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Realizing repeated quantum error 
correction in a distance-three surface code

Sebastian Krinner1,9 ✉, Nathan Lacroix1,9, Ants Remm1, Agustin Di Paolo2,3, Elie Genois2,3, 
Catherine Leroux2,3, Christoph Hellings1, Stefania Lazar1, Francois Swiadek1, 
Johannes Herrmann1, Graham J. Norris1, Christian Kraglund Andersen1,8, Markus Müller4,5, 
Alexandre Blais2,3,6, Christopher Eichler1 & Andreas Wallraff1,7

Quantum computers hold the promise of solving computational problems that are 
intractable using conventional methods1. For fault-tolerant operation, quantum 
computers must correct errors occurring owing to unavoidable decoherence and 
limited control accuracy2. Here we demonstrate quantum error correction using the 
surface code, which is known for its exceptionally high tolerance to errors3–6. Using 17 
physical qubits in a superconducting circuit, we encode quantum information in a 
distance-three logical qubit, building on recent distance-two error-detection 
experiments7–9. In an error-correction cycle taking only 1.1 μs, we demonstrate the 
preservation of four cardinal states of the logical qubit. Repeatedly executing the 
cycle, we measure and decode both bit-flip and phase-flip error syndromes using a 
minimum-weight perfect-matching algorithm in an error-model-free approach and 
apply corrections in post-processing. We find a low logical error probability of 3% per 
cycle when rejecting experimental runs in which leakage is detected. The measured 
characteristics of our device agree well with a numerical model. Our demonstration of 
repeated, fast and high-performance quantum error-correction cycles, together with 
recent advances in ion traps10, support our understanding that fault-tolerant 
quantum computation will be practically realizable.

The surface code4,11 is a planar realization of Kitaev’s toric code3, which 
uses topological features of a qubit lattice to correct errors in quantum 
information-processing systems. This code is a prominent contender 
to reach fault-tolerant quantum computation because of its high error 
threshold of about 1% against quantum circuit noise5,12 and its compat-
ibility with 2D architectures. The surface code belongs to the family of 
stabilizer codes13,14, which encode quantum information into a joint 
subspace of definite parities on a set of physical data qubits to form a 
logical qubit. Errors are detected using measurements of auxiliary qubits 
to extract parity information without collapsing the logical qubit state. 
The fault-tolerant operation of a quantum computer requires repeated 
detection and correction of both bit-flip and phase-flip errors on data 
qubits. With an increasing number of physical qubits and thus an increas-
ing code distance d, the number of errors d( − 1)/2⌊ ⌋ that can at least be 
detected and corrected per error-correction cycle increases, making 
the code more resilient when error rates are sufficiently low.

Error correction limited to a single type of error has been real-
ized with repetition codes in nuclear magnetic resonance15, trapped 
ions16, nitrogen-vacancy centres17 and superconducting circuits9,18. In 
single-cycle experiments, fault-tolerant stabilizer measurements and 
correction of both types of error have been demonstrated with the 
five-qubit code and the Bacon–Shor code19–22. Recently, error detection 
in a distance-two surface code has been realized with seven qubits7–9, 

and only very recently, repeated stabilizer-based error correction has 
been demonstrated with a distance-three colour code in a trapped-ion 
system10.

Correction of both bit-flip and phase-flip errors requires at least a 
distance-three code. In combination with fault-tolerant circuits for 
error-syndrome measurements, this guarantees that any single error 
on any of the constituent data and auxiliary qubits or operations can 
be corrected14,23. While the work we discuss here focuses on digital 
encoding of quantum information, continuous-variable encoding, 
for example, in harmonic oscillator states, constitutes an alternative 
approach to quantum error correction; see, for example, refs. 24–27.

Realization in superconducting circuits
Experimentally realizing a distance-three surface code requires nine 
data qubits and eight auxiliary qubits23,28,29, also referred to in the lit-
erature as ancilla or measurement qubits. The qubits are arranged in 
a diagonal, planar square lattice, the edges of which are shown in grey 
in the schematic of Fig. 1a. The data qubits Dj, j = 1…9 (red dots) form a 
3 × 3 array and are interlaced with auxiliary qubits Ai, labelled Xi (blue) 
and Zi, i = 1…4 (green). We realized this arrangement in a superconduct-
ing circuit using 17 transmon qubits30 (yellow) capacitively coupled to 
each other along the edges of the square array with roughly 1-mm-long 
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coplanar waveguide segments (cyan); see Fig. 1b. We discuss the fab-
rication of this device in the Supplementary Information (section I).

