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The ability to perform fast, high-fidelity entangling gates is a requirement for a viable quantum pro-
cessor. In practice, achieving fast gates often comes with the penalty of strong-drive effects that are not
captured by the rotating-wave approximation. These effects can be analyzed in simulations of the gate
protocol, but those are computationally costly and often hide the physics at play. Here, we show how to
efficiently extract gate parameters by directly solving a Floquet eigenproblem using exact numerics and a
perturbative analytical approach. As an example application of this toolkit, we study the space of paramet-
ric gates generated between two fixed-frequency transmon qubits connected by a parametrically driven
coupler. Our analytical treatment, based on time-dependent Schrieffer-Wolff perturbation theory, yields
closed-form expressions for gate frequencies and spurious interactions, and is valid for strong drives.
From these calculations, we identify optimal regimes of operation for different types of gates including
iSWAP, controlled-Z, and CNOT. These analytical results are supplemented by numerical Floquet computa-
tions from which we directly extract drive-dependent gate parameters. This approach has a considerable
computational advantage over full simulations of time evolutions. More generally, our combined ana-
Iytical and numerical strategy allows us to characterize two-qubit gates involving parametrically driven
interactions, and can be applied to gate optimization and cross-talk mitigation such as the cancelation of
unwanted ZZ interactions in multiqubit architectures.
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I. INTRODUCTION

With considerable advances in state preparation, gate
operation, measurement fidelity, and coherence time,
superconducting qubits have become one of the leading
platforms for quantum information processing [1-3]. Sys-
tems consisting of up to a few dozen qubits have been
recently deployed by a number of research groups [4—6].
As these architectures are scaled up, a challenge is to engi-
neer two-qubit interactions to realize gates that are fast
enough compared to the decoherence times of the qubits,
while at the same time obtaining operation fidelities that
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are sufficiently high to satisfy a threshold for quantum error
correction [7,8]. To realize fast and high-fidelity two-qubit
gates, precise modeling of the dynamics of small multi-
qubit systems is necessary, but becomes computationally
difficult as the number of degrees of freedom increases.
Moreover, to achieve fast gates, drives that are strong in
the sense of the rotating-wave approximation (RWA) are
necessary, in which case beyond-RWA corrections become
relevant.

A dominant source of infidelity in gate operation con-
sists of cross-Kerr interactions, or the ZZ terms in Pauli-
matrix notation. These terms are either static due to the
connectivity of qubits, or dynamically generated by control
drives. In the case of many two- and single-qubit gates, ZZ
terms produce spurious entanglement that cannot be mit-
igated by local single-qubit operations. There are active
experimental efforts to reduce the effect of ZZ interactions
[9-14]. Moreover, the presence of nonlocal ZZ interac-
tions, and of higher-order cross-Kerr terms, can indicate
the onset of quantum chaotic behavior in systems of many
coupled qubits [15].

© 2023 American Physical Society
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FIG. 1. (a) Graph representation of the model. The three bare
modes have mutual capacitive couplings (light gray edges);
mode c¢ is parametrically driven. (b) Superconducting circuit
implementation: modes a and b are transmon qubits; the coupler
mode ¢ is implemented as a generalized capacitively shunted flux
qubit (see text).

In this paper, we present a computationally efficient set
of analytical and numerical tools to characterize and tai-
lor gate Hamiltonians. As an example application of these
tools, we consider flux-tunable parametric coupler archi-
tectures [16,17] schematically illustrated in Fig. 1. We
develop two complementary approaches, both of which
start from a treatment of the Floquet Hamiltonian, which
can capture non-RWA effects exactly [18—20]. Our ana-
lytical approach starts from the quantization of the driven
superconducting circuit. More specifically, while we adopt
a normal-mode picture such as in black-box quantiza-
tion [21] or energy-participation-ratio approaches [22], the
mode frequencies and impedances, and as a result self-
and cross-Kerr interactions, depend on the strength of the
drive. This dependence is accounted for in an expansion
over the harmonics of the drive. From this, we obtain
analytical expressions of ac-Stark shifted transition fre-
quencies and interaction strengths. Of note, as compared
to previous work, normal modes are defined here by tak-
ing into account drive-induced corrections [23] to the
Josephson potential [24]. Due to its similarity to black-
box quantization, this analytical technique can be eas-
ily generalized to circuits containing multiple qubits and
couplers.

