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We propose to couple the flux degree of freedom of one mode with the charge degree of freedom of
a second mode in a hybrid superconducting-semiconducting architecture. Nonreciprocity can arise in
this architecture in the presence of external static magnetic fields alone. We leverage this property
to engineer a passive on-chip gyrator, the fundamental two-port nonreciprocal device which can
be used to build other nonreciprocal devices such as circulators. We analytically and numerically
investigate how the nonlinearity of the interaction, circuit disorder and parasitic couplings affect the
scattering response of the gyrator.

I. INTRODUCTION

Processing quantum information with high-fidelity re-
quires interfaces for detecting, controlling and routing
quantum signals and nonrecripocal devices are vital ele-
ments to realize these tasks [1–4]. At a fundamental level,
nonreciprocity requires breaking time-reversal symmetry
defined by the invariance of the system with respect to
the transformation t→ −t, where t is time. Equivalently,
the Lagrangian of nonreciprocal devices is not conserved
under the transformation Φ̇→ Φ̇ and Φ→ −Φ, where Φ
is the flux degree of freedom associated with a circuit
mode.

Under the usual capacitive or inductive interac-
tions, modes in superconducting circuits typically cou-
ple through the same quadrature, for example charge-
charge or flux-flux interactions. These couplings preserve
time-reversal symmetry and lead to reciprocal two-body
interactions. As a consequence, realizing circulators in
Josephson junction-based quantum circuits often relies
on parametric drives [4–9], the Aharanov-Bohm effect,
or its dual the Aharanov-Casher effect [7, 10–12]. Other
Josephson junction-based nonreciprocal devices include
gyrators [13], isolators and directional amplifiers [14–23].
Optomechanical systems are also used in the design of
nonreciprocal devices [24–31]. Other proposals for non-
reciprocity rely on the Hall effect [32–34] and spatiotem-
poral modulation of conductivity in semiconductors [9].

Here, we propose to engineer a static coupling between
two modes that involves distinct quadratures: one mode
participates in the interaction via the flux operator, while
the other mode via the charge operator. This flux-charge

interaction, which we refer to as FENNEC (Flux intEr-
coNNEcted with Charge), is realized by the use of weak-
links with voltage-tunable potential energy [35–42]. We
show how the FENNEC coupling, with the help of a static
external magnetic field, can implement a gyrator, a build-
ing block of other nonreciprocal devices such as circula-
tors.

The paper is organized as follows. In Sect. II, we detail
our proposal for a flux-charge interaction starting from
the Andreev bound state energy spectrum of a weak-
link. In Sect. III, we introduce a gyrator design based
on the FENNEC interaction. We describe the system
using mean-field calculations and provide numerical sim-
ulations in the presence of system nonidealities. As an
application of this gyrator, we discuss a circulator design
in Sect. IV before concluding in Sect. V.

II. FLUX-CHARGE INTERACTION

Our approach to implement flux-charge coupling is
based on voltage-tunable Josephson junctions [44]. These
junctions can be realized by replacing the usual oxide
separating the junction’s superconductors by semicon-
ducting nanowires [36, 37, 39, 45, 46], two-dimensional
electron gases (2DEGs) [47–50], or van der Waals mate-
rials [40–43, 51], see Fig. 1a-c). The coupling between
the superconductors separated by such barriers is gov-
erned by Andreev reflections. The total Andreev bound
state (ABS) energy in a multichannel weak-link junction
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FIG. 1. a) Nanowire junction, b) two-dimensional electron gas
(2DEG) junction and c) graphene-based Josephson junction.
Each semiconducting junction is gated by two voltage lines:
one for the dc voltage bias and one to implement the flux-
charge interaction. Panels a) and b) are inspired by Ref. [35].
d) Circuit implementation of the flux-charge interaction. e)
Approximate graphene junction energy taken from Ref. [43].
f) Magnitude of the first derivative of the Josephson energy
in e) with respect to voltage in electronvolts, such that the
derivative is dimensionless. (See panels e)-f) for nanowire and
2DEG junctions in Appendix A 6.)

is [36]

εJ(V,Φ1) = −∆
∑
i

√
1− Ti(V ) sin2(πΦ1/Φ0), (1)

where ∆ is the superconducting gap, Ti(V ) is the trans-
mission probability of channel i which is controlled by
the external gate voltage V , Φ1 is the gauge-invariant
flux across the junction, and Φ0 = h/(2e) is the flux
quantum. Here, we focus on the weak transmission
limit, Ti(V )� 1, when

εJ(V,Φ1) ≈ −EJ(V ) cos(2πΦ1/Φ0), (2)

with the voltage-tunable Josephson coupling EJ(V ) =
∆
∑
i Ti(V )/4. The large transmission limit is discussed

further in Appendix A 6.
In this work, we propose to couple the weak-link device

(1) to a second mode (2) via the gate voltage [see Fig. 1d)]
such that the voltage V biasing the weak link is in-
fluenced by the voltage across the second mode, V →
V0 + Φ̇2, where V0 is an external voltage bias and Φ̇2 is
the time-derivative of the branch flux of the second mode.
In the presence of an external flux Φex

1 threading a su-
perconducting loop comprising the junction in Fig. 1d),
the charge-flux coupling is revealed by Taylor expand-
ing Eq. (2) in Φ1(2) about the time-periodic field aver-
ages 〈Φ1(2)(t)〉

εJ(V0 + Φ̇2,Φ1 − Φex
1 ) =

∞∑
n,m=0

∂n+mεJ
∂V n∂Φm1

δΦ̇n2 δΦ
m
1

n!m!
, (3)

where δΦ1(2) = Φ1(2)−〈Φ1(2)(t)〉. Equation 3 leads to an

interaction between the voltage of the second mode Φ̇2

and the flux of the first mode Φ1, resulting in a flux-
charge interaction in the Hamiltonian describing the de-
vice [52].

In the quantized model, Φ1 and Φ̇2 have fluctua-
tions ∝ (Φ0/2π)

√
πZ1/RQ and ∝ ω2(Φ0/2π)

√
πZ2/RQ

respectively, with RQ = h/(2e)2 ' 6.5 kΩ the resis-
tance quantum, Zi=(1,2) the impedance of mode i =
(1, 2), and ω2 the frequency of the second mode.
In what follows we work in the limit |∂nEJ/∂V n| �
n!ω1−n

2 (πZ2/RQ)(1−n)/2(Φ0/2π)1−n |∂EJ/∂V | for n >
1 such that only the first derivative of EJ contributes
to the interaction Lagrangian and

√
πZ1/RQ � 1 which

is appropriate for a low impedance mode. Under these
conditions we truncate Eq. (3) to its first derivative with
respect to V and to first order in Φ1 resulting in an in-
teraction Lagrangian of the form [see Appendix A 2 for
details]

Lint ≈
G21

2
Φ̇2Φ1, (4)

where using Eqs. (2) and (3) the flux-charge coupling
strength is

G21 =
4π

RQ

E′J(V0 + 〈Φ̇2〉)
2e

sin

[
2π

Φ0
(Φex

1 − 〈Φ1(t)〉)
]
, (5)

where E′J(V ) ≡ ∂EJ/∂V . The flux-charge interaction
of Eq. (4) breaks time-reversal symmetry since it is not
conserved under the transformation Φ̇ → Φ̇ and Φ →
−Φ, and therefore has the form needed to implement
nonreciprocal devices [53, 54].

The coupling G21, which is largest in magnitude
at Φex

1 = ±Φ0/4, is generally smaller than 1/RQ = 2e/Φ0

as suggested by the derivative of the energy disper-
sion in Fig. 1f) which is obtained from the experimen-
tal data of Ref. [43]. By optimizing the device geom-
etry beyond what was done in Ref. [43], it is possible
to increase the electrostatic coupling between the gate-
line and the semiconducting region of the SNS junction,
thereby making E′J/2e larger than reported in Fig. 1d).
In principle, G21 can also be increased using paramet-
ric amplification [55–57]. An analysis of the interaction
strength based on spectroscopy data for different types
of junctions can be found in Appendix A 6. We also
note that the leading order effects of the junction non-
linearity are captured by the mean-field approximation
of Eq. (5) where the field averages have to be solved for
self-consistently.

Here, E′′J (V0)〈Φ̇2〉 is generally much smaller
than E′J(V0) in magnitude, such that E′J(V0 + 〈Φ̇2〉) ≈
E′J(V0) in Eq. (5). However, for increasing
photon numbers in the first mode, the time-
average of Eq. (5) decreases in magnitude. In-
deed, the averaged flux field in the first mode

is 〈Φ1(t)〉 ≈ (Φ0/2π)
√
πZ1/RQ

∑∞
n=1 α

(n)
1 einωt/

√
2+h.c

with α
(n)
1 the displacement in the nth harmonic of the
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flux field due to an input signal with frequency ω. To
leading order in Z1/RQ � 1, the time-averaged Eq. (5)
is then (4πE′J/2eRQ) sin(2πΦex

1 /Φ0)(1 − πZ1N1/2RQ)

where N1 =
∑∞
n=1 |α

(n)
1 |2 is the photon number in the

first mode. As will be explained later, the impedance Z1

plays a key role in defining a maximum photon num-
ber, ∼ RQ/πZ1, which that can be allowed in the first
mode before the FENNEC interaction is impacted by
the junction’s nonlinearity. A smaller impedance Z1

results in a larger maximum photon number before the
interaction is suppressed.

Moreover, at external fluxes where sin(2πΦex
1 /Φ0) =

±1 and |G21| maximized, G12 is to first order insensitive
to flux noise but sensitive to charge noise proportion-
ally to the second derivative of EJ with respect to volt-
age. However, because ∂G21/∂V0 is orders of magnitude
smaller than G12, charge and flux noise have negligible
effects on the FENNEC interaction strength at those ex-
ternal flux biases. (See Appendix A 4 for details.)

III. GYRATOR DESIGN

The simplest and most fundamental nonreciprocal de-
vice based on the flux-charge coupling of Eq. (4) is the
gyrator. An ideal gyrator is characterized by the scatter-
ing matrix

S =

(
0 1
−1 0

)
, (6)

which relates the amplitude of the incoming (a) and out-
going (b) fields, at each port of the device via b = S · a.
The circuit Lagrangian of an ideal gyrator takes the form
of [53, 54]

Lgyr =
G

2

(
Φ̇2Φ1 − Φ̇1Φ2

)
, (7)

where G is the conductance of the gyrator, Φ1(2) is the

branch flux and Φ̇1(2) is the voltage at port 1(2).
To realize Lgyr using the FENNEC interaction, we con-

sider the lumped-element circuit of Fig. 2 comprising two
identical internal modes 1 (blue) and 2 (green). Each
mode contains a symmetric SQUID loop of semiconduct-
ing junctions biased at half quantum flux. The FEN-
NEC interaction is realized by capacitively coupling each
mode to the voltage port of the other mode’s voltage-
tunable junction. The presence of semiconducting junc-
tions in half-quantum-flux-biased SQUIDs results only in
the flux-charge interaction without any additional non-
linearity in the inductance of the internal modes of the
gyrator. Both modes are also shunted by LC circuits
with resonance frequencies setting the central frequency
of the device. The flux bias between the LC circuit and
the SQUID loop is set to one quarter quantum flux to
render the FENNEC interaction quadratic as needed for

1

2

FIG. 2. Proposed lumped-element gyrator design. The gy-
rator is divided in two symmetric subcircuits, shown in blue
(left) and green (right). Each half comprises two supercon-
ducting loops, where a SQUID of semiconducting junctions is
shunted by an inductance L0 and a capactiance C0. The two
junctions have equal superconducting gap ∆ and transmis-
sion probabilities Ti(V ), and are biased at the same dc volt-
age V0. The superconducting loops are threaded by ±Φ0/4
and ±Φ0/2, with + (−) for the blue (green) half. The two
parts are connected through the FENNEC interaction: the
branch flux of one subcircuit is coupled to the voltage port of
neighboring junction of the other subcircuit. Each subcircuit
is connected to an input-output transmission line.

gyration in Eq. (7). Finally, each internal gyrator mode
is coupled to an external port via an inductance. Stray
capacitive coupling between the two modes will be mostly
present in a realistic implementation and will be briefly
analyzed later on when we discuss circuit disorder. We
stress that the device, which involves only two modes, is
both compact and passive.