Using the auxiliary qubits Xi and Zi, we measure the parity of the 
neighbouring two or four data qubits Dj, which are located at the ver-
tices of the blue and green plaquettes (Fig. 1a, b), in the X or Z basis, 
see Methods. These parity measurements are also referred to as sta-
bilizer measurements13,14. The corresponding mutually commuting 
weight-two (or weight-four) stabilizer operators S Xˆ = ∏ ˆi

j j
X

=1
2(4)  and 

S Zˆ = ∏ ˆi
j j

Z
=1

2(4)  of the surface code are products of two (or four) Pauli-X̂  
or Pauli-Ẑ  operators of the data qubits j located at the vertices of a 
given data-qubit plaquette. Measurements of the stabilizer operator 
Ŝ

Ai
 with outcomes s = ± 1Ai  indicate even or odd parity of the corre-

sponding data-qubit state. A change of data-qubit parity signals an 
error. In our experiments, in which we do not reset auxiliary qubits, 
odd parity is indicated by a change of auxiliary-qubit state from cycle 
to cycle, whereas even parity is indicated by the absence of such 
changes.

In our experiments, the stabilizer gate sequence is realized as two 
or four controlled-phase (CZ) gates31–33 (see Methods), between data 

and auxiliary qubits, operated in a low and high frequency band (see 
Fig. 1c), respectively, combined with initial and final π/2 rotations on 
the auxiliary qubits (Fig. 2a, b). The gate sequence for measuring Ŝ

iX
 

contains further initial and final π/2 rotations acting on the data qubits, 
implementing a basis change from the Z to the X basis (blue dashed 
squares in Fig. 2a, b). We apply echo pulses to the data qubits in the 
middle of the gate sequence to reduce dephasing of the data qubits 
and residual coherent coupling to spectator qubits34.

The 24 pairwise CZ gates have a mean duration of 98(7) ns, including 
two conservatively chosen 15-ns-long buffers at the beginning and the 
end, and show a mean gate error of 0.015(10). The gate error histogram, 
shown as an integrated (cumulative) distribution, shows variations of 
about a factor of four in two-qubit gate error (Fig. 1d and Methods). 
Single-qubit gates showing a mean error of 0.0009(4) are realized by 
applying short resonant microwave pulses to each qubit individually 
through a dedicated drive line (pink coplanar waveguide in Fig. 1b). We 
determined both single-qubit and two-qubit gate fidelities in randomized 
benchmarking experiments. We discuss the experimental setup used 
to realize these gates in the Supplementary Information (section IV).
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Fig. 1 | Device concept, architecture and performance. a, Conceptual 
representation of the distance-three surface code consisting of data qubits 
(red circles), Z-type auxiliary qubits (green circles) and X-type auxiliary qubits 
(blue circles), with their connectivity indicated by grey lines. The data qubits 
participating in the weight-three logical operators ẐL and X̂L are indicated by 
solid black lines. Green (blue) plaquettes indicate X-type (Z-type) stabilizer 
circuits. b, False-colour micrograph of the device realizing the concept in a 
with 17 transmon qubits; see key for circuit elements and text for details. The 

qubit lattice is rotated by 45° with respect to a. The scale bar denotes 1 mm.  
c, Frequency arrangement in three distinct bands for idling data qubits  
(red circles), idling Z-type/X-type auxiliary qubits (green/blue circles) and 
readout resonators (violet open circles). The qubit–frequency tuning ranges 
are indicated by vertical bars. d, Cumulative distributions (integrated 
histograms) of single-qubit gate (pink), simultaneous two-qubit gate (cyan), 
and two-state (red) and three-state readout errors (light red).
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A key element of individual stabilizer measurements are fast and 
high-fidelity measurements of auxiliary-qubit states while leaving 
data-qubit states unaffected35–37; see Methods. Accurate stabilizer meas-
urements using mid-cycle qubit readout on timescales comparable 
with or shorter than the cumulated gate times per error-correction 
cycle also contribute to maximizing the performance of error  
detection and correction in our surface-code implementation as a 
whole.