To obtain corrections to the effective interaction
strengths, our approach relies on a time-dependent
Schrieffer-Wolff perturbation theory [25-27], which con-
sists of a hierarchy of unitary transformations applied
to the time-dependent Floquet Hamiltonian [26,28]. We

make the explicit choice to work in the transmon limit
of small anharmonicity [29], expressed in terms of the
small dimensionless parameter «/8E¢/E;, whereas drive
effects are included in a series expansion over the harmon-
ics of the drive frequency and then integrated into the exact
treatment of the normal-mode Hamiltonian. This approach
allows us to identify the contribution of each driven normal
mode to the different effective interaction constants.

Our formalism is equally applicable to strong anhar-
monicities, where one has to formulate the Hamiltonian
in the energy eigenbasis. The cross-resonance gate [30,31]
has been modeled [27] with such methods, with the notable
difference that drive effects were included in the pertur-
bative expansion, something which requires the calcula-
tion of higher-order corrections as the drive strength is
increased. In contrast, here we show that by effectively
performing a series resummation over drive-amplitude
contributions, we can model effects such as gate-rate sat-
uration with drive power that are frequently observed (see
e.g. Refs. [31,32]) without the need to evaluate high-order
terms in perturbation theory.

On the other hand, with our numerical approach, we
show how gate parameters and, more precisely, the data
from a two-tone spectroscopy experiment, can be extracted
from a solution of the Floquet eigenproblem [18,19]. This
is efficient by comparison to the simulation of Hamiltonian
dynamics over the full duration of the gate protocol: Flo-
quet methods rely on integrating the dynamics over one
period of the parametric drive, on the order of 1 ns, which
is typically 3 orders of magnitude shorter than the gate
duration. By construction, the parameters extracted from
this approach account for renormalization by the drives.
We are then able to benchmark the convergence of the
analytical approach by direct comparison to the numerical
result. In the context of superconducting circuit architec-
tures, Floquet numerical methods have also been used to
model instabilities in transmon qubits under strong drives
[23,33], to obtain corrections beyond linear-response the-
ory for the bilinear interaction between two cavities medi-
ated by a driven ancilla [34], to model a strongly driven
controlled-phase gate between transmon qubits [35], or to
enhance the coherence of fluxonium qubits [36,37].

The remainder of this paper is structured as follows.
In Sec. II we introduce the circuit model, as well as a
pedagogical toy model from which all qualitative features
of the full theory can be extracted, and illustrate how to
obtain the different gate Hamiltonians. In Sec. III we intro-
duce the basic concepts for second-order RWA, based on
a Schrieffer-Wolff transformation of the Floquet Hamilto-
nian. Section IV captures in more detail the complexity
of the problem with an analysis of the three-mode theory
derived from the full-circuit Hamiltonian. In Sec. V, we
describe in detail a method to extract effective gate Hamil-
tonians from a Floquet analysis. In Sec. V B, we compare
all previous approaches using simulations based on the
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numerical integration of the Schrédinger equation. Finally,
we summarize in Sec. VI.

II. MODEL HAMILTONIAN

As a concrete example of our approach, we consider a
model for a parametric coupler consisting of three non-
linear bosonic modes interacting capacitively [16], see
Fig. 1(a). The qubit modes a and b are assumed to be far-
detuned, making the beam splitter (or iSWAP) qubit-qubit
interactions negligible in the rotating-wave approximation.
Those modes are capacitively coupled to a third mode, the
coupler ¢. The latter can be parametrically modulated in
order to activate interactions between the two qubit modes,
for example a iSWAP-type gate on which we mostly focus
here.