Using Eqs. (4) and (5) with Φex
1 = Φ0/4 and Φex

2 =
−Φ0/4, we find that the circuit of Fig. 2 results in an
effective interaction Lagrangian of the form of Eq. (7)
with a time-dependent conductance

G =
G21 −G12

2
≈ Gmax

[
1− π2

Φ2
0

(〈Φ1(t)〉2 + 〈Φ2(t)〉2)

]
,

(8)
with G21(12) defined in Eq. (5) and

Gmax =
4π

RQ

E′J(V0)

2e
. (9)

The approximation in Eq. (8) results from Taylor ex-
panding in the field averages 〈Φ1(2)(t)〉 to second or-
der and neglecting the second derivative of EJ (see Ap-
pendix B 4). Typical device parameters (see Fig. 1) re-
sult in Gmax � 1/RQ and therefore a narrow band-
width. In Eq. (8) the averaged flux field is 〈Φ1(2)(t)〉 ≈
(Φ0/2π)

√
πZ0/RQ

∑∞
n=1 α

(n)
1(2)e

inωt/
√

2 + h.c with α
(n)
1(2)

the displacement in the nth harmonic of the flux field
due to an input signal with frequency ω, and Z0 =√
L0/C0 the characteristic impedance of the shunting

LC. The total photon number in mode 1(2) is there-

fore N1(2) =
∑∞
n=1 |α

(n)
1(2)|2. The time-dependent con-

tributions in Eq. (8) result in frequency mixing and, as a
consequence, a time-averaged conductance Eq. (8) that
decreases from its optimal value with increasing input
power. Within the rotating-wave approximation, it is
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useful to approximate Eq. (8) by its time-average

G ≈ Gmax

[
1− πZ0N

2RQ

]
(10)

with N = (N1 + N2)/2 the average photon number in
the gyrator which is proportional to the input power.
As discussed in further detail below, a reduced con-
ductance leads to increased reflection. The effects of
frequency-mixing due to the counter-rotating terms that
are dropped in Eq. (8) are analyzed in Appendix B 5.

Scattering matrix. Starting from the equations of mo-
tion of the mean-field Lagrangian, we find that the linear
scattering response can be expressed as

S(ω) =

(
1− Z

−1
ω

Z−1
TL

)−1

·
(

1 +
Z−1

ω

Z−1
TL

)
, (11)

(see Appendix B 5) where ZTL is the characteris-
tic impedance of the input-output transmission lines,
and Zω = iωLc+[iωC+(iωL)−1 +iGσy]−1 encodes the
total impedance of the gyrator modes. Here, C and L
are the 2 × 2 capacitance and inductance matrices of
the gyrator modes respectively, σy is the Pauli matrix,
and Lc is the coupling inductance matrix between the
transmission lines and the gyrator modes. In the ideal
case where Lc = Lc1, C = C01 and L = L01, the scat-
tering matrix reduces to the simple form

S(ω) = cos(2θω)1 + i sin(2θω)σy, (12)

where

tan(2θω) =
2GZTL(ω)

1− Z2

TL(ω)/Z
2

0(ω)−G2Z
2

TL(ω)
, (13)

and

ZTL(ω) =
ZTL

[1 + Zc(ω)/Z0(ω)]
2

+G2Z2
c (ω)

, (14)

Z0(ω) =
Z0(ω)

1 + [Zc(ω)/Z0(ω)] [1 +G2Z2
0 (ω)]

, (15)

are the frequency-dependent characteristic impedance
of the lines and renormalized load impedance due to
the coupling inductance, respectively. Here Z0(ω) =
[iωC0 + (iωL0)−1]−1 is the impedance of the load
whereas Zc(ω) = iωLc is the impedance of the coupling
inductance. S approaches the ideal scattering matrix of
a gyrator Eq. (6) for | tan(2θω)| → ∞ or, equivalently,
when the circuit is perfectly impedance-matched such
that transmission is maximal.

Central frequency. The central frequency of the device
corresponds to the frequency for which the denominator
in Eq. (13) vanishes with the smallest G possible. As
discussed in further details in Appendix B 5, the central
frequency is close to the resonance frequency of the in-
ternal gyrator modes ω0 = 1/

√
L0C0.

Impedance-matched conductance. The conductance for
which the scattering matrix approaches that of an ideal
gyrator at ω = ω0 is approximately

G0 = ZTL(ω0)−1 =

√
1 + 2

(√
2Lcω0/ZTL

)2 − 1

ZTL

(√
2Lcω0/ZTL

)2 , (16)

which becomes G0 = Z−1
TL as Lc → 0. To maxi-

mize transmission, we set Gmax in Eq. (9) equal to G0

in Eq. (16). We also note that G0 decreases with increas-
ing Lc. As will be shown below, we ideally want Lc = 0
such as to maximize the frequency bandwidth of the de-
vice leaving us with the constraint Gmax = Z−1

TL. In
cases where the transmission lines have a characteristic
impedance ZTL � G−1

max, which is most likely for typical
circuit parameters, we can nonetheless use a matching
circuit between the lines and the gyrator [1, 58].

Frequency bandwidth. We also introduce the frequency
bandwidth δ = ω+ − ω− for gyration with ω± the
cut-off frequencies for which reflection equals transmis-
sion, where | tan(2θω)| = 1. At large Lc, where G0 ≈
(Lcω0)−1, we find (see Appendix B 5)

δ ≈ Z0ZTL

L2
cω0

. (17)

The same expression for zero Lc is instead δ =

2ω0

√
1 + β (Z0/ZTL)

2
where 4β = G2ZTL +2|G|ZTL−1.

Compression point. As discussed above, frequency
mixing can lead to reduced transmission and here we de-
fine the compression level as the maximum average pho-
ton number N for which the scattering-matrix compo-
nents deviate by 1 dB from the expected values in the
zero-photon linear limit. Near the central frequency ω0

we find that | tan(2θω0
)| ≈ 2(1 − x)/[1 − (1 − x)2],

where x = πZ0N/2RQ using the mean-field expression
for the conductance in Eq. (10), see Appendix B 5. From
this expression, we find a maximum average photon num-
ber

Nmax ≈
RQ
πZ0

(18)

by setting | tan(2θω0
)| ≈ 1.31 and with θω0

the angle
at which transmission drops by 1 dB in Eq. (12) at the
central frequency ω0 with nonzero average photon num-
berN . That the maximal photon numberNmax decreases
with increasing Z0 is a signature that the system dynam-
ics is more affected by the junctions nonlinearity for large
zero-point fluctuations of the internal gyrator modes. As-
suming a typical mode impedance Z0 = 50 Ω, Eq. (18)
leads to Nmax ≈ 41 photons.

Numerical results. The reflection and transmission co-
efficients of the scattering matrix in the linear regime
(i.e. N � RQ/πZ0) for different Lc and Z0 are
shown in Fig. 3a-f). The frequency bandwidth is shown
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a) b) c)

d) e) f)

g) h) i)

FIG. 3. a-c) Reflection |S11| and transmission |S12| in dB computed analytically at the impedance matching condition G = G0 as
a function of the frequency ω renormalized by the resonance frequency ω0 = 1/

√
C0L0, for different coupling inductances Lc =

ZTL/ω0 × {0.05, 0.50, 5.00} respectively, and for fixed load impedance Z0 =
√
L0/C0 = 10ZTL and in the N = 0 limit. d-f)

Two-dimensional version of a-c) where Z0 is varied. The dashed lines are the | tan(2θω)| = 1 boundaries, where reflection
starts to dominate over transmission. Two such boundaries closest to ω = ω0 are highlighted in light green. The central
frequency is identified with a purple line. g) Transmission |S12| versus the photon number N in the gyrator and the load
impedance Z0. The 1 dB-compression level is highlighted in light green and corresponds to the maximum photon number that
can be tolerated in the gyrator. The analytical estimate from Eq. (18) is the purple line which shows agreement with the 1 dB
level. h) Numerically computed frequency bandwidth near ω = ω0 using the boundaries highlighted in d-f) versus the coupling
inductance Lc, for different load impedances Z0. The black lines correspond to Eq. (17). Details of the fitting algorithm can
be found in Appendix B 5. i) Impedance-matched conductance as a function of coupling inductance Lc, see Eq. (16).

in Fig. 3h) and the optimal conductance Eq. (16) is shown
in Fig. 3i). In panels a-f), we observe that the central fre-
quency (purple line near ω0) slightly deviates from ω0 as
a function of Z0/ZTL for non-zero Lc with our choice
of conductance G0 (see Appendix B 5 for analytical esti-
mates). The dashed light green contours in panels d-f)
about ω = ω0 correspond to ω±. We note that the fre-
quency bandwidth near ω = ω0 also quickly decreases
with increasing Lc, which is clearly illustrated in panel
h) where we see excellent agreement with Eq. (17) for
large Lc values. Panel i) illustrates that the optimal con-
ductanceG0 is inversely proportional to Lc. Compression
is also shown within mean-field theory in Fig. 3g), with
the purple line corresponding to Eq. (18).

Noise sensitivity. The gyrator interaction in Eq. (7) is
akin to a Jaynes-Cummings interaction between two res-
onant LC oscillators that are the internal gyrator modes.
This quadratic model, with energy splitting 2G, is in-
sensitive to both charge and flux noise. Nevertheless,
for the design of Fig. 2, and within mean-field theory,
the interaction strength given by Eq. (8) is sensitive

to both charge noise Φ̇1(2) → Φ̇1(2) + δΦ̇1(2) and flux
noise Φ1(2) → Φ1(2) + δΦ1(2). To leading order in the

noise, we find that G→ G+ (∂Gmax/∂V0)[δΦ̇1 + δΦ̇2]/2
is insensitive to flux noise but sensitive to charge noise.
∂Gmax/∂V0 ∝ E′′J (V0) is however orders of magnitude
smaller than Gmax and consequently charge noise is neg-
ligible. Derivations and full analysis for both flux and
charge noise can be found in Appendix B 3.

Circuit disorder. Gyration is fragile to frequency mis-
matches and stray couplings, both unavoidable in realis-
tic circuit implementations and resulting in σz and σx
components in the scattering matrix Eq. (12). We con-
sider Lc = Lc1 + dLcσz, C = C01 + dC0σz − C12σx

and L = L01 + dL0σz − L12σx with dLc, dC0, dL0

the disorder in Lc, C0, L0, respectively, and C12, L12

the parasitic capacitive and inductive couplings between
active nodes and loops, respectively. As shown in Ap-
pendix D, deviations in the scattering matrix elements,
proportional to σz and σx, are much smaller than
unity for dLc � ZTL/ω0, dC0 � ZTLG

2
0/ω0, dL0 �

L2
0ω0ZTLG

2
0, C12 � ZTLG

2
0/ω0 and L12 � L2

0ω0ZTLG
2
0.
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These constraints are all realizable in superconducting
circuits. We note that a larger optimal conductance G0

[i.e. a smaller Lc in Eq. (16)] renders the device less sensi-
tive to circuit disorder, which is also a direct consequence
of a larger frequency bandwidth, see Eq. (17). Further
discussions regarding circuit disorder can be found in Ap-
pendix D.

Optimal circuit parameters. Important circuit pa-
rameters are the coupling inductance Lc, the conduc-
tance Gmax in Eq. (9) which must be set to the op-
timal conductance value G0, and the characteristic
impedance Z0 of the shunting LC resonators. For typical
semiconducting junctions, Gmax � Z−1

TL which forces Lc
to be large such that the condition that Gmax = G0 can
be satisfied accordingly to Eq. (16) unless we use a match-
ing circuit between the transmission lines and the gyra-
tor. A larger Lc (i.e. smaller G0) results in a smaller fre-
quency bandwidth [see Eq. (17)] and increased sensitiv-
ity to circuit disorder as noted in the previous paragraph.
We also require Z0 � RQ to maximize Eq. (18) which
equally contributes in reducing the frequency bandwidth.
Overall the larger Gmax can be made the larger the fre-
quency bandwidth and the smallest the sensitivity to cir-
cuit disorder.

Beyond mean-field theory. So far we have used the
mean-field approach to capture the leading order effects
of the circuit nonlinearity in the scattering matrix. How-
ever, this approach does not take into account the im-
pact of quantum fluctuations. The time evolution of
the full circuit under a dissipative master equation is
analyzed in Appendix C, where we show that quantum
fluctuations are indeed negligible when comparing reflec-
tion against mean-field theory for different input pow-
ers and load impedances. In Appendix E, we also fol-
low the circuit-quantization procedure [52] on a generic
circuit with the FENNEC interaction which is nonlin-
ear in both the phase and charge quadratures due to
the higher derivatives of EJ . To this end, we introduce
a perturbative expansion for the canonical charges with
respect to the voltages Φ̇1 and Φ̇2 to take into account
the higher derivatives of EJ . The perturbative expan-
sion yields nonlinear corrections to the quantized circuit
Hamiltonian. The leading order effect resulting from the
second derivative of EJ is a nonlinear capacitive energy
that depends on the phase of the other mode.

