
t=0

N∑
n=1

ReLU (Ωn,t − Ωmax) ,

(D4)

Cmean =
1

N(Nt + 1)

Nt∑
t=0

N∑
n=1

|Ωn,t|2 , (D5)

Cfirst =
1

NNt

Nt∑
t=1

N∑
n=1

|∂tΩn,t|2 , (D6)

Csecond =
1

N(Nt − 1)

Nt∑
t=2

N∑
n=1

∣∣∂2
tΩn,t

∣∣2 , (D7)

where Ωmax is the maximal allowed drive amplitude,
which is 2π×100MHz in this work. This constitutes
a reasonable choice to avoid significantly amplifying
the effect of classical crosstalk on a transmon chip,
as typical sinusoidal 20 ns single-qubit π gates require
|Ω|/2π ≈ 31MHz. The partial time derivatives in the
smoothing cost functions are implemented as finite dif-
ferences numerically with ∂tΩn,t = Ωn,t−Ωn,t−1, and the
average gate fidelity is computed as [62]

AGF (ρn,T ) =

∑
j Tr

(
Utargetρ

jU†
target RNN(ρj)

)
+ d2

d2(d+ 1)
,

(D8)

where d = 2 for a qubit, T the final time index, σj are
the 6 cardinal states (our chosen unitary 2-design), and
RNN(ρj) represents the transformation realized by our
trained ML model, which acts here in place of the usual
quantum channel.
As mentioned in the main text, we optimize for a batch

of 30 pulses in parallel on the same GPU card in under a
minute, and select the best performing pulse on the full
cost function as the optimal control. We use the Adam
optimizer with a learning rate of 0.001 to perform the
gradient descent [60]. As in the ML model training, all
the gradients are computed numerically using the auto-
differentiable feature of PyTorch [59].
We have observed that whereas the clamping cost

Cclamp simply allows the pulses to respect an experi-
mental constraint, the average amplitude cost Cmean to-
gether with the smoothing cost functions Cfirst and Csecond
are very important for constraining the parameter explo-
ration during the optimization towards controls where
the trained RNN has an accurate representation of the
dynamics. Indeed, the trained model predicts dynamics
which are very close to the true master equation dynam-
ics for smooth input pulses, which allows us to find opti-
mal controls with over 99.99% fidelity when using these
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regularizing cost functions. However, optimizing the con-
trols on the trained model using only the fidelity cost
can lead to pulses where the predicted and true dynam-
ics diverge significantly. This problem can be completely
avoided using the smoothing cost functions, and if neces-
sary a simple post-selection based on the same smooth-
ness criteria over the optimization results of the batch.
We optimize our pulses for all the single-qubit gate re-
sults presented in the main text using wclamp = 10.0,
wmean = 0.1, and wfirst = wsecond = 0.01. We have ob-
served that fine tuning these hyperparameters do not lead
to significant changes in the resulting optimal gate fideli-
ties.

Appendix E: Random pulse distortions

We simulate pulse distortions numerically by applying
a fixed causal transfer function to the pulses. We first
generate the random transfer function F (ω) in the fre-
quency domain, using the noise parameter λ that we scale
from 0 to 0.4 in Fig. 4. We add the noise to the trivial
flat transfer function such that

F (ω ≥ 0) = 1 + U(−λ, λ), (E1)

where U(min,max) is the uniform distribution, and we
replicate the values for the negative frequencies such that
F (ω) is even. To obtain a smooth transfer function,
we sample 11 points from the uniform distribution, that
we attribute to frequencies up to 600MHz, before using
a gaussian filter with a 2.5GHz bandwidth to interpo-
late between these values for 1001 points in the range
[−1.5, 1.5] GHz.