A. Superconducting circuit

A possible realization of this three-mode system is
shown in Fig. 1(b) and consists of two fixed-frequency
transmon qubits interacting via a capacitively shunted flux
qubit whose two branches contain one and N Josephson
junctions, respectively [38—40]. In a single-mode approxi-
mation, this generalized flux qubit plays the role of coupler
mode and the parametric drive is realized by modulating
the reduced external fluX @exy = 27T Deyxi/ Do, With Dy the
flux threading the coupler loop and &, the flux quantum.
For certain values of the static external flux, the coupler
has a positive anharmonicity, which is helpful in obtaining
gates with a vanishing ZZ interaction [10,14,41,42]. We
stress that we use this specific circuit implementation for
illustration purposes only, and that the methods presented
here apply beyond the weakly anharmonic regime.

Quantizing the circuit of Fig. 1(c) using the standard
approach [43,44] yields the Hamiltonian (see Appendix B
for a detailed derivation)

H(@) =H, +Hy + H.(1) + A,, (1)

where the transmons and the coupler are described by

I:[j = 4Ecjﬁ? — Ejj cos(9;), j = a,b,
IA—Ic(t) = 4ECcﬁ§ — k. cos [¢¢ + Ma‘pext(t)]

A

— ﬁNEJc CcoS [% + ,U«ﬁﬁaext(t)] . (2)

These expressions use pairs of canonically conjugate
superconducting phase difference and Cooper-pair number
for the bare modes, [qu,ﬁk] = i8;; for the mode indices
j,k=a,b, or ¢, and we set h = 1. The Josephson ener-
gies are denoted Ej,, E for the transmon modes, whereas
BE). is the Josephson energy of one of the N-array junc-
tions in the coupler, and « is a factor parametrizing the
anisotropy between the two branches. The parameter

is a renormalization of the superinductance due to disor-
der in the junction array and finite zero-point fluctuations
(see Appendix B). Moreover, the parameter « accounts
for a renormalization of the small junction energy due to
hybridization with the modes in the junction array. Fur-
thermore, Ec,, Ecp, and E¢. are charging energies. In the
transmon regime, E,/Ec, and Ej,/Ecp 2 50 [29].

The coupler loop is threaded by an external flux ey,
which can be modulated in time with a modulation ampli-
tude d¢, taken to be small compared to the flux quantum

Pext(f) = oyt + S0 sin(wyt). 3)

As discussed by You et al. [45], quantization of the coupler
loop under time-dependent flux imposes that the external
flux be included in both branches of the potential energy
in H.(¢), with weighting factors . g determined by the
capacitive energies of the two branches (see Appendix B
for a detailed derivation). This subtlety is significant, as
the details of the flux modulation determine the parametric
interactions between the two qubit modes.

Finally, the three bare modes interact through linear
terms induced by the capacitive coupling

[A—Ig = 4ECabﬁaﬁb + 4ECbcﬁbﬁc + 4ECcaﬁcﬁa- (4)

The introduction of normal modes will eliminate this linear
coupling Hamiltonian.

B. Toy model for circuit Hamiltonian

In this subsection, we introduce a simple model, which
captures the essential qualitative features of the Hamilto-
nian of Eq. (1). Our toy model consists of three linearly
coupled Kerr-nonlinear oscillators and has the form given
in Eq. (1) now with

H.() = ()¢ + %e”ez,
2 AT AT A At A
H, = —gabajb —g,.bc— gcacTa + H.c. ®)]

Comparing to the full-circuit model, note that w,p) ~
V8EjamyEcawy — Ecayy Whereas the anharmonicities of
the transmon qubits are negative and amount to o) ~
—Ecqay- In an experimental implementation, the param-
eters defining the coupler—the anharmonicity e, and
the frequency w.(f)—can be varied by applying a time-
dependent external flux to activate a chosen gate.