IV. CIRCULATOR DESIGN

Having demonstrated that the flux-charge interaction
leads to the fundamental two-port nonreciprocal element,
we use first principles of circuit theory to build more gen-
eral multi-port devices. As an example, Fig. 4b) shows a
symmetric version of a circulator built from the gyrator
design of Fig. 2.

The limitations and imperfections of our gyrator design

b)a)

+

-

+

-

+ -

1

2

3

c)

0.0 0.5 1.0 1.5 2.0

ω/ω0

0.00

0.25

0.50

0.75

1.00 |Sn,n|
|Sn,n+1|
|Sn,n+2|

FIG. 4. a) Three-port circulator characterized by a scat-
tering matrix S(ω) with input-output transmission lines of
impedance ZTL. b) Lumped-element design for a circula-
tor based on a single gyrator with its circuit symbol shown
in gray and corresponding to the implementation in Fig. 2.
The three equal loads shown in green have a characteristic
impedance Z0. The gyrator here can be implemented with
the FENNEC interaction. c) Absolute values of the full scat-
tering matrix elements versus the frequency for n = 1, 2, 3.

imparted by either the junction nonlinearity or circuit
disorder, as discussed in the previous section, will be the
same for the circulator design in Fig. 4b). For simplicity,
here we therefore consider the gyrator to be ideal. The
circulator in Fig. 4b) was already analyzed in Ref. [59]
also considering an ideal gyrator.

In the linear semi-classical regime, i.e. within mean-
field theory and for small input photon numbers where
FENNEC acts as an ideal gyrator, this device is described
by the scattering matrix

S =

0 1 0
0 0 −1
1 0 0

 , (19)

when the system is probed at resonance (ω = ω0) and is
impedance matched (ZTL = Z0 = 1/G0). The absolute
values of the full scattering matrix elements are shown
in Fig. 4c) while details of analytical expressions can be
found in Appendix F.

V. CONCLUSION

We proposed a flux-charge interaction that breaks
time-reversal symmetry in the presence of static exter-
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nal magnetic fields and which can be used as a building
block for passive nonreciprocal devices such as gyrators
and circulators. We analytically and numerically inves-
tigated the scattering matrix of a gyrator based on the
this interaction. The strength of the FENNEC interac-
tion, which we wish to maximize, will determine both the
frequency bandwidth of the device and the sensitivity to
circuit disorder. The nonlinearity of the junctions will
also result in compression similarly to other proposals
for circulators [7, 10, 11]. Despite its narrow bandwidth,
the advantages of our gyrator are both its compactness
and passiveness.

Beyond applications to nonreciprocal devices, the
FENNEC interaction yields either quadratic or nonlin-
ear two-body interactions opening up new possibilities
for engineering two-qubit gates and next-generation su-
perconducting qubits [60]. Indeed, based on the recent by
proposal by Rymarz et al. [54], it can be shown that GKP
states [61] can be stabilized with this interaction [62].
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Appendix A: FENNEC interaction properties

1. Time-reversal symmetry

Voltages and currents are typically considered even and odd variables with respect to time inversion, i.e. V (−t) =

V (t) and I(−t) = −I(t). Given that the fluxes and charges are their time integrals respectively, i.e. Φ(t) =
∫ t

0
V (τ)dτ

and Q(t) =
∫ t

0
I(τ)dτ , we would then define Φ→ −Φ and Φ̇→ Φ̇ under time inversion.

2. FENNEC Lagrangian

We consider a generic circuit Lagrangian of the form L = L0 + Lint, where

L0 = Φ̇T · C0

2
· Φ̇ + Φ̇T · Cc

2
· Φ̇ +

(
Φ̇− V

)T
· CJ

2
·
(
Φ̇− V

)
− U (ϕ) , (A1)

is the Lagrangian due to all standard superconducting circuit elements,

Lint = −εJ(∆1,T1, V1 + Φ̇2, ϕ
ex
1 , ϕ1) = −

∞∑
n,m=0

Φ̇n2
n!

Φm1
m!

(
2π

Φ0

)m
∂n+mεJ(∆1,T1, V1, ϕ

ex
1 , 0)

∂V n∂ϕm
(A2)

results from the FENNEC interaction alone. Here Φ = (Φ1, Φ2) is a vector comprising the branch flux Φ1 (Φ2) of the
first (second) mode, ϕ = 2πΦ/Φ0 are the associated branch phases, C0 and Cc are capacitance matrices due to the
shunt capacitors and the coupling capacitors respectively, CJ is the capacitance matrix associated with the coupling
to the control voltage lines V , U(ϕ) is any additional potential energy of the two modes,

εJ(∆,T , V, ϕex, ϕ) = −∆
∑
i

√
1− [T (V )]i sin2

(
ϕ− ϕex

2

)
, (A3)

is the form of the Andreev bound-state energy of any semiconducting junction in the circuit, ∆k is the gap energy of
the kth junction with transmissions [Tk]i, Φex

k is an external flux threading the kth loop. In this work we focus on
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the leading order contribution of the interaction Lagrangian

Lfennec = GΦ̇2Φ1/2, (A4)

where we defined the amplitudes

G = − 4π

Φ0

∂2εJ(∆1,T1, V1, ϕ
ex
1 , 0)

∂V ∂ϕ
=

4π

Φ0

∆1

4

∑
i

[T1(V1)]′i sin (ϕex
1 )

1 + [T1(V1)]i sin2 (ϕex
1 /2) /2√

1− [T1(V1)]i sin2 (ϕex
1 /2)

3 . (A5)

In what follows we truncate the interaction Lagrangian to quadratic order,

Lint ≈
c2
2

Φ̇2
2 −

Φ2
1

2`1
+ α2Φ̇2 + β1Φ1 +

G

2
Φ̇2Φ1 (A6)

where we defined the charge offset

α2 = −∂εJ(∆1,T1, V1, ϕ
ex
1 , 0)

∂V
= −

∑
i

∆1[T1(V1)]′i sin2 (ϕex
1 /2) /2√

1− [T1(V1)]i sin2 (ϕex
1 /2)

3 , (A7)

the phase offset

β1 = − 2π

Φ0

∂εJ(∆1,T1, V1, ϕ
ex
1 , 0)

∂ϕ
=

2π

Φ0

∑
i

∆1[T1(V1)]i sin(ϕex
1 )/4√

1− [T1(V1)]i sin2 (ϕex
1 /2)

3 , (A8)

the shift in the capacitance

c2 = −∂
2εJ(∆1,T1, V1, ϕ

ex
1 , 0)

∂V 2
= −

∑
i

∆1 sin2 (ϕex
1 /2) /2√

1− [T1(V1)]i sin2 (ϕex
1 /2)

[
[T1(V1)]′′i −

([T1(V1)]i)
2 sin2 (ϕex

1 /2) /2

1− [T1(V1)]i sin2 (ϕex
1 /2)

]
, (A9)

and the shift in the inductance

1

`1
=

(
2π

Φ0

)2
∂2εJ(∆1,T1, V1, ϕ

ex
1 , 0)

∂ϕ2
=

(
2π

Φ0

)2∑
i

∆1[T1(V1)]i/4√
1− [T1(V1)]i sin2 (ϕex

1 /2)
3

[
cos(ϕex

1 ) + [T1(V1)]i sin4 (ϕex
1 /2)

]
.

(A10)

We already advertise that at ϕex
1 = ±π/2, in the weak transmission limit [T1(V1)]i � 1 and more gener-

ally |[T1(V1)]′i|, |[T1(V1)]′′i | � 1, the shifts c2 and 1/`1 are negligible contributions to the capacitance and inductance
of modes 2 and 1 respectively.

3. Weak transmission limit

We further simplify the system Lagrangian by considering the weak transmission limit [T1(V1)]i � 1 where we find
that

εJ(∆,T , V, ϕex, ϕ) ≈ ∆+
∆
∑
i[T1(V1)]i

4
−∆

∑
i[T1(V1)]i

4
cos (ϕ− ϕex) = ∆+EJ(∆,T , V )−EJ(∆,T , V ) cos (ϕ− ϕex) ,

(A11)
where we defined the effective Josephson energy EJ(∆,T , V ) = ∆

∑
i[T1(V1)]i/4. We consequently find that

G ≈ 4π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin(ϕex

1 ), (A12)

α2 = −∂EJ(∆1,T1, V1)

∂V
+
∂EJ(∆1,T1, V1)

∂V
cos (ϕex) , (A13)

β1 =
2π

Φ0
EJ(∆1,T1, V1) sin(ϕex

1 ), (A14)

c2 = −∂
2EJ(∆1,T1, V1)

∂V 2
+
∂2EJ(∆1,T1, V1)

∂V 2
cos (ϕex) , (A15)

1

`1
=

(
2π

Φ0

)2

EJ(∆1,T1, V1) cos(ϕex
1 ). (A16)

In what follows we drop the small shifts c2 and 1/`1 for compactness.
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4. Noise sensitivity

In this section we analyze the noise sensitivity of the device. Notice that given the term εJ(∆1,T1, V1 +Φ̇2, ϕ
ex
1 , ϕ1),

charge noise in the second mode, such that Φ̇2 → Φ̇2 + δΦ̇2, is equivalent to V1 → V1 + δΦ̇2. Similarly, flux noise in
the first mode, such that ϕ1 → ϕ1 + δϕ1, is equivalent to ϕex

1 → ϕex
1 − δϕ1.

Charge noise. In presence of charge noise, which amounts to V1 → V1 +δΦ̇2 in the FENNEC interaction strength G,
we find that G→ G+ δG where

δG ≈ 4π

Φ0

∂2EJ(∆1,T1, V1)

∂V 2
sin(ϕex

1 )δΦ̇2 (A17)

to leading order in the noise.

Flux noise. In presence of flux noise, which can be implemented with ϕex
1 → ϕex

1 − δϕ1 in the FENNEC interaction
strength G, we find that G→ G+ δG where

δG ≈ −
(

4π

Φ0

)2
∂EJ(∆1,T1, V1)

∂V
cos(ϕex

1 )δΦ1. (A18)

Resolution of the strength. Another important point is the resolution of the DC gate voltage bias, δV , which must
satisfy

δV �
∣∣∣∣ 4πΦ0

∂2EJ(∆1,T1, V1)

∂V 2
sin(ϕex

1 )

∣∣∣∣−1

. (A19)

5. Mean-field theory

In this section we linearized the FENNEC interaction within a mean-field theory approximation:

Lmf
int = −

∞∑
n,m=0

δΦ̇n2
n!

δΦm1
m!

(
2π

Φ0

)m
∂n+mεJ(∆1,T1, V1 + 〈Φ̇2〉, ϕex

1 − 〈ϕ1〉, 0)

∂V n∂ϕm
, (A20)

where δΦk = Φk −〈Φk〉. The field averages have to be solved self-consistently. To second order in the fluctuations we
arrive at the effective interaction Lagrangian

Lint ≈ α2(t)Φ̇2 + β1(t)Φ1 +G(t)Φ̇2Φ1/2, (A21)

where we defined

G(t) = − 4π

Φ0

∂2εJ(∆1,T1, V1 + 〈Φ̇2〉, ϕex
1 − 〈ϕ1〉, 0)

∂V ∂ϕ
, (A22)

α2(t) = −∂εJ(∆1,T1, V1 + 〈Φ̇2〉, ϕex
1 − 〈ϕ1〉, 0)

∂V
− 〈Φ1〉G(t)/2 (A23)

β1(t) = − 2π

Φ0

∂εJ(∆1,T1, V1 + 〈Φ̇2〉, ϕex
1 − 〈ϕ1〉, 0)

∂ϕ
− 〈Φ̇2〉G(t)/2. (A24)

To quartic order in the flux we find the approximate interaction Lagrangian Lmf
int = G(t)Φ̇2Φ1 where

G(t) =
4π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin (ϕex

1 )

(
1− 〈ϕ1〉2

2

)
+

4π

Φ0

∂3EJ(∆1,T1, V1)

∂V 3
sin (ϕex

1 )
〈Φ̇2〉2

2

− 4π

Φ0

∂2EJ(∆1,T1, V1)

∂V 2
cos (ϕex

1 ) 〈Φ̇2〉〈ϕ1〉.
(A25)

We consider the second and third derivatives of EJ to be negligible. RQ = Φ0/(2e) = h/(2e)2 ' 6.5 kΩ the resistance
quantum.
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6. Estimation of the interaction strength

We remark that, following standard circuit quantization, the FENNEC interaction yields a Hamiltonian
term (g/~)q̂2Φ̂1 where g = 8EC2

E′J(V0)/2e and EC2
isthe charging energy of the second mode.