With our readout scheme, we discriminate the two computational 
qubit states and a leakage state, which—if undetected or uncorrected 
for—is detrimental to any surface-code implementation37–42. We achieve 
a mean readout assignment error of 0.009(7) when discriminating 
the computational states only (two-state readout) and of 0.022(14) 
when discriminating the computational states and the leakage state 
(three-state readout); see Supplementary Information (section VI). The 
corresponding cumulative distribution for two-state readout exhibits 
performance variations on the device of about a factor of two when 
disregarding two outliers, whereas the distribution for three-state 
readout shows variations larger by about a factor of two (Fig. 1d).

With all elements in place for realizing a surface code, we first char-
acterize the measurements of individual Ŝ

Ai
 stabilizers. To do so, we 

prepare the data qubits Dj of a given weight-two or weight-four pla-
quette sequentially in each one of its 22 = 4 or 24 = 16 basis states com-
posed of |0⟩ and |1⟩ for Ŝ

iZ
 and |+⟩ and |−⟩ for Ŝ .

iX
 At the beginning of 

each experiment, all qubits are initialized by heralding the ground state 
|0⟩ from single-shot readout.

For each input state, we compute the mean values s Ai from about 
4 × 104 measurements of sAi (coloured bars in Fig. 2c) and find good 
qualitative agreement with master equation simulations (red outlines); 
see Supplementary Information (sections VII and VIII) for details. Here 
+1/−1 indicate even/odd parity of the measured state. The coloured 
percentage values show the corresponding experimental and simulated 
errors of the stabilizer measurements. On average, the experimental 
parity assignment error is 3.9(1.3)% for weight-two stabilizers and 
8.2(2.2)% for weight-four stabilizers. We attribute the differences 
between measurements and simulation mostly to two-qubit gate errors 
owing to microscopic defect modes changing their frequency on time-
scales of hours or days (Supplementary Information, section III).

Having verified that all stabilizer measurements perform at high 
quality levels individually, we combine the stabilizer measurements 
into a surface-code cycle. Executing this cycle once, we prepare one 
of the four cardinal logical qubit states. Executing the cycle several 
times, we stabilize the logical states and investigate the performance 
of our realization of the code.

The surface-code cycle
At the beginning of each experimental sequence, we prepare the nine 
data qubits in either one of the product states 0⟩⊗9 and X̂ 0⟩L

⊗9 ( + ⟩⊗9 
and Ẑ + ⟩L

⊗9) to begin the process of initializing the cardinal logical 
qubit states |0⟩L and |1⟩L (|+⟩L and |−⟩L). The cardinal states are eigenstates 
of the eight stabilizer operators Ŝ

Ai
 and ±1 eigenstates of the logical 

Pauli operators, which we choose as Z Z Z Zˆ = ˆ ˆ ˆL 1 2 3 and X X X Xˆ = ˆ ˆ ˆL 1 4 7; see solid 
black lines in Fig. 1a. As required, ẐL and X̂L commute with all stabilizers 
and anti-commute with each other. Because each of the prepared prod-
uct states is an equal superposition of 16 equivalent instances of the 
target logical state, executing a single quantum error-correction cycle 
deterministically initializes the target logical state in the stabilizer 
eigenspace corresponding to the measurement outcome of the stabi-
lizers (Supplementary Information, section IX).

In a single surface-code cycle, we first execute all gate operations 
implementing the four Ŝ

iZ
 stabilizer measurements. We realize the 

necessary two-qubit gates in four time steps, in each of which we exe-
cute three CZ gates simultaneously; see Methods. Parallelizing stabi-
lizer execution is a key technical requisite for scalable quantum error 
correction, in particular for operation of larger-distance codes.

The gate execution is followed by readout of the Z-type auxiliary 
qubits to complete the Z-type stabilizer measurements; see Fig. 3a. 
Simultaneous with the Z-type auxiliary-qubit readout, we start execut-
ing the X-type stabilizer circuits, which are equivalent up to a basis 
change of the data qubits. This allows us to execute the Ŝ

iZ
 and Ŝ

iX
 

stabilizer measurements in a parallel, pipelined approach43, which 
imposes fewer constraints on the choice of two-qubit gate interaction 
frequencies compared with parallel scheduling29,44. See Fig. 3a for a 
full circuit diagram and Supplementary Information (section X) for a 
full pulse sequence. In the pipelined approach with fast readout, we 
achieve a short quantum error-correction cycle time of tc = 1.1 μs. A 
short tc relative to the physical qubit coherence times is essential to 
be able to identify errors unambiguously. Moreover, a short absolute 
value of tc reduces the execution time of error-corrected quantum 
algorithms45,46.