Instead of using Fourier transforms to convolve all the
pulses of our datasets with the noisy transfer function
defined in the frequency domain, we express F (ω) in the
time domain using a transfer matrix which can be di-
rectly applied to the pulses using a simple matrix mul-
tiplication. This transfer matrix is obtained by numeri-
cally solving [7]

Tjk =

∫ ∞

−∞
F (ω)

sin(ω∆t/2) cos(ω(j − k)∆t)

πω
dω, (E2)

where ∆t is the pixel size (in units of time) and j, k are
the pixel indices.

Finally, given that this noise models a physical pro-
cess, we impose causality by setting the lower triangular
elements to zero and renormalizing it. Using this ap-
proach, we can simulate a realistic scenario where out-of-
model dynamics are present in the quantum system we
are trying to control, and we can have a single tunable
parameter λ to quantify the resulting model bias.

Appendix F: IQ mixing and qubit drive

In this section, we detail the IQ mixing transformation
applied to the input microwave pulses, typically gener-

ated by an arbitrary waveform generator (AWG), before
reaching the transmon qubit. We then show how these
mixed pulses can be viewed as the usual σX and σY drive
Hamiltonian prefactors. As detailed in Refs. [41, 42], the
two AWG signals SI and SQ get mixed with a local os-
cillator signal of frequency ωLO in a process known as
sideband mixing to produce the drive

Ω(t) = SI(t) cos(ωLOt) + SQ(t) sin(ωLOt). (F1)

We then define the AWG signals with an envelope com-
bined with sinusoidal oscillations at an intermediate fre-
quency ωIF and a phase ϕ, such that

SI(t) = I(t) cos(ωIFt+ ϕ), (F2)

SQ(t) = −Q(t) sin(ωIFt+ ϕ). (F3)

We then directly get

Ω(t) =
I(t)

2
[cos(ω+t+ ϕ) + cos(ω−t+ ϕ)] (F4)

− Q(t)

2
[cos(ω−t+ ϕ)− cos(ω+t+ ϕ)] (F5)

where ω± = ωIF ± ωLO. We thus see that by setting
I(t) = Q(t) = A(t), we obtain a single carrier frequency
signal at the upper sideband ω+,

Ω(t) = A cos(ω+t+ ϕ). (F6)

Using a LO close to the qubit frequency such that ωIF +
ωLO ≈ ωq, we can then precisely control the frequency
spectrum of the qubit pulses we send, with a limitation
set by the AWG bandwidth and potentially the cable
filters used in the experiment. Note that one can also
choose a different phase between the SI and SQ signals
to drive the lower sideband.
We now demonstrate that such a drive can be used to

perform arbitrary qubit gates. Starting from Eq. (2), we
can introduce the creation and annihilation operators to
diagonalize the quadratic terms of the transmon Hamil-

tonian and obtain, after expanding the cos ϕ̂ term and
truncating after the second order [39]

Ĥ(t) ≈ ωq b̂
†b̂− EC

2
b̂†b̂†b̂b̂+Ω(t)

i

2

(
2EC

EJ

)1/4

(b̂† − b̂).

(F7)

Going into the qubit rotating frame with the transforma-

tion Û(t) = exp
(
iωq b̂

†b̂t
)
and applying the rotating-wave

approximation (RWA), we obtain the time-dependent
drive Hamiltonian

Ĥd(t) ≈
i

2

(
2EC

EJ

)1/4
A(t)

2

(
b̂†ei(∆t+ϕ) − b̂e−i(∆t+ϕ)

)
,

(F8)

where ∆ = ω+ − ωq. Performing a two-level truncation

with b̂† → σ+, b̂ → σ−, and σ± = (σX±σY )/2, redifining
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the prefactor in front of the last parenthesis to be Ã(t)
and assuming that the drive is on resonance with the
qubit (∆ = 0), we finally get the textbook single-qubit
drive Hamiltonian

Ĥqubit
d (t) = Ã(t) [cos(ϕ)σX − sin(ϕ)σY ] . (F9)

We thus understand how controlling the pixel amplitudes
of the AWG inputs SI(t) and SQ(t) allows us to perform
arbitrary single-qubit operations.
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