The Josephson energy EJ in the weak transmission limit is estimated from the approximate Gatemon transition
energy formula

fQ ≈
(√

8ECEJ − EC
)
/h, (A26)

where EC is the measured charging energy provided in [36, 43, 47]. We numerically compute the derivative using an
interpolated spline that fits the fQ that was experimentally measured. We also numerically confirm that the FENNEC
interaction strength is indeed proportional to this derivative in Figs. 5 to 7. Two-dimensional electron gas junction
have smoother energy with respect to the gate voltage (see Fig. 6) but generally weaker first derivative. Nanowire
junctions can in principle yield larger first derivatives (see Fig. 7) but appear more noisy. Graphene junctions result
in both large first derivatives and smooth profiles (see Fig. 5).

We also note that in the regime of a single channel with large transmission T (V ) we instead find εJ(V,Φ1) ≈
−∆| cos(πΦ1/Φ0)|+ (∆/2)(T (V )− 1) sin2(πΦ1/Φ0)| sec(πΦ1/Φ0)|, which is more sensitive to the external voltage V
near half flux quantum. In other words, it is possible to find larger FENNEC interaction strengths by working in the
large transmission limit.

a) b) c)

d) e) f)

FIG. 5. a) Josephson energy estimated from [43]. b)-c) Numerical discrete Fourier transform for different DC gate voltages.
Here we add a small AC voltage with frequency and amplitude both determined by the capacitive and inductive energies of a
fictitious second mode. The inductive energy is 50/h GHz and the capactivie energy is 0.1/h GHz in b) and 1.0/h GHz in c).
d) First derivative of the Josephson energy in a). e)-f) line-cut of b)-c) respectively at the frequency of the AC voltage. e) and
f) follow the pattern of the first derivative in d).

Appendix B: Gyrator implementation

1. System Lagrangian

We consider a generic circuit Lagrangian of the form

L = L0 + Lint + Lcor, (B1)

where

L0 = Φ̇T · C0

2
· Φ̇ + Φ̇T · Cc

2
· Φ̇ +

(
Φ̇− V

)T
· CJ

2
·
(
Φ̇− V

)
−ΦT · L

−1
0

2
·Φ, (B2)
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a) b) c)

d) e) f)

FIG. 6. See caption of Fig. 5. Based on the spectroscopy data in [47].

a) b) c)

d) e) f)

FIG. 7. See caption of Fig. 5. Based on the measured gatemon frequency in [36].

is the Lagrangian due to all standard superconducting circuit elements,

Lint = −εJ(∆1,T1, V1 + Φ̇2, ϕ
ex
1 , ϕ1)− εJ(∆2,T2, V2 + Φ̇1, ϕ

ex
2 , ϕ2)

= −
∞∑

n,m=0

Φ̇n2
n!

Φm1
m!

(
2π

Φ0

)m
∂n+mεJ(∆1,T1, V1, ϕ

ex
1 , 0)

∂V n∂ϕm
−

∞∑
n,m=0

Φ̇n1
n!

Φm2
m!

(
2π

Φ0

)m
∂n+mεJ(∆2,T2, V2, ϕ

ex
2 , 0)

∂V n∂ϕm

(B3)

results from the FENNEC interaction alone, and

Lcor = −εJ(∆1,T1, V1, ϕ
ex
1 − π, ϕ1)− εJ(∆2,T2, V2, ϕ

ex
2 + π, ϕ2)

= −
∞∑
m=0

Φm1
m!

(
2π

Φ0

)m
∂mεJ(∆1,T1, V1, ϕ

ex
1 − π, 0)

∂ϕm
−
∞∑
m=0

Φm2
m!

(
2π

Φ0

)m
∂mεJ(∆2,T2, V2, ϕ

ex
2 + π, 0)

∂ϕm
.

(B4)

will be used to cancel the potentially large interaction-free part of Lint since εJ(∆,T , V, ϕex ± π, 0) =
−εJ(∆,T , V, ϕex, 0) in the weak transmission limit [T (V1)]i � 1, as will be clear below. Here Φ = (Φ1, Φ2) is
a vector comprising the branch flux Φ1 (Φ2) of the first (second) mode, ϕ = 2πΦ/Φ0 are the associated branch
phases, C0 and Cc are capacitance matrices due to the shunt capacitors and the coupling capacitors respectively, CJ

is the capacitance matrix associated with the coupling to the control voltage lines V , L0 is an inductance matrix,

εJ(∆,T , V, ϕex, ϕ) = −∆
∑
i

√
1− [T (V )]i sin2

(
ϕ− ϕex

2

)
, (B5)



14

is the form of the Andreev bound-state energy of any semiconducting junction in the circuit, ∆k is the gap energy of
the kth junction with transmission probability [Tk(Vk)]i, Φex

k is an external flux threading the kth loop. In this work
we focus on the leading order contribution of the interaction Lagrangian

Ltarget = G+(t)
(

Φ̇2Φ1 + Φ̇1Φ2

)
/2 +G−(t)

(
Φ̇2Φ1 − Φ̇1Φ2

)
/2, (B6)

where we defined the amplitudes

G± = − 2π

Φ0

∂2εJ(∆1,T1, V1, ϕ
ex
1 , 0)

∂V ∂ϕ
∓ 2π

Φ0

∂2εJ(∆2,T2, V2, ϕ
ex
2 , 0)

∂V ∂ϕ
. (B7)

Here

∂2εJ(∆,T , V, ϕex, 0)

∂V ∂ϕ
= −∆

4

∑
i

∂[T (V )]i
∂V

sin (ϕex)
1− [T (V )]i sin2 (ϕex/2) /2√

1− [T (V )]i sin2 (ϕex/2)
3 . (B8)

Moreover G−(t) = 1/(2R), where R is the resistance of a gyrator. Overall we truncate the interaction Lagrangian to

Lint + Lcor ≈
2∑
k=1

[
ck
2

Φ̇2
k +

Φ2
k

2`k
+ αkΦ̇k + βkΦk

]
+G+(t)

(
Φ̇2Φ1 + Φ̇1Φ2

)
/2 +G−(t)

(
Φ̇2Φ1 − Φ̇1Φ2

)
/2 (B9)

where we defined

ck = −∂
2εJ(∆`,T`, V`, ϕ

ex
` , 0)

∂V 2
, (B10)

1

`k
= −

(
2π

Φ0

)2
∂2εJ(∆k,Tk, Vk, ϕ

ex
k , 0)

∂ϕ2
−
(

2π

Φ0

)2
∂2εJ(∆k,Tk, Vk, ϕ

ex
k + (−1)kπ, 0)

∂ϕ2
, (B11)

αk = −∂εJ(∆`,T`, V`, ϕ
ex
` , 0)

∂V
, (B12)

βk = − 2π

Φ0

∂εJ(∆k,Tk, Vk, ϕ
ex
k , 0)

∂ϕ
− 2π

Φ0

∂εJ(∆k,Tk, Vk, ϕ
ex
k + (−1)kπ, 0)

∂ϕ
. (B13)

For optimal gyration we wish for G−(t) (G+(t)) to be maximized (minimized). G−(t) leads to a resonant Jaynes-

Cummings-type interaction with a π/2 relative phase (iâ†b̂ + h.c) whereas G+(t) leads to a off-resonant two-mode-

squeezing-type interaction (iâ†b̂† + h.c).

2. Weak transmission limit

In the weak transmission ([Tk(Vk)]i � 1) limit we find that

εJ(∆,T , V, ϕex, ϕ) ≈ ∆+
∆
∑
i[T (V )]i
4

−∆
∑
i[T (V )]i
4

cos (ϕ− ϕex) = ∆+EJ(∆,T , V )−EJ(∆,T , V ) cos (ϕ− ϕex) .

(B14)
Notice that

ck = − (1− cos (ϕex
` ))

∂2EJ(∆`,T`, V`)

∂V 2
, (B15)

1

`k
= 0, (B16)

αk = − (1− cos (ϕex
` ))

∂EJ(∆`,T`, V`)

∂V
, (B17)

βk = 0. (B18)

From now on we will drop ck and 1/`k in the assumption that they are negligible contributions to the capacitance
and inductance of the modes.
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Gyration. If the FENNEC interaction can prove useful for two-qubit gates the main application is the realization
of nonreciprocal devices. It follows that

G−(t) ≈ π

RQ
sin (ϕex

1 )
1

2e

∂EJ(∆1,T1, V1)

∂V
− π

RQ
sin (ϕex

2 )
1

2e

∂EJ(∆2,T2, V2)

∂V
(B19)

where we defined RQ = Φ0/(2e) = h/(2e)2 ' 6.5 kΩ the resistance quantum. Importantly, this implies that the
resistance of the gyrator is

R =
RQ
2π

(
sin (ϕex

1 )
1

2e

∂EJ(∆1,T1, V1)

∂V
− sin (ϕex

2 )
1

2e

∂EJ(∆2,T2, V2)

∂V

)−1

. (B20)

Typically |∂EJ(∆k,Tk, Vk)/∂V | � 1 and it is therefore clear that the resistance of the gyrator R is mostly likely
larger than the resistance quantum RQ.

3. Noise sensitivity

In this section we analyze the noise sensitivity of the device. Notice that given the term εJ(∆1,T1, V1 +Φ̇2, ϕ
ex
1 , ϕ1),

charge noise in the second mode, such that Φ̇2 → Φ̇2 + δΦ̇2, is equivalent to V1 → V1 + δΦ̇2. Similarly, flux noise in
the first mode, such that ϕ1 → ϕ1 + δϕ1, is equivalent to ϕex

1 → ϕex
1 − δϕ1.

Charge noise. In presence of charge noise, which amounts to V1 → V1 + δΦ̇2 and V2 → V2 + δΦ̇1 in the FENNEC
interaction strength G−(t), we find that G−(t)→ G−(t) + δG−(t) where

δG−(t) ≈ π

RQ
sin (ϕex

1 )
1

2e

∂2EJ(∆1,T1, V1)

∂V 2
δΦ̇2 −

π

RQ
sin (ϕex

2 )
1

2e

∂2EJ(∆2,T2, V2)

∂V 2
δΦ̇1 (B21)

to leading order in the noise.
The frequencies of the normal modes of gyrator become ω± = ω0±G−(t)± δG−(t). We observe that the dispersion

is linear in charge noise and determined by the second derivative of EJ .
Flux noise. In presence of flux noise, which can be implemented with ϕex

1 → ϕex
1 − δϕ1 and ϕex

2 → ϕex
2 − δϕ2 in

the FENNEC interaction strength G−(t), we find that G−(t)→ G−(t) + δG−(t) where

δG−(t) ≈ − π

RQ
cos (ϕex

1 )
1

2e

∂EJ(∆1,T1, V1)

∂V
δϕ1 +

π

RQ
cos (ϕex

2 )
1

2e

∂EJ(∆2,T2, V2)

∂V
δϕ2. (B22)

We observe that the system is insensitive to flux noise to leading order at the optimal gyration point |ϕex
k | = π/2.

4. Mean-field theory

In this section we linearized the FENNEC interaction within a mean-field theory approximation:

Lmf
int = −εJ(∆1,T1, V1 + Φ̇2, ϕ

ex
1 , ϕ1)− εJ(∆2,T2, V2 + Φ̇1, ϕ

ex
2 , ϕ2)

= −
∞∑

n,m=0

δΦ̇n2
n!

δΦm1
m!

(
2π

Φ0

)m
∂n+mεJ(∆1,T1, V1 + 〈Φ̇2〉, ϕex

1 − 〈ϕ1〉, 0)

∂V n∂ϕm

−
∞∑

n,m=0

δΦ̇n1
n!

δΦm2
m!

(
2π

Φ0

)m
∂n+mεJ(∆2,T2, V2 + 〈Φ̇1〉, ϕex

2 − 〈ϕ2〉, 0)

∂V n∂ϕm
,

(B23)

where δΦk = Φk − 〈Φk〉. Similarly,

Lmf
cor = −εJ(∆1,T1, V1 + Φ̇2, ϕ

ex
1 − π, ϕ1)− εJ(∆2,T2, V2 + Φ̇1, ϕ

ex
2 + π, ϕ2)

= −
∞∑
m=0

δΦm1
m!

(
2π

Φ0

)m
∂mεJ(∆1,T1, V1, ϕ

ex
1 − π − 〈ϕ1〉, 0)

∂ϕm

−
∞∑
m=0

δΦm2
m!

(
2π

Φ0

)m
∂mεJ(∆2,T2, V2, ϕ

ex
2 + π − 〈ϕ2〉, 0)

∂ϕm
.