The parametric drive resulting from the flux modula-
tion of Eq. (3) is modeled by a modulation of the coupler
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frequency at a frequency wy
@:(t) = @, + § sin(wyt). (6)

In a more detailed analysis of the coupler (see Sec. V),
we take into account the time dependence of the anhar-
monicity &., but we choose to neglect it in this toy
model.

Note that we reduce the complexity of the problem
in a few ways: we truncate the Josephson expansion to
include only quartic terms. All photon-number noncon-
serving terms are dropped. Higher harmonics of the drive
of Eq. (6) are neglected, and we do not consider the ac-
Stark shifts of the various coupling constants. All of these
contributions are taken into account in the analysis of the
full circuit Hamiltonian in Sec. IV. Thus the toy model
is significantly simpler than the full circuit theory, but
nonetheless still contains the necessary ingredients that
allow us to illustrate the general method introduced in this

paper.

ITII. PERTURBATIVE EXPANSION

In this section, we introduce a perturbative expansion
to obtain successive corrections to the effective Hamilto-
nian in the rotating-wave approximation. To simplify the
discussion, we focus on the toy model and come back
to the full circuit Hamiltonian in the next section. Our
approach relies on a sequence of unitary transformations
amounting to a time-dependent Schrieffer-Wolff treatment
of the Floquet Hamiltonian in the normal-mode repre-
sentation, an approach used before to derive corrections
to the lifetime of driven transmon qubits [26,28]. Time-
dependent extensions of Schrieffer-Wolff transformations
have been shown to be necessary to capture effects of
drives in the dispersive regime of circuit QED [25], with
quantitative agreement with experiment in the analysis of
the cross-resonance gate [27]. A notable difference from
prior work on microwave-activated two-qubit gates is that,
in performing a normal-mode transformation, we are able
to obtain good agreement with exact numerics already at
second order in perturbation theory. For example, the cal-
culation in Ref. [27] relies on an expansion in capacitive
couplings and drive power, which would require us, in
the setup presented here, to go to higher order (fourth)
in the calculation to obtain results comparable to the
normal-mode approach.

A. Formalism

As usual, our starting point is a decomposition of the
system Hamiltonian into an unperturbed, exactly solvable
part, and a perturbation:

H=H%%®+ 12V ®). (7

Here, we introduce the dimensionless power-counting
parameter A to keep track of the order in perturbation the-
ory, to be set at the end of the calculation to unity, A —
1. Now we move to the interaction picture with respect
to A©. Letting Up(t) = Te @A) where T is the
time-ordering operator, we find for the interaction-picture
Floquet Hamiltonian

M (1) — id, = Uy (1) [H O 128D @) — iat] o ()
= Uho) Al @) Ty (t) — iy (®)

In the above we assume only that the unperturbed time-
evolution operator Up(#) is known. Equation (8) can be
seen as a unitary transformation between two Floquet
Hamiltonians [19]. Thus, the Floquet quasienergies cor-
responding to AH ,(1)(t) — i, must be identical to those of
IEI O 4 AHD(#) — id,, while the eigenstates are related by
U ().

In an iterative Schrieffer-Wolff approach, we treat the
operator AV (¢) as a small perturbation from which we
derive corrections to the known Floquet quasienergies of
H®© [26,28]. To this end, we consider a unitary trans-
formation on the interaction-picture Floquet Hamiltonian
fII (H—io, = AH 1(1)(t) — 10, and the corresponding Baker-
Campbell-Hausdorff (BCH) expansion in powers of the
generator of this unitary, that is

Hi e — 10, = e 1L () — i8,]e%1?

i

GG~ i+
)

This equation defines the effective Hamiltonian, whose
spectrum is equal (up to a desired precision in A) to that
of the original driven theory. The generator G (f) can be
solved for iteratively in powers of A (see Appendix A),
which allows us to perform the rotating-wave approxima-
tion order by order