To maximize the performance of the distance-three surface code, we 
have designed our device with parameters minimizing leakage on data 
qubits. In addition, we reject all experimental runs with residual leakage 
events, which we detect on auxiliary qubits during the execution of each 
cycle and on data qubits after the last cycle, using our three-state read-
out; see Methods. We discuss the fraction of experimental runs retained 
after leakage rejection in the Supplementary Information (section XI).

To characterize the fidelity of the nine-data-qubit logical state that 
we initialized deterministically using our measurement-based 
approach, we measure the expectation values of the 29 Pauli operator 
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(blue and green) and simulated (red) error of s Ai. Grey background indicates 
odd parity and white indicates even parity.
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strings that form the basis of the target state20,47. For |0⟩L, we find a 
quantum state fidelity of Fphys = Tr(ρ|0⟩L⟨0|L) = 54.0(1)% (dark red bar 
in Fig. 3b). Considering only errors in the logical subspace7, we find a 
logical fidelity of FL = 99.6(2)%; see Methods and Supplementary Infor-
mation (section IX). We also determine the fidelity of the experimentally 
prepared state with respect to correctable subspaces including states 
that are equivalent to the target state up to Pauli errors of weight i = 1…4 
and find (Fw1, Fw2, Fw3, Fw4) = [34.3(0), 7.3(5), 0.3(8), 0.1(4)]%. Hence the 
prepared initial state has a fidelity of F F F= + ∑ = 96.0(9)%i ic phys =1

4
w  with 

respect to states that are, in principle, correctable; see Supplementary 
Information (section IX).

Repeated quantum error correction
Once the first quantum error-correction cycle completes the 
logical-state initialization, we make use of all subsequent cycles for 
logical-state preservation. In our experiments, we preserve the cardi-
nal logical qubit states for up to n = 16 cycles. In each cycle m = 1…n, 
we extract eight stabilizer values s .m

Ai  Changes in stabilizer values signal 

the occurrence of errors and are used to construct error syndromes 
σm consisting of eight syndrome elements σ s s= (1 − × )/2.m

Ai
m
Ai

m
Ai

−1  The 
elements σ m

Ai are inferred in each cycle from the current (m) and the 
previous (m − 1) measured stabilizer values, with σ = 1(0)m

Ai  indicating 
an error (no error)18.

We collectively process successive syndromes σm to determine which 
data and auxiliary qubits have most probably suffered an error4,14,44 
using the approach described in Methods. Executing n consecutive 
error-correction cycles and rejecting runs in which leakage has been 
detected, we record stabilizer measurement outcomes and construct 
syndromes from their values, the averages of which are shown in Fig. 3c, 
d. When averaging the syndromes over all individual elements and 
time, we find that the average syndrome element ≪σ = 0.14 1 is small 
(see arrows in Fig. 3c, d), indicating that errors are rare and therefore 
allowing for efficient error detection and correction9. In Methods, we 
discuss the syndrome measurement outcomes in more detail.

To determine the performance of our distance-three surface code, 
we extract the logical error per cycle when preserving eigenstates of 
the logical qubit operators ẐL and X̂L versus the number of executed 
cycles n. For each sequence of cycles, we decode the error syndromes, 
including a syndrome determined from the final data-qubit readout. 
We use a minimum-weight perfect-matching algorithm, the weights 
of which we determine in an error-model-free approach (Methods). 
After the nth cycle, we perform a projective readout of the final 
data-qubit state in the Z or X basis, from which we determine the eigen-
value zL = ±1 of ẐL or xL = ±1 of X̂L.