(B24)
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To second order we therefore arrive at the effective interaction Lagrangian

Lmf
int + Lmf

cor ≈
2∑
k=1

[
αk(t)Φ̇k + βk(t)Φk

]
+G+(t)

(
Φ̇2Φ1 + Φ̇1Φ2

)
/2 +G−(t)

(
Φ̇2Φ1 − Φ̇1Φ2

)
/2, (B25)

where we defined

G±(t) = − 2π

Φ0

∂2εJ(∆1,T1, V1 + 〈Φ̇2〉, ϕex
1 − 〈ϕ1〉, 0)

∂V ∂ϕ
∓ 2π

Φ0

∂2εJ(∆2,T2, V2 + 〈Φ̇1〉, ϕex
2 − 〈ϕ2〉, 0)

∂V ∂ϕ
, (B26)

αk(t) = −∂εJ(∆`,T`, V` + 〈Φ̇k〉, ϕex
` − 〈ϕ`〉, 0)

∂V
− 〈Φ`〉

G+(t) + (−1)`G−(t)

4
, (B27)

βk(t) = − 2π

Φ0

∂εJ(∆k,Tk, Vk + 〈Φ̇`〉, ϕex
k − 〈ϕk〉, 0)

∂ϕ
− 2π

Φ0

∂εJ(∆k,Tk, Vk, ϕ
ex
k + (−1)kπ − 〈ϕk〉, 0)

∂ϕ

− 〈Φ̇`〉
G+(t) + (−1)`G−(t)

4
, (B28)

where ` 6= k. The field averages have to be solved self-consistently. To quartic order in the flux while neglecting higher
order derivatives in either V or ϕ, we find that

G±(t) =
2π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin (ϕex

1 )

(
1− 〈ϕ1〉2

2

)
± 2π

Φ0

∂EJ(∆2,T2, V2)

∂V
sin (ϕex

2 )

(
1− 〈ϕ2〉2

2

)
(B29)

αk(t) = − (1− cos(ϕex
` ))

∂EJ(∆`,T`, V`)

∂V
, (B30)

and βk(t) = 0.

5. Scattering matrix of the linearized system

In this section, we focus on the linear mean-field Lagrangian [63]:

Lmf =

2∑
i=1

∫ 0

−∞
dx

[
c

2

(
∂tΦ̃i(x, t)

)2

− 1

2`

(
∂xΦ̃i(x, t)

)2
]
−
(
Φ̃(0, t)−Φ

)T
· L
−1
c

2
·
(
Φ̃(0, t)−Φ

)
+αT · Φ̇

+Φ̇T · C
2
· Φ̇−ΦT · L

−1

2
·Φ + Φ̇T · G+(t)σx − iG−(t)σy

4
·Φ + ΦT · G+(t)σx + iG−(t)σy

4
· Φ̇,

(B31)

where Lc is assumed to be diagonal. Here σx and σy are the Pauli matrices.

Equations of motion

The equations of motion for the effectively linearized Lagrangian are given by

0 = ∂t
∂Lmf

∂(∂tΦ̃i)
+ ∂x

∂Lmf

∂(∂xΦ̃i)
− ∂Lmf

∂Φ̃i
=

d

dt

∂Lmf

∂Φ̇i
− ∂Lmf

∂Φi
, i = 1, 2, (B32)

which explicitly take the form

c∂2
t Φ̃(x, t) =

1

`
∂2
xΦ̃(x, t), (B33)

1

`
∂xΦ̃(0, t) = L−1

c ·
(
Φ̃(0, t)−Φ

)
, (B34)

0 = C · Φ̈ +L−1 ·Φ− iG−(t)σy · Φ̇−
1

`
∂xΦ̃(0, t). (B35)

Given the wave-equation Eq. (B33) we find that the quantized field in the transmission line j has the form

Φ̃(x, t) =

√
~

4πc

∫ ∞
0

dω√
ω

(
eiωt+ikωxa†ω + eiωt−ikωxb†ω + h.c.

)
, (B36)
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with the dispersion relation kω = ω
√
c` = ω/ωTL and commutation relations

[
âi,ω, â

†
j,ω′

]
= δijδ(ω − ω′)

and
[
b̂i,ω, b̂

†
j,ω′

]
= δijδ(ω − ω′). Here aω (bω) are the annihilation operators associated with the ingoing (outgo-

ing) fields at frequency ω.

Fourier transform

We apply a Fourier transform on Eqs. (B34) and (B35) (with the definition ŷ(ω) =
∫∞
−∞ dt y(t)eiωt/

√
2π and

property y(−ω) = [y(ω)]∗):

Φ̂(ω) = ˆ̃Φ(0, ω)− Lc

`
· ∂x ˆ̃Φ(0, ω), (B37)

0 =
(
−ω2C +L−1

)
· Φ̂(ω)−

∫ ∞
−∞

dω′ ω′Ĝ−(ω − ω′)σy · Φ̂(ω′)− 1

`
∂x

ˆ̃Φ(0, ω). (B38)

Expansion in the amplitude of the flux fields

G−(t) depends on the average of the flux fields which we assume to have small amplitude. We write G−(t) =
G− + λdG−(t) where

G− =
2π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin (ϕex

1 )− 2π

Φ0

∂EJ(∆2,T2, V2)

∂V
sin (ϕex

2 ) (B39)

is the contribution that is independent of the flux fields, and

λdG−(t) =
2π

Φ0

∂EJ(∆2,T2, V2)

∂V
sin (ϕex

2 )
〈ϕ2(t)〉2

2
− 2π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin (ϕex

1 )
〈ϕ1(t)〉2

2
, (B40)

depends on the flux fields following the mean-field approximation. We do a perturbative expansion in λ, i.e.
ˆ̃
Φ(0, ω) =∑∞

k=0 λ
k ˆ̃
Φ

(k)

(0, ω) and λdG−(t) =
∑∞
k=0 λ

k+1dG
(k)
− (t), and solve Eq. (B38) in each order of λ. For conciseness we

stop at first order.
Order 0:

0 =
(
−ω2C +L−1 − ωG−σy

)
·
(

ˆ̃Φ
(0)

(0, ω)− Lc

`
· ∂x ˆ̃Φ

(0)

(0, ω)

)
− 1

`
∂x

ˆ̃Φ
(0)

(0, ω). (B41)

Order 1:

0 =
(
−ω2C +L−1 − ωG−σy

)
·
(

ˆ̃Φ
(1)

(0, ω)− Lc

`
· ∂x ˆ̃Φ

(1)

(0, ω)

)
− 1

`
∂x

ˆ̃Φ
(1)

(0, ω)

−
∫ ∞
−∞

dω′ ω′d̂G
(0)

− (ω − ω′)σy ·
(

ˆ̃Φ
(0)

(0, ω′)− Lc

`
· ∂x ˆ̃Φ

(0)

(0, ω′)

)
.

(B42)

Consistently with the perturbative expansion we have that

λdG0
−(t) =

2π

Φ0

∂EJ(∆2,T2, V2)

∂V
sin (ϕex

2 )
〈ϕ(0)

2 (t)〉2
2

− 2π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin (ϕex

1 )
〈ϕ(0)

1 (t)〉2
2

. (B43)

Input/output equations

Accordingly to Eq. (B36) we have in the case ω > 0

ˆ̃Φ
(k)

(x, ω > 0) =

√
~

4πcω

(
e−ikωxaωδk,0 + eikωxb(k)

ω

)
, (B44)
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where δij =

{
1, i = j

0, i 6= j
is the discrete delta function. Eq. (B41) then takes the form

0 = aω + b(0)
ω +

Z(ω)

ZTL
·
(
aω − b(0)

ω

)
(B45)

where ZTL =
√
`/c is the characteristic impedance of the transmission lines and

Z(ω) = iωLc +
(
iωC + (iωL)−1 + iG−σy

)−1
= iωLc +Z0(ω). (B46)

At zeroth order the scattering matrix is then

b(0)
ω = S(0)(ω) · aω =

(
Z(ω)

ZTL
− 1

)−1

·
(
Z(ω)

ZTL
+ 1

)
· aω. (B47)

Similarly we observe that Eq. (B42) reduces to

b(1)
ω =

∫ ∞
−∞

dω′
ω′

ω
ZTLd̂G

(0)

− (ω − ω′)
(
Z(ω′)

ZTL
− 1

)−1

· Z0(ω′)

ZTL
· i2σy ·

(
Z(ω′)

ZTL
− 1

)−1

· Z0(ω′)

ZTL
· aω′ , (B48)

using the identities

1 + S(0)(ω) = 2

(
Z(ω)

ZTL
− 1

)−1

· Z(ω)

ZTL
and 1− S(0)(ω) = −2

(
Z(ω)

ZTL
− 1

)−1

. (B49)

Next we must solve for dG
(0)
− (t). Eq. (B37) yields, for ω > 0,

Φ̂(0)(ω) =

√
~

4πcω

(
aω + b(0)

ω +
iωLc

ZTL
·
(
aω − b(0)

ω

))
=

√
~
πcω

(
Z(ω)

ZTL
− 1

)−1
Z0(ω)

ZTL
· aω, (B50)

Monotonic incoming field

In what follows we assume that the incoming field is monotonic with frequency ω0. As a result we find that

〈ϕ(t)〉2 = χ

(
Z†(ω0)

ZTL
− 1

)−1
Z†0(ω0)

ZTL
· |〈aω0〉|2 ·

Z0(ω0)

ZTL
·
(
Z(ω0)

ZTL
− 1

)−1

+
χ

2

(
ZT (ω0)

ZTL
− 1

)−1
ZT0 (ω0)

ZTL
· 〈aω0〉2 ·

Z0(ω0)

ZTL
·
(
Z(ω0)

ZTL
− 1

)−1

e−i2ω0t + h.c.,

(B51)

where we defined the quantity

χ =

(
2π

Φ0

)2
2~
πcω

=
4

RQcω
(B52)

Now we observe that

d̂G
(0)

− (ω) = d̂G
(0)

− (0)δ(ω) + d̂G
(0)

− (2ω0)δ(ω − ω0) + d̂G
(0)

− (−2ω0)δ(ω + ω0), (B53)

in other words, d̂G
(0)

− (ω) is sharply peaked at three frequencies. The ω = 0 component leads to compression, and
under conservation of total exctations, ω = ±2ω0 lead to frequency mixing. Indeed, the outgoing fields are no longer
monotonic as they oscillate at both ω0 and 3ω0, the latter having much smaller amplitude. Importantly we see that
the scattering matrix is rectangular:

b−3ω0

b−ω0

b+ω0

b+3ω0

 =


M(−3ω0;−ω0) 0
S(0)(−ω0) M(−ω0; +ω0)

M(+ω0;−ω0) S(0)(+ω0)
0 M(+3ω0; +ω0)

 · (a−ω0

a+ω0

)
(B54)

where we defined the frequency-mixing matrices

M(ω;ω′) =
ω′

ω
ZTLd̂G

(0)

− (ω − ω′)
(
Z(ω′)

ZTL
− 1

)−1

· Z0(ω′)

ZTL
· i2σy ·

(
Z(ω′)

ZTL
− 1

)−1

· Z0(ω′)

ZTL
, (B55)

which are ultimately proportional to χ.