Decoding the error syndromes and applying corrections to zL or xL 
when indicated (Methods), we compute the mean logical qubit expec-
tation values z Z= ⟨ ˆ ⟩L L  and x X= ⟨ ˆ ⟩L L  as a function of n from a total of 106 
experimental runs, in which the available data are reduced by 
ground-state heralding before and leakage rejection during each run. 
We observe an exponential decay of Z⟨ ˆ ⟩L  and X⟨ ˆ ⟩L  with n (solid symbols 
in Fig. 4a, b). From the logical qubit operator expectation values, we 
extract the logical error probability EL = (1 −  Z⟨ ^ ⟩L |)/2 (solid symbols in 
Fig. 4c) as a function of n and find a small logical error per cycle of  
εL = [1 − exp(−tc/T1,L)]/2 ≈ tc/2T1,L = 0.032(1), also indicated on the 
right-hand side of the corresponding dataset in Fig. 4c. Equivalently, 
we obtain εL = [1 − exp(−tc/T2,L)]/2 ≈ tc/2T2,L = 0.029(1) for X⟨ ^ ⟩L . We note 
that both the coherence time of T2,L = 18.2(5) μs and the lifetime 
T1,L = 16.4(8) μs of the logical qubit, as extracted from the decay curves 
of X⟨ ^ ⟩L  and Z⟨ ^ ⟩L  are much longer than the duration of the quantum 
error-correction cycle tc = 1.1 μs in our implementation of the surface 
code. For completeness, in the Supplementary Information (section 
XI), we also state and discuss the logical error per cycle when leakage 
is not rejected.

We note that, in our implementation of the surface code, the logical 
coherence time is only about a factor of two lower than the mean 
physical coherence time T = 37.5 μs2

⁎  of all 17 qubits, whereas the 
logical relaxation time is about a factor of four lower than twice the 
mean physical energy relaxation time T2 = 65.0 μs,1  as indicated in 
Fig. 4a, b. We discuss this result further in Methods and put it into con-
text in the next section.

Performance assessment and projection
We compare the state-preservation experiments with numerical sim-
ulations using a Monte Carlo wavefunction method (open symbols in 
Fig. 4a–c). The model underlying the simulations (Supplementary 
Information, section VII) uses the measured coherence times, interac-
tion rates and readout errors of the device as inputs. We find that, 
despite the complexity of the quantum error-correction cycle, the 
measured expectation values X⟨ ˆ ⟩L  and Z⟨ ˆ ⟩,L  when rejecting leakage, 
come close to the simulated values (open symbols in Fig. 4a, b). The 
logical lifetimes extracted from exponential fits (dashed lines in Fig. 4a, 
b) to the simulated expectation values are approximately 26 μs. They 
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provide an upper bound for the performance achievable with the 
specified device parameters, as further error sources such as gate con-
trol errors, population loss into microscopic defect modes and 
measurement-induced dephasing are not included in the simulation 
model.

Because the numerical simulations model the performance of our 
quantum device well, we use the model to project how future improve-
ments in gate and readout fidelities are expected to reduce the logical 
error per cycle εL. To free the projection from device-specific spread 
in qubit parameters, we use the average over all 17 qubits as uniform 
parameters (see Supplementary Information Table 1) and find good 
agreement with the results obtained from the qubit-specific model. 

We then uniformly reduce all physical error parameters of the numer-
ical model by a factor x, repeat the simulations of X̂L  and ẐL  versus 
n and extract the mean logical error per cycle εL as a function of the 
improvement factor x. We find that the simulated error per cycle scales 
to a good approximation as 1/x2 (see inset in Fig. 4c), as expected for a 
distance-three code44. For reference, we plot the scaled two-qubit 
physical error per cycle ε2Q in the same plot (dashed-dotted line).

A metric commonly used to assess the performance of quantum error 
correction compares the logical error per cycle εL to the dominant error 
on the physical level, typically the two-qubit gate error ε2Q (refs. 10,48). 
Such a comparison is particularly relevant in architectures in which the 
logical two-qubit gate error is dominated by errors εL in the quantum 
error-correction cycles belonging to or following the logical two-qubit 
gate operation. The number of required cycles scales in general with 
d in planar architectures and in architectures allowing for transver-
sal execution of logical two-qubit gates5,6,23,49,50. The good agreement 
between measured (about 3%) and simulated (about 2%) logical errors 
εL together with their simulated quadratic scaling suggests that the 
break-even of per-cycle logical errors with two-qubit gate errors may 
be in reach for modest improvements of device performance, when 
using leakage detection or correction.