19

Effective linear response theory

The leading order effect of the nonlinearity is compression: frequency mixing can be thought as its direct conse-
quence. Compression is associated with the static component of dG−(t) only. We therefore propose an effective linear
response theory that captures compression:

bω ' S(ω) · aω =

(
Z(ω)

ZTL
− 1

)−1

·
(
Z(ω)

ZTL
+ 1

)
· aω, (B56)

where

Z(ω) = iωLc +
(
iωC + (iωL)−1 + iGσy

)−1
, (B57)

G = G− + λd̂G
0

−(0) =
2π

Φ0

∂EJ(∆1,T1, V1)

∂V
sin (ϕex

1 )

(
1− πZ0N1

2RQ

)
− 2π

Φ0

∂EJ(∆2,T2, V2)

∂V
sin (ϕex

2 )

(
1− πZ0N2

2RQ

)
,

(B58)

with N1(2) the average photon number in the internal gyrator mode 1(2) with characteristic impedance Z0. It can be

verified that Taylor expanding Eq. (B56) to leading order in λd̂G
0

−(0) returns the linear part of Eq. (B48).
Ideal case. We consider the limiting case Lc = Lc1, C = C01 and L = L01. In this case we find that

Z(ω)

ZTL
=
Zc(ω)

ZTL
1+

(
Z−1

0 (ω)1 + iGσy

)−1

ZTL
=
Zc(ω)

ZTL
1+

ZTL/Z0(ω)

(ZTL/Z0(ω))2 +G2Z2
TL

1− iGZTL

(ZTL/Z0(ω))2 +G2Z2
TL

σy, (B59)

where Z0(ω) =
(
iωC0 + (iωL0)−1

)−1
is the load impedance and Zc(ω) = iωLc is the impedance associated with the

coupling inductance. Our goal will be to redefine Z0(ω) and ZTL such as to include Lc. To this end consider

Z(ω)

ZTL
=

(
Z
−1

0 (ω)1 + iGσy

)−1

ZTL(ω)
=

ZTL(ω)/Z0(ω)

(ZTL(ω)/Z0(ω))2 +G2Z
2

TL(ω)
1− iGZTL(ω)

(ZTL(ω)/Z0(ω))2 +G2Z
2

TL(ω)
σy. (B60)

By putting the last two equations equal we find the effective load impedance due to the coupling inductance

Z0(ω) =
Z0(ω)

1 + (Zc(ω)/Z0(ω))(1 +G2Z2
0 (ω))

, (B61)

and the effective frequency-dependent characteristic impedance of the lines

ZTL(ω) =
ZTL

(1 + Zc(ω)/Z0(ω))
2

+G2Z2
c (ω)

. (B62)

With these definitions we find that(
Z(ω)

ZTL
− 1

)−1

·
(
Z(ω)

ZTL
+ 1

)
=

((a− 1)1− ibσy) · ((a+ 1)1 + ibσy)

(a− 1)2 + b2
=

(a2 + b2 − 1)1− i2bσy

(a− 1)2 + b2
, (B63)

where Z(ω) = a1 + ibσy with

a =
ZTL(ω)/Z0(ω)

(ZTL(ω)/Z0(ω))2 +G2Z
2

TL(ω)
, (B64)

b = − GZTL(ω)

(ZTL(ω)/Z0(ω))2 +G2Z
2

TL(ω)
. (B65)

We therefore find that the scattering matrix reduces to

S(ω) = cos(2θω)1 + i sin(2θω)σy (B66)

where we defined the angle θω via

tan(2θω) =
2GZTL(ω)

1− Z2

TL(ω)/Z
2

0(ω)−G2Z
2

TL(ω)
. (B67)
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Central frequency. The central frequency ω′0 of the device corresponds to the frequency for which the denominator
in Eq. (B67) vanishes, i.e.

G2 = Z
−2

TL(ω′0)− Z−2

0 (ω′0). (B68)

Moreover we wish for the optimal conductance G to be minimized, i.e. Z
2

TL(ω′0)/Z
2

0(ω′0) → 0 and G = 1/ZTL(ω′0).
Naturally we wish for both ZTL(ω′0) and Z0(ω′0) to be large. ω′0 must therefore be the frequency at which ZTL(ω′0)
peaks. Using G = 1/ZTL(ω′0) we find that Eq. (B62) becomes

0 = Z2
c (ω′0)Z

−2

TL(ω′0)− ZTLZ
−1

TL(ω′0) + (1 + Zc(ω
′
0)/Z0(ω′0))

2
, (B69)

which reduces to

Z
−1

TL(ω′0) =
ZTL

2Z2
c (ω′0)

1−
√

1− 4Z2
c (ω′0)

Z2
TL

(
1 +

Zc(ω′0)

Z0(ω′0)

)2
 , (B70)

where Z2
c (ω′0) < 0.

We would like to minimize |Z−1

TL(ω′0)| such as to maximize |ZTL(ω′0)|. We find a root at ω′0/ω0 =
√

1 + Z0/Lcω0.

However this is not sufficient to define the central frequency. Indeed, we notice that for Lc → 0, |Z−1

TL(ω′0)| = Z−1
TL is

flat meaning that it cannot be minimized. This leads us to also consider the second condition that Z
−1

0 (ω′0) = 0 to
satisfy Eq. (B68):

0 = Z−1
0 (ω′0) + Zc(ω

′
0)Z−2

0 (ω′0) + Zc(ω
′
0)Z
−2

TL(ω′0). (B71)

We quickly observe that for Lc = 0, thus Zc(ω
′
0) = 0, we exactly find ω′0 = ω0. For large Lc, such that Z

−1

TL(ω′0) ≈
−iZ−1

0 (ω′0), we still find ω′0 ≈ ω0.

In what follows we therefore approximate ω′0 ≈ ω0 to compute optimal parameters for gyration such as the con-
ductance G ≈ 1/ZTL(ω0). Because of this approximation we emphasize that in the end the central frequency will be
found by numerically solving Eq. (B68).

However for an arbitrary G, solving Z
−2

TL(ω)− Z−2

0 (ω)−G2 = 0 reveals that

ωc
ω0
− 1 ≈ Z

−2

TL(ω0)−G2 +G4L2
cω

2
0

2G2(2Lcω0/Z0 −G2L2
cω

2
0) + 4Z−2

TL(1−G2L2
cω

2
0)(2Lcω0/Z0 +G2L2

cω
2
0)
. (B72)

0.8 1.0 1.2 1.4 1.6
/ 0

0.5

1.0

1.5

2.0

Z 0
/Z

TL

FIG. 8. Central frequency obtained by numerically solving for the root of Eq. (B71) along with Eq. (B70) from Lcω0/ZTL = 0.05
(dark blue) to Lcω0/ZTL = 50.00 (dark green).
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Optimal conductance. | tan(2θω)| → ∞ corresponds to perfect gyration where S resembles Eq. (6). This occurs at
central frequency, where the denominator of Eq. (B67) vanishes, which we found to be

ω′0 ≈ ω0 = 1/
√
L0C0. (B73)

This is approximately where G can take on a minimal value (assuming Z
2

TL(ω0)/Z
2

0(ω0) ≈ 0)

G0 = Z−1
TL

(√
1 + 2x2 − 1

)
/x2, x =

√
2ω′0Lc/ZTL, (B74)

such G0 = ZTL(ω0)−1 and therefore | tan(2θω)| → ∞. The approximation we make in this work is ω′0 ≈ ω0

in Eq. (B74).
Frequency bandwidth. We define the frequency bandwidth ∆ = ω+−ω− for gyration with the cut-off frequencies ω±

for which reflection equals transmission, i.e. when | tan(2θω)| = 1. We consider two limiting cases: Lc = 0 and Lc � 0.

Lc = 0. For θω = ±π/8 solve the equation

1 + |ZTL/Z0(ω)|2 −G2Z2
TL ∓ 2GZTL = 0 (B75)

according to Eq. (B67). Here we observe that this equation can only be valid if ∓G < 0 at perfect impedance
matching where GZTL = 1. We therefore simplify the equation to

1 + |ZTL/Z0(ω)|2 −G2Z2
TL − 2|G|ZTL = 0 → ZTL/Z0(ω) = ±i

√
G2Z2

TL + 2|G|ZTL − 1 = ±i2ε. (B76)

We finally arrive at the explicit constraint

(ω/ω0)2 ± (2εZ0/ZTL)(ω/ω0)− 1 = 0, (B77)

where Z0 =
√
L0/C0 is the impedance of the load. We find the solutions

ω±
ω0

=
εZ0

ZTL
±
√

1 +

(
εZ0

ZTL

)2

. (B78)

We finally find the frequency bandwidth

ω+ − ω−
ω0

= 2

√
1 +

(
εZ0

ZTL

)2

. (B79)

Lc � 0. As a simplification we focus on perfect impedance matching, i.e. we choose G such that
∣∣GZTL(ω0)

∣∣ =
1, which corresponds to G = 1/Lcω0 according to Eq. (B74) in the large Lc limit. As seen in Fig. 9a)-

b) we find that Z0(ω) ≈
(
G2Zc(ω0)ZTL

)−1
and ZTL(ω) ≈ Z0(ω)ZTL/2Zc(ω0) in the large Z0(ω) limit and

for G2Z2
c (ω0) ≈ −1. We also observe that Z

2

TL(ω)/Z
2

0(ω) ≈ −1. This fact allows us to approximate

tan(2θω) ≈ 2GZTL(ω), (B80)

which shows near perfect agreement in Fig. 9c) near ω = ω0. We also emphasize that the | tan(2θω)| = 1
condition occurs in a range smaller than the frequency range plotted here. We are ultimately interested in
finding frequencies for which | tan(2θω)| = 1 closest to ω0. Eq. (B80) indicates that this occurs for∣∣2GZTL(ω)

∣∣ = 1. (B81)

Finally we find the approximate constraint

ω0

ω
− ω

ω0
= ±Z0ZTL

L2
cω

2
0

, (B82)

where we used Z0(ω) = iZ0 (ω0/ω − ω/ω0)
−1 ≈ (iZ0/2)(1− ω/ω0)−1 to leading order in ω − ω0. This leads to

the cut-off frequencies

ω±
ω0

=

√(
Z0ZTL

2L2
cω

2
0

)2

+ 1± Z0ZTL

2L2
cω

2
0

≈ 1± Z0ZTL

2L2
cω

2
0

. (B83)

Finally we find the frequency bandwidth

ω+ − ω−
ω0

≈ Z0ZTL

L2
cω

2
0

. (B84)
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a) b) c)

FIG. 9. Analytical estimates in presence of a coupling inductance.

Compression level. At central frequency we find that | tan(2θω0
)| ≈ 2(1− x)/(1− (1− x)2) where x = πZ0N/2RQ

and N = ζ1N1+ζ2N2 given that |G0ZTL(ω0)| = 1 for perfect impedance matching at N1 = N2 = 0 and G = G0(1−x),
and where ζ1(2) are determined from Eq. (B58). For identical junctions and flux biases satisfying sin(ϕex

1 ) = − sin(ϕex
2 )

we find that ζ1 = ζ2 = 1/2. When transmission drops by 1 dB such that | sin(2θω0
)| = 10−0.1 and therefore reflection

is | cos(2θω0)| =
√

1− 10−0.2, we find that |tan(2θω)| = 10−0.1/
√

1− 10−0.2. We therefore find the constraint

10−0.1

√
1− 10−0.2

=
2(1− x)

1− (1− x)2
, x = πZ0N/2RQ. (B85)

We obtain the maximum average photon number

Nmax =
RQ
πZ0

. (B86)

Numerics

Dimensionless parameters. It is useful to define the following dimensionless quantities:

• Renormalized frequency:

ω′ = ω/ω0

where ω0 = 1/
√
L0C0 is the central frequency.

• Renormalized coupling inductance:

L′c = Lcω0/ZTL

where ZTL is the characteristic impedance of the transmission lines.

• Renormalized characteristic impedance of the load:

Z ′0 = Z0/ZTL

where Z0 =
√
L0/C0 is the characteristic impedance of the load.

• Renormalized conductance: G′ = GZTL where G is the conductance of the gyrator.

The system can therefore be entirely characterized by three parameters L′C , Z ′0 and G′ to be optimized. Here ω0

and ZTL are parameters to be defined.
Frequency bandwidth We numerically solve for when Eq. (B67) is ±π/8 using the least squares algorithm in Scipy.

The distance between the two solutions closest to ω0 is used to defined the bandwidth. The solutions are shown
in Fig. 10a) for different Lc’s with corresponding residuals plotted in b). The frequency bandwidth is then shown
in c) and compared against the analytical estimate in Eq. (B84) (black lines). We observe near perfect quantitative
agreement in the large Lc limit.
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a) b) c)

FIG. 10. Numerical computation of the frequency bandwidth. a) Cut-off frequencies ω± for which | tan(2θω)| = π/8 for
different Lc’s, closest to ω0. b) Residuals of the least squares algorithm in scipy. c) Frequency bandwidth obtained from a)
and compared against Eq. (B84).

Appendix C: System Hamiltonian and Effective Lindblad Master equation

1. Canonical quantization

We consider the gyrator Lagrangian in Eq. (B1) and add transmission lines interacting with internal gyrator modes
via a coupling inductance as in Eq. (B31). We stop at the first derivative of the junctions’ transmission coefficients.

The canonical charge fields are

q̃1(x, t) =
∂L

∂(∂tΦ̃1(x, t))
= c∂tΦ1(x, t), q̃2(x, t) =

∂L
∂(∂tΦ̃1(x, t))

= c∂tΦ2(x, t), (C1)

while the canonical charges are

q1 = C0Φ̇1 −
∆

4

∂T

∂V

∣∣∣
V0

sin(ϕ2), q2 = C0Φ̇2 +
∆

4

∂T

∂V

∣∣∣
V0

sin(ϕ1). (C2)

The full system Hamiltonian is H =
∑
i

∫ 0

−∞ q̃i(x, t)∂tΦ̃i(x, t) + qiΦ̇i − L,

H =

2∑
i=1

∫ 0

−∞
dx

[
(q̃i(x, t))

2

2c
+

1

2`

(
∂xΦ̃i(x, t)

)2
]

+

2∑
i=1

(
Φ̃i(0, t)− Φi

)2

2L

+
1

2C0

(
q1 +

C0g

2e
sin(ϕ2)

)2

+
Φ2

1

2L0
+

1

2C0

(
q2 −

C0g

2e
sin(ϕ1)

)2

+
Φ2

2

2L0
.

(C3)

The quantized fields in the transmission line j have the form

Φ̂j(x, t) =

√
~

4πc

∫ ∞
0

dω√
ω

(
eikωxâ+

j,ω + e−ikωxâ−j,ω + h.c.
)
, (C4)

q̂j(x, t) = −i
√

~c
4π

∫ ∞
0

dω
√
ω
(
eikωxâ+

j,ω + e−ikωxâ−j,ω − h.c.
)

(C5)

with the dispersion relation kω = ω
√
c`. Here

[
âj,ω, â

†
j′,ω′

]
= δijδ(ω−ω′). The quantized Hamiltonian then takes the
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form Ĥ ≈ Ĥg + Ĥt + Ĥgt, where

Ĥg =

2∑
i=1

∑
j 6=i

1

2C0

(
q̂i −

(−1)iC0g

2e
sin(ϕ̂j)

)2

+
Φ̂2

0ϕ̂
2
i

8π2L0

=

2∑
i=1

∑
j 6=i

4EC

(
n̂i −

(−1)ig

8EC
sin ϕ̂j

)2

+
ELϕ̂

2
i

2
,

Ĥt =

2∑
i=1

∫ ∞
0

dω~ωâ†i,ωâi,ω,

Ĥgt = − Φ0

2πL

√
~

4πc

2∑
i=1

∫ ∞
0

dω√
ω

(
â+
i,ω + â−i,ω + h.c.

)
ϕ̂i,

(C6)

where EC = e2/2C0 and EL = (Φ0/2π)2/L0. Here we assume small zero-point fluctuations 4
√

2EC/EL � 1 and small
gyrator strength g � √8ECEL. Thus, we can expand the gyrator modes in the Fock basis:

n̂i =
1

2iη
(bi − b†i ), ϕ̂i = η(bi + b†i ),with η = 4

√
2EC(EL + (g2/16EC))−1, (C7)

and truncate sin(ϕ̂i) to 5-th order in ϕ̂i.

2. Time evolution

Following a similar process to that in [10], we can derive a master equation for the gyrator. Assuming a single-mode,
coherent-field input in the transmission lines, we find

˙̂ρ = L(t)ρ̂ = i[Ĥ ′(t), ρ̂]/~ +
∑
j

κ
[
b̂j ρ̂b̂

†
j −

{
b̂†j b̂j , ρ̂

}
/2
]
, (C8)

where we defined the reduced system Hamiltonian

Ĥ ′(t)/~ = Ĥg/~−
2∑
i=1

i
√
κ

2

(
βie
−iωstb̂†i − h.c.

)
, (C9)

where we included an incoming photon fluxes with coherent amplitude βi and frequency ωs in each of the lines, with
decay rate κ = ~/(2cL2ω0).

The Master equation is used to compute the average outgoing fields in the steady limit,

αj = lim
t→∞

Tr
{
eiωstb̂j ρ̂(t)

}
, (C10)

where b̂j is the annihilation operator of the jth gyrator mode, and reserving contributions from sin(ϕ̂i) to 5-th order.
The components of the scattering matrix are then given by Sij = αi/βj − δij .

The scattering matrix is extracted from the time-ordered integral of the evolution operator over a period of the
drive T = 2π/ωs,

V(T ) = T exp

(∫ T

0

L(t)dt

)
, (C11)

which is calculated using an exponential integrator [64]. The evolution is performed in the diagonalized basis of Ĥg

and truncated to the first 21 states, allowing for a total of 5 excitations in the composite system. The steady
state is subsequently found by renormalizing the right eigenvector of V with eigenvalue norm 1. These results were
corroborated by numerical integration of Eq. (C8) using the mesolve function of QuTiP [65].
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FIG. 11. Numerical agreement between mean-field theory (black lines) and full-circuit time-evolution for different charging
energies (i.e. different load impedances Z0) against the average photon number in the gyrator.

3. Comparison with mean-field theory

Numerical results are shown in Fig. 11.

Appendix D: Circuit nonidealities

We start from the effective linear response theory proposed in Appendix B 5:

bω ' S(ω) · aω =

(
Z(ω)

ZTL
− 1

)−1

·
(
Z(ω)

ZTL
+ 1

)
· aω, (D1)

where

Z(ω) = iωLc +
(
iωC + (iωL)−1 + iGσy

)−1
. (D2)

We now consider the general case Lc = Lc1 + dLcσz, C = C01 + dC0σz − C12σx and L = L01 + dL0σz − L12σx.
Here C12 and L12 are the stray capacitive and inductive couplings respectively between the two internal gyrator
modes. dLc, dC0 and dL0 are due to asymmetries in the circuit. We highlight that G is the average of the FENNEC
interaction strength on both sides of the gyrator and is therefore insensitive to asymmetries – we only care about
impedance matching with the characteristic impedance of the transmission lines.

We assume that dLc, dC0, dL0, C12 and L12 are much smaller than G and Taylor expand the perturbed impedance
and scattering matrix Z ′(ω) and S′(ω) to leading order in those quantities, i.e. Z ′(ω) = Z(ω) + dZ(ω) and S′(ω) =
S(ω) + dS(ω) where

dZ(ω) = iωdLcσz −
iωdC0 − dL0/(iL

2
0ω)

Z−2
0 (ω) +G2

σz +
iωC12 − L12/(iL

2
0ω)

Z−2
0 (ω) +G2

σx, (D3)

and therefore

dS(ω) = − (1− S(ω)) · dZ(ω)

2ZTL
· (1− S(ω)) . (D4)

Recall that

S(ω) = cos(2θω)1 + i sin(2θω)σy, (D5)

and therefore we find that

dS(ω) =
1− cos(2θω)

ZTL

(
iωdLcσz −

iωdC0 − dL0/(iL
2
0ω)

Z−2
0 (ω) +G2

σz +
iωC12 − L12/(iL

2
0ω)

Z−2
0 (ω) +G2

σx

)
. (D6)

At central frequency ω0 = 1/
√
L0C0, where Z−1

0 (ω0) = 0, and at perfect impedance matching θω = π/4 we observe
that

dS(ω) =
1

ZTL

(
iωdLcσz −

iω0dC0 − dL0/(iL
2
0ω0)

G2
σz +

iω0C12 − L12/(iL
2
0ω0)

G2
σx

)
. (D7)
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Frequency mismatches, due to disorder in the circuit design, yield a σz error in S(ω), which mostly affects reflection,
whereas stray couplings result in a σx error, which instead mostly impacts transmission. We get the constraints

|ω0dLc/ZTL|, |ω0dC0/ZTLG
2|, |dL0/(ZTLL

2
0ω0G

2)|, |ω0C12/ZTLG
2|, |L12/(ZTLL

2
0ω0G

2)| � 1. (D8)

These constraints come without surprise: Gyration is known to be fragile to circuit disorder and parasitic couplings.
Another error specific to our circuit is due to deviations in the areas of the loops. This can in principle yield
residual sin ϕ̂k potential terms. This is not captured by the calculation above. The leading order effect of this term
is the renormalization of the photon number in the internal gyrator modes, or in another words, more compression
and frequency mixing.

In Fig. 12 we plot the magnitude of circuit disorder resulting in a 1% error in the scattering matrix, found numerically
using the least squares algorithm in scipy. We indeed observe that larger Z0 (i.e. C0ω0 = 1/Z0 and L0ω0 = Z0) and
smaller Lc (i.e. larger G) yield larger tolerances. Similarly in Fig. 13 we observe that disorder in Lc is not limited
by Z0 it is however impacted by Lc itself– a smaller coupling inductance allows for stronger disorder.

a) b)

c) d)

FIG. 12. Magnitude of dC, dL, dC12 and dL12 resulting in a 1% error in the scattering matrix for a), b), c) and d) respectively.
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FIG. 13. Magnitude of dLc resulting in a 1% error in the scattering matrix.
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Appendix E: Generic Lagrangian

We consider a generic circuit with total Lagrangian of the circuit is L = L0 + Lcp, where

L0 = Φ̇T · C0

2
· Φ̇ + Φ̇T · Cc

2
· Φ̇ +

(
Φ̇− VJ

)T
· CJ

2
·
(
Φ̇− VJ

)
− U (ϕ) , (E1)

is the Lagrangian all the capacitive and inductive contributions commonly found in superconducting circuits and

Lint = −εJ,1(Φ̇2, ϕ1)− εJ,2(Φ̇1, ϕ2), εJ,k(Φ̇`, ϕk) = −∆k

√
1− Tk(VJ,k, Φ̇`) sin2

(
ϕk − ϕex,k

2

)
, (E2)

results from the FENNEC interaction alone. Here Φ = (Φ1, Φ2) is a vector comprising the branch flux Φ1 (Φ2) of the
first (second) mode, ϕ = 2πΦ/Φ0 are the associated branch phases, C0 and Cc are capacitance matrices due to the
shunt capacitors and the coupling capacitors respectively, CJ is the capacitance matrix associated with the coupling
to the control voltage lines VJ , U(ϕ) is the potential energy of the two modes defined by the shaded regions in the
circuit, ∆1 (∆2) is the ABS energy of the small junction of mode 1 (mode 2), T1 (T2) is the transmission probability
of the small junction of mode 1 (mode 2), Φex,1 (Φex,2) is an external flux threading the loop enclosing the small
junction and the shaded region of mode 1 (mode 2).

1. Taylor-expanded form

We will now simplify the interaction Lagrangian. First we do a Taylor expansion in Φ̇k,

Lint = −
∞∑
n=0

Φ̇n2
n!

∂nεJ,1(Φ̇2, ϕ1)

∂Φ̇n2

∣∣∣
Φ̇2=0

−
∞∑
n=0

Φ̇n1
n!

∂nεJ,2(Φ̇1, ϕ2)

∂Φ̇n1

∣∣∣
Φ̇1=0

(E3)

Second we also do a Taylor expansion in Tk,

Lint =

∞∑
n,m=0

g1,n,m
Φ̇n2
n!

sin2m

(
ϕ1 − ϕex,1

2

)
+

∞∑
n,m=0

g2,n,m
Φ̇n1
n!

sin2m

(
ϕ2 − ϕex,2

2

)
, (E4)

where we defined the couplings

g1,n,m = (−1)m
(

1/2
m

)
∆1

(
∂nTm1 (VJ,1, Φ̇2)

∂Φ̇n2

∣∣∣
Φ̇2=0

)
, g2,n,m = (−1)m

(
1/2
m

)
∆2

(
∂nTm2 (VJ,2, Φ̇1)

∂Φ̇n1

∣∣∣
Φ̇1=0

)
. (E5)

In vectorized form the Lagrangian then takes the form

L = Φ̇T · C(ϕ)

2
· Φ̇ +

[
qT0 (ϕ)

2
· Φ̇ + Φ̇T · q0(ϕ)

2

]
+

∞∑
n=3

[
11×2 ·

gn(ϕ)

2
· Φ̇
◦n

n!
+

Φ̇T◦n

n!
· gn(ϕ)

2
· 12×1

]
−U (ϕ) , (E6)

where we defined the charge offset

q0(ϕ) = −CJ · VJ + g1(ϕ) · 12×1, (E7)

the total capacitance matrix

C(ϕ) = C0 +Cc +CJ + g2(ϕ), (E8)

the diagonal matrices

gn(ϕ) =

∞∑
m=0

diag

(
g2,n,m sin2m

(
ϕ2 − ϕex,2

2

)
, g1,n,m sin2m

(
ϕ1 − ϕex,1

2

))
, (E9)

and where ◦ is the Hadamard product. We highlight the identity

sin2m(x/2) = − (−1)m

4m

(
2

m−1∑
k=0

(−1)k
(

2m
k

)
cos((m− k)x)− (−1)m

(
2m
m

))
(E10)

obtained with the help of the binomial theorem.
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2. Canonical quantization

In virtue of Hamilton’s principle, the canonical charges, q, associated with Φ are given by

q =
∂L
∂Φ̇

= q0(ϕ) +C(ϕ) · Φ̇ +

∞∑
n=2

gn+1(ϕ) · Φ̇
◦n

n!
, (E11)

where we observe that q is nonlinear in Φ̇.
Let’s consider gn+1 → λgn+1 to be a perturbation for n ≥ 2. We will now write Φ̇ using a perturbative expansion,

Φ̇ = C−1(ϕ) · (q − q0(ϕ)) +

∞∑
k=1

λkXk(q) =

∞∑
k=0

λkXk(q), X0(q) = C−1(ϕ) · (q − q0(ϕ)) , (E12)

where λ is used to define the order of the expansion. Plugging this expansion in the definition of the canonical charges
yields

0 =

∞∑
k=1

λk−1C(ϕ) ·Xk +

∞∑
n=2

gn+1(ϕ) · 1

n!