While a comparison with the break-even point evaluates perfor-
mance for a fixed code distance d, a comparison related to the error 
threshold is necessary to judge how far one is from reaching the desired 
sub-threshold regime, in which εL decreases exponentially with d. In 
fact, simulations on the basis of a simplified one-parameter circuit 
noise model44,51 predict a few percent logical error per cycle at thresh-
old, a rate that is close to the logical error per cycle observed in our 
experiment.

In our experiments, we demonstrate the viability of realizing quan-
tum error correction in the surface code by detecting errors during 
the error-correction cycle and decoding the error syndromes and cor-
recting for errors in post-processing, which is sufficient in a quantum 
memory setting. Next-generation experiments will provide the capa-
bility of correcting errors during the cycle using real-time decoding10 
and fast in-sequence feedback36, implemented with dedicated digital 
electronics. Feedback will also enable the mid-cycle suppression of 
leakage52, for example, by auxiliary qubit reset. Realizing larger surface 
code lattices while improving the performance of their components and 
demonstrating exponential suppression of logical errors with increas-
ing code distance are upcoming important steps towards achieving the 
long-term goal of fault-tolerant quantum computation.
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Methods

Parity measurement
In a Z-basis measurement, if an odd number of the data qubits involved 
in the parity operator under consideration is in the |1⟩ state, the auxil-
iary qubit state is flipped. On the other hand, if an even number of data 
qubits is in |1⟩, the auxiliary qubit state remains unchanged. The equiv-
alent is true in the X basis for an even or an odd number of data qubits 
in the |−⟩ state. Here |0⟩ and |1⟩ are the transmon qubit ground and first 
excited states, respectively, and ± ⟩ = ( 0⟩ ± 1 )/ 2 are their superposi-
tions. To map the parity of the data qubits Dj onto the corresponding 
auxiliary qubit, we effectively use a sequence of controlled-NOT gates 
with the data qubits as control and the auxiliary qubit as target, and 
subsequently measure the state of the auxiliary qubit in the Z basis 
using single-shot readout. In the Z basis, a single bit-flip error of any 
individual data qubit leads to a change of parity, as does a single 
phase-flip in the X basis. Hence measurements of changes of data-qubit 
parities allow us to detect and identify phase-flip or bit-flip errors, as 
long as they occur sufficiently rarely44.

CZ gates
We realize the necessary two-qubit CZ gates by tuning adjacent pairs 
of data (Dj) and auxiliary qubits (Xi, Zi) into resonance31–33 using 
individual flux lines implemented with coplanar waveguides (green 
in Fig. 1b) shorted near the superconducting quantum interference 
device (SQUID) loop of each qubit. We fabricated all qubits with asym-
metric SQUIDs53,54 to allow for data qubits to idle at their minimum and 
auxiliary qubits at their maximum frequencies, at which the qubits 
are first-order insensitive to flux noise. Data qubits are designed with 
idle frequencies 3.7–4.1 GHz in a low-frequency band and auxiliary 
qubits with idle frequencies 5.9–6.3 GHz in a high-frequency band (red 
and blue/green dots in Fig. 1c); also see Supplementary Information  
(section II).

We implement CZ gates by tuning both data and auxiliary qubits to 
an intermediate interaction frequency ωint and ωint − α, respectively, 
with ωint/2π ranging from 4.4 to 5.6 GHz (Supplementary Information, 
section III). The qubit anharmonicity α ≈ −0.17 GHz is designed to be 
small to minimize residual qubit–qubit interactions34. We make use 
of net-zero flux pulses33, which reduce both the detrimental effect 
of low-frequency flux noise on qubit coherence and the impact of 
non-idealities in the transfer function of the flux lines on gate fideli-
ties. Given the large designed detuning of about 2 GHz between the data 
and auxiliary qubits at their idle frequencies, we calculate residual ZZ 
interaction strengths between qubits lower than αzz/2π ≈ 8 kHz (ref. 34). 
It is only during two-qubit gate execution that αzz increases by a factor 
of approximately 2 to 25, depending on the interaction frequency ωint, 
which we partially mitigate using echo pulses. The coupling strength 
between auxiliary qubits and data qubits at the interaction point is 
about J/2π ≈ 7 MHz.

Two-qubit gate error
We determine the two-qubit gate error from interleaved randomized 
benchmarking experiments with sets of three gates executed in paral-
lel, as used in our realization of the surface-code cycle. Time-varying 
microscopic defects in our device have a detrimental influence on 
two-qubit gate performance and are responsible for outliers in the 
gate-error distribution (Supplementary Information, section III).

Qubit readout
Each qubit is coupled to a resonant pair of readout resonator and Pur-
cell filter (red and blue λ/4 coplanar waveguide resonators in Fig. 1b). 
Moreover, each readout resonator is coupled strongly to the qubit 
(g/2π ≈ 169 MHz for auxiliary qubits and g/2π ≈ 252 MHz for data qubits) 
and has a large effective bandwidth (κeff/2π ≈ 10 MHz) to enable fast, 
high-fidelity readout55. The individual Purcell filters both maintain 

high qubit coherence, despite the large coupling and bandwidth of 
the readout resonators, and reduce undesired readout crosstalk (Sup-
plementary Information, section V) between qubits that are in close 
proximity or have similar frequencies56. This is particularly important 
for the simultaneous frequency-multiplexed readout of groups of 
four or five qubits using joint feed lines (purple coplanar waveguides 
in Fig. 1b). The readout resonator frequencies are separated by about 
200 MHz within each feed line and occupy a frequency band extending 
from 6.8 to 7.6 GHz (purple points in Fig. 1c).

We read out the states of all qubits dispersively by applying 
frequency-multiplexed, Gaussian-filtered microwave pulses of duration 
200–300 ns to all four feed lines. We integrate the transmitted signals 
in a heterodyne detection scheme for a duration of 400 ns (Supplemen-
tary Information, section VI). Auxiliary qubits are read out near their 
idle frequencies, whereas data qubits are read out at a flux-tuned qubit 
frequency of approximately 5 GHz, reducing the data-qubit-readout 
resonator detuning57 and thus enhancing the dispersive coupling and 
the readout fidelity55,58.

Gate sequence
The two-qubit gates are accompanied by a set of single-qubit gates 
applied to all auxiliary qubits in a leading and a trailing time step, and 
a dynamical decoupling pulse applied to all data qubits at a central 
time step (Fig. 3a). We choose the order of gate operations to provide 
resilience against single auxiliary qubit errors and to avoid interac-
tions with microscopic defect modes (Supplementary Information,  
section III).

Leakage detection
We make use of a leakage-detection scheme on the basis of three-state 
readout, which allows us—in post-processing—to reject those sequences 
in which any of the qubits were measured in a leakage state; see Sup-
plementary Information (section VI). In our CZ gate scheme, we make 
use of the second excited state |2⟩ of the auxiliary qubits rather than that 
of the data qubits to mediate the interaction, which minimizes data 
qubit leakage. Performing three-state readout of the data qubits after 
the final error-correction cycle, we reject experimental runs for which 
data qubit leakage was detected. The rejected fraction per qubit and per 
cycle amounts to 0.0017(2). In addition, there is a cycle-independent 
rejection probability of about 0.01 per qubit, owing to false positives 
caused by readout error. In addition, we detect if any of the eight aux-
iliary qubits has leaked to the |2⟩ state in any of the n cycles, using the 
same three-state readout, and find an average rejection probability 
of 0.0094(4) per qubit per cycle. In total, this leads to a rejected data 
fraction per cycle of 8%.