( ∞∑
k=0

λkXk

)◦n
(E13)

where we can then use the binomial theorem to obtain

1

n!

( ∞∑
k=0

λkXk

)◦n
= lim
K→∞

n∑
m0,m1,··· ,mK=0

δn,
∑K

j=0mj

(
λ0X0

)◦m0

m0!
◦
(
λ1X1

)◦m1

m1!
◦ · · · ◦

(
λKXK

)◦mK

mK !
, (E14)

where δij =

{
1, i = j

0, i 6= j
is the discrete Dirac delta function. By grouping terms of same order in λ we find that

Xk = −
∞∑
n=2

C−1(ϕ) · gn+1(ϕ) ·
(k−1)/1∑
m1=0

· · ·
(k−1)/(k−1)∑
mk−1=0

δk−1,
∑k−1

j=1 jmj

(
λ0X0

)◦(n−∑k−1
j=1 mj)(

n−∑k−1
j=1 mj

)
!
◦
(
λ1X1

)◦m1

m1!

◦ · · · ◦
(
λk−1Xk−1

)◦mk−1

mk−1!
.

(E15)

The first correction terms are explicitly

X0 = C−1(ϕ) · (q − q0(ϕ)) , (E16)

X1 = −
∞∑
n=2

C−1(ϕ) · gn+1(ϕ) · X
◦n
0

n!
, (E17)

X2 = −
∞∑
n=2

C−1(ϕ) · gn+1(ϕ) · X
◦(n−1)
0

(n− 1)!
◦X1 (E18)

X3 = −
∞∑
n=2

C−1(ϕ) · gn+1(ϕ) ·
(
X
◦(n−1)
0

(n− 1)!
◦X2 +

X
◦(n−2)
0

(n− 2)!
◦ X

◦2
1

2!

)
(E19)

· · · (E20)

We emphasize that [Φ, q] = i following the canonical quantization.

3. Full system Hamiltonian

Now that we have expressions for the canonical charges we can write the Hamiltonian. The total system Hamiltonian,
given by H = Φ̇T · q − L, is (for λ = 1)

H = Φ̇T · C(ϕ)

2
· Φ̇ +

∞∑
n=3

[
11×2 ·

(n− 1)gn(ϕ)

2
· Φ̇
◦n

n!
+

Φ̇T◦n

n!
· (n− 1)gn(ϕ)

2
· 12×1

]
+ U (ϕ) , Φ̇ =

∞∑
k=0

Xk(q).

(E21)
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We can also divide the system Hamiltonian H = Hquad +Hnln into two parts:

Hquad = (q − q0(ϕ))
T · C

−1(ϕ)

2
· (q − q0(ϕ)) + U (ϕ) (E22)

involves all the contributions up to quadratic order in the charge operators q − q0, and

Hnln =

( ∞∑
k=0

Xk(q)

)T
· C(ϕ)

2
·
( ∞∑
k=0

Xk(q)

)
−XT

0 ·
C(ϕ)

2
·X0

+

∞∑
n=3

[
11×2 ·

(n− 1)gn(ϕ)

2
· (
∑∞
k=0Xk(q))

◦n

n!
+

(
∑∞
k=0Xk(q))

T◦n

n!
· (n− 1)gn(ϕ)

2
· 12×1

] (E23)

comprises all remaining terms that are nonlinear in the charge operators, due to higher derivatives of the transmission
coefficients.

q-quadratic Hamiltonian in expanded form

Let us consider gj,1,1 to be the largest components by design and any other gj,n,m → λgj,n,m be an error term.
Moreover we consider the coupling capacitance Cc → λCc to be an error on the same order. We want to write the
q-quadratic Hamiltonian to leading order in λ. The capacitance matrix to have the form

C(ϕ) =

(
C1 +

∑∞
`=1 λΛ1,2,` cos(`(ϕ2 − ϕex,2)) −λCc

−λCc C2 +
∑∞
`=1 λΛ2,2,` cos(`(ϕ1 − ϕex,1))

)
, (E24)

where Cj are the total capacitances and where we defined the coefficients

Λ1,n,` = −
∞∑
m=1

m−1∑
k=0

2(−1)m+kg2,n,m

4m

(
2m
k

)
δm−k,`, Λ2,n,` = −

∞∑
m=1

m−1∑
k=0

2(−1)m+kg1,n,m

4m

(
2m
k

)
δm−k,`. (E25)

To leading order in λ we find that

C−1(ϕ) ≈
((

1−∑∞`=1 λΛ1,2,`C
−1
1 cos(`(ϕ2 − ϕex,2))

)
C−1

1 λCcC
−1
1 C−1

2

λCcC
−1
1 C−1

2

(
1−∑∞`=1 λΛ2,2,`C

−1
2 cos(`(ϕ1 − ϕex,1))

)
C−1

2

)
. (E26)

The charge offsets can be written as

q0(ϕ) =

(
q01 − g1 cos (ϕ2 − ϕex,2) +

∑∞
`=2 λΛ1,1,` cos(`(ϕ2 − ϕex,2))

q02 − g2 cos (ϕ1 − ϕex,1) +
∑∞
`=2 λΛ2,1,` cos(`(ϕ1 − ϕex,1)),

)
, (E27)

where q0j are some scalars and where we defined the couplings

g1 = −g2,1,1/2, g2 = −g1,1,1/2. (E28)

The q-quadratic Hamiltonian to leading order in λ then approximately takes the form

Hquad =
(q1 − q01 + g1 cos (ϕ2 − ϕex,2))

2

2C1
+

(q2 − q02 + g2 cos (ϕ1 − ϕex,1))
2

2C2
+ U (ϕ1, ϕ2) + λHλquad +O(λ2), (E29)

and the error Hamiltonian

Hλquad =− (q1 − q01)

C1

∞∑
`=2

Λ1,1,` cos(`(ϕ2 − ϕex,2))− (q2 − q02)

C2

∞∑
`=2

Λ2,1,` cos(`(ϕ1 − ϕex,1))

− (q1 − q01)
2

2C2
1

∞∑
`=1

Λ1,2,` cos(`(ϕ2 − ϕex,2))− (q2 − q02)
2

2C2
2

∞∑
`=1

Λ2,2,` cos(`(ϕ1 − ϕex,1))

+
Cc
C1C2

(q1 − q01) (q2 − q02) .

(E30)
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q-nonlinear Hamiltonian in expanded form

To leading order in gn for n ≥ 3 we can approximate

Hnln ≈ −
∞∑
n=3

[
11×2 ·

λgn(ϕ)

2
·
(
C−1(ϕ) · (q − q0(ϕ))

)◦n
n!

+

(
C−1(ϕ) · (q − q0(ϕ))

)T◦n
n!

· λgn(ϕ)

2
· 12×1

]
. (E31)

To leading order in λ we find that Hnln ≈ λHλnln +O
(
λ2
)

with

Hλnln = −
∞∑
n=3

(q1 − q01)
n

n!Cn1

∞∑
`=1

Λ1,n,` cos(`(ϕ2 − ϕex,2))−
∞∑
n=3

(q2 − q02)
n

n!Cn2

∞∑
`=1

Λ2,n,` cos(`(ϕ1 − ϕex,1))

−
∞∑
n=3

(q1 − q01)
n

n!Cn1
ξ1,n −

∞∑
n=3

(q2 − q02)
n

n!Cn2
ξ2,n,

(E32)

where we defined the coefficients

ξ1,n =

∞∑
m=0

g2,n,m

4m

(
2m
m

)
, ξ2,n =

∞∑
m=0

g1,n,m

4m

(
2m
m

)
. (E33)

Approximate form

Combining the results of the previous sections with λ = 1 we therefore find the approximate Hamiltonian

H ' (q1 − q01 + g1 cos (ϕ2 − ϕex,2))
2

2C1
+

(q2 − q02 + g2 cos (ϕ1 − ϕex,1))
2

2C2
+ U (ϕ1, ϕ2) +Herr, (E34)

where we defined the error Hamiltonian

Herr =− (q1 − q01)

C1

∞∑
`=2

Λ1,1,` cos(`(ϕ2 − ϕex,2))− (q2 − q02)

C2

∞∑
`=2

Λ2,1,` cos(`(ϕ1 − ϕex,1))

−
∞∑
n=2

(q1 − q01)
n

n!Cn1

∞∑
`=1

Λ1,n,` cos(`(ϕ2 − ϕex,2))−
∞∑
n=2

(q2 − q02)
n

n!Cn2

∞∑
`=1

Λ2,n,` cos(`(ϕ1 − ϕex,1))

−
∞∑
n=3

(q1 − q01)
n

n!Cn1
ξ1,n −

∞∑
n=3

(q2 − q02)
n

n!Cn2
ξ2,n +

Cc
C1C2

(q1 − q01) (q2 − q02) .

(E35)

Here the couplings are explicitly

g1 =
∆2

4

(
∂T2(VJ,2, Φ̇1)

∂Φ̇1

∣∣∣
Φ̇1=0

)
, (E36)

g2 =
∆1

4

(
∂T1(VJ,1, Φ̇2)

∂Φ̇2

∣∣∣
Φ̇2=0

)
, (E37)

Λ1,n,` = −
∞∑
m=1

m−1∑
k=0

2(−1)k

4m−1

(
1/2
m

)(
2m
k

)
δm−k,`

∆2

4

(
∂nTm2 (VJ,2, Φ̇1)

∂Φ̇n1

∣∣∣
Φ̇1=0

)
, (E38)

Λ2,n,` = −
∞∑
m=1

m−1∑
k=0

2(−1)k

4m−1

(
1/2
m

)(
2m
k

)
δm−k,`

∆1

4

(
∂nTm1 (VJ,1, Φ̇2)

∂Φ̇n2

∣∣∣
Φ̇2=0

)
, (E39)

ξ1,n =

∞∑
m=0

(−1)m

4m−1
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Tolerance values of the higher derivatives in the error terms are ultimately determined by the mode impedances,
i.e. ∣∣∣∣∣

∞∑
m=1
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(
1/2
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)(
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, (E43)

where Zj is the impedance of mode j and RQ ' 6.5 kΩ is the resistance quantum. The constraints are obtained by

considering the smallest non-zero matrix elements of the charge quadrature qj to be given by i2e
√
RQ/(4πZj).

Appendix F: Classical scattering matrix for a 3-port circulator

Following standard circuit theory [59], we can compute the classical (linear) scattering matrix response for a gyrator-
based 3-port circulator with symmetric LC-resonator loads at their ports, see Fig. Fig. 4b). Such matrix relates the
amplitudes of single-tone input (an(ω) = (Vn + ZTLIn)/

√
ZTL) and output (bn(ω) = (Vn − ZTLIn)/

√
ZTL) signals,

where In (Vn) is the current (voltage) of port n, such that b = S(ω)a. Solving Kirchhoff’s equations in the frequency
domain, we obtain

S =
1

r

 R2(ZTL − Z̃0)2 − Z2
TLZ̃

2
0 2RZ̃0(Z̃0(R+ ZTL)−RZTL) 2RZ̃0(R(ZTL + Z̃0)− ZTLZ̃0)

2RZ̃0(R(Z̃0 − ZTL)− ZTLZ̃0) R2(ZTL − Z̃0)2 − Z2
TLZ̃

2
0 −2RZ̃0(R(ZTL + Z̃0) + ZTLZ̃0)

2RZ̃0(R(ZTL + Z̃0) + ZTLZ̃0) −2RZ̃0(R(ZTL + Z̃0)− ZTLZ̃0) R2(ZTL + Z̃0)2 − Z2
TLZ̃

2
0

 . (F1)

Here, we have defined the parameters

r =(Z2
TLZ̃

2
0 −R2(ZTL − 3Z̃0)(ZTL + Z̃0)), Z̃0(ω) = Z0

−iωωr
ω2 − ω2

r

, (F2)

and Z0 =
√
L0/C0 and ω0 = 1/

√
L0C0. Impedance-matching the whole system to the reference transmission-lines

(R = Z0 = ZTL), and working on resonance condition (ω = ωr), the linear response becomes that ideal circulator

S →

0 1 0
0 0 −1
1 0 0

 . (F3)
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