Logical-state characterization
For the data shown in Fig. 3b, we use our leakage-detection scheme 
and correct for readout errors on data qubits. The logical fidelity is 
calculated as FL = Fphys/PL = 99.6(2)%, in which PL = 54.2(1)% is the exper-
imentally measured probability of preparing a state in the logical sub-
space (Supplementary Information, section IX). Both Fphys and PL are 
smaller than in a distance-two surface code (see ref. 7 for an example) 
because the two quantities are expected to decrease with increasing 
distance d at a constant physical error rate. To further evaluate the 
performance of our logical-state initialization, we analyse the fidelity 
of the prepared state with respect to subspaces of states that our 
surface-code implementation can, in principle, correct. The errors 
that are correctable by the distance-three surface code include all 
single-qubit Pauli (weight-one) errors X̂ ,j  Ŷ j or Ẑj on any data qubit j and 
a subset of higher-weight errors; see Supplementary Information  
(section IX) for details. We observe that weight-one errors account for 
most of the errors on data qubits in the |0⟩L state initialization, with 
higher-weight errors having a largely reduced probability of occurrence 
(see Fig. 3b).
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Syndrome graph
For syndrome analysis, we construct a graph in which the syndrome 
elements are shown at the auxiliary qubit locations along two spatial 
coordinates for each cycle index m, which forms the temporal coordi-
nate. Spatial and temporal correlations between non-zero syndrome 
elements correspond to data and auxiliary qubit errors, respectively. 
If the overall error rate is sufficiently low, we obtain a low density of 
non-zero syndrome elements, or — equivalently — mean syndrome 
element values σ 1m

Ai ≪ , with the mean taken over experimental realiza-
tions. In that case, the underlying errors can be decoded with low ambi-
guity (Supplementary Information, section XII).

Syndrome analysis
All syndrome elements σ m

Ai  averaged over repetitions of the experiments 
are approximately constant as a function of m for m ≥ 2; see Fig. 3c, d 
obtained for preserving |0⟩L, |1⟩L and |+⟩L, |−⟩L, respectively. We attribute 
the small remaining increase of σ m

Ai with  m to the fact that, in the absence 
of auxiliary qubit reset, auxiliary qubits initially prepared in the ground 
state tend to an asymptotic probability of 0.5 to be in the excited state 
after m cycles. As a result, with increasing m, auxiliary qubits suffer  
from larger decoherence during readout and during the subsequent 
idling periods of about 150 ns before the start of the next quantum- 
error-correction cycle. Our numerical simulations show the same feature 
(open symbols in Fig. 3c, d). For m = 1, the averaged syndrome elements 
σ Ai

1  are reduced because the corresponding reference stabilizer values 
are computed from the initial data qubit product state, which we prepare 
with high fidelity. In the first cycle, the four values of σ i

1
Z  are smaller than 

σ i
1
X  because a quantum-error-correction cycle starts with measurements 

of Ŝ
iZ
 and errors thus accumulate only during half a cycle.

Error decoding
We decode the error syndromes using a minimum-weight perfect- 
matching algorithm59,60. We determine the weights in an error- 
model-free approach by inferring the errors per cycle from the meas-
ured data using a correlation analysis of the syndromes as described 
in the Supplementary Information (section XII) and refs. 9,61. The cor-
rection of an error, initiated by analysing all cycles in post-processing, 
takes the form of changing the sign of the logical qubit operator values 
zL and xL when indicated by the decoder. We note that, for correcting 
ẐL, it is sufficient to decode only syndromes σ{ }m

iZ , or — equivalently — 
only σ{ }m

iX  for X̂L.

Logical coherence times
The reference for the logical energy relaxation time T1,L is twice the mean 
physical qubit energy relaxation time T1, assuming an infinite lifetime 
of the physical qubit ground state for the comparison.

We also note that, within error bars, the lifetimes of the states |0⟩L 
and |1⟩L, and the coherence times of the states |+⟩L and |−⟩L are, respec-
tively, identical. This is expected, as all cardinal states of the logical 
qubit have the same number of qubits in the excited state and as our 
dynamical decoupling scheme alternates between the states  |0⟩L and  
|1⟩L, and between the states  |+⟩L and  |−⟩L, respectively, which are there-
fore affected similarly by decoherence.

To compare the performance of the error-correction experi-
ments presented here to the recent error-detection experiments in 
distance-two surface codes realized with seven qubits7–9, we post-select 
data from those runs of our distance-three experiment in which all 
syndrome elements are zero. When doing so, we estimate logical life-
times in excess of 1 ms (Supplementary Information, section XIII). In 

the seven-qubit device, logical lifetimes and coherence times in the 
range 60–70 μs were observed, with comparable data-retention rates 
of about 50% per cycle when post-selecting on no detected errors by 
evaluating three stabilizers7. The current 17-qubit device achieves simi-
lar data-retention rates when evaluating eight stabilizers per cycle. 
This observation demonstrates that our 17-qubit device, including 
the tune-up and calibration procedures used, performs notably better 
than our previous seven-qubit device.
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