= H; —iG; + [H;, G

D —@

+AH, 4 ... (10)

where the terms on the right-hand side are defined below.
To Obtiil(ll)a lowest-order term of the effective Hamil-

~ —(
Hier = AH,;

tonian, AH ; » we separate the interaction picture Hamil-
tonian into oscillatory and nonoscillatory terms with the
notation

o ) = =
AV () =20, +0H, ), (11)

where we define the constant part of a time-dependent

operator @(t) by [46]

=< . 1 r o,
0= lim — /0 o), (12)
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whereas the oscillatory part of the operator is

O = 0@ — 0. (13)

Since the time- averagmg operatlon removes all terms that
(1
are oscillatory in time, ; 1s the first-order RWA Hamil-

tonian [46], whereas H 1) is canceled by an appropri-
ate choice of the corresponding term at order A in the
generator.

One can iterate this procedure at every order, collect-
ing terms that are oscillatory and then canceling them.
The second-order RWA Hamiltonian (for a derivation, see
Appendix A) reads

27(2) 1 -
VH, =-|H,, / A ()
i

17 =m Lo~
+5 AH, (t),/ AH, ()dt |. (14)
l 0

This form becomes analogous to the second term in the

Magnus expansion [46,47] when the perturbation has a
-
vanishing mean, i.e., H, =0

B. Black-box quantization approach to the toy model

Expressing the toy-model Hamiltonian as the sum of
static quadratic terms, 4®, and of time-dependent and
Kerr terms, A1 (¢), the first step in deriving parametri-
cally activated interactions between the transmon modes
is to diagonalize the former, which we write as

A0 ot @Wa  Zup  Bea
HO = (ﬁT b éT> 8w Wb  8pc
8o 8Bpe @c

(15)

o> TH A

This diagonalization is achieved with an orthonormal
transformation & = ) p=abeUapBs for o =a,b,c, and
which is chosen such that H© takes the form

HO = w,a'a + wpb™b + w.'e, (16)

where &, b, and ¢ are the normal modes and wqp, the cor-
responding mode frequencies. The uyg are hybridization
coefficients encoding the connectivity of the three modes
through the capacitive couplings A, entering in H©. In
this normal-mode basis, the remalnder of the Hamiltonian

reads
AHD ()

o A ~ N A A N
= - Wt + b + 14:0)™ (i + wph + :8)*
Jj=ab,c

+4 Sin(a)dt) (”ca& + ucbg + ucc&)T(uca& + ucbg + ucce)~
a7

The expression above illustrates that coupling between
the normal modes arises from the nonlinearity and the
parametric drive.

Our choice of unperturbed Hamiltonian 4© and per-
turbation AH™ in Egs. (16) and (17), respectively, is
guided by black-box quantization [21]: the unperturbed
Hamiltonian is linear and diagonal in the normal-mode
basis, whereas the perturbation consists of Kerr-nonlinear
terms, on the one hand, and quadratics appearing from the
normal-mode expansion of the parametric drive, on the
other hand. As we show below, while better choices are
possible (see Sec. III C), this choice leads to a simple and
intuitive form for the effective Hamiltonian.

As an example of the many common types of interac-
tions that can be activated by a parametric drive [3], an
ISWAP interaction between the transmon modes arises if
we set the modulation to be at the frequency difference
between the two transmon modes

wg = wp — (18)
This choice yields the first-order RWA Hamiltonian
- o At
M, =J, (—za b+ H.c.)

aD ( ) 1

4 Y Ya_pi2, 24 b Y praga 4 %o a2
2

+x$atab™h + x“>bTbeTc+ xDefeata. (19)

The first row of this equation contains the iSWAP interac-
tion of amplitude J ;1?- The second row contains the mode
anharmonicities, and the third row contains cross-Kerr
interactions, the first of which is the ZZ term.

The coupling constants in the above effective Hamilto-
nian result from the normal-mode transformation of the
quadratic part of the toy model and take the form

)
1 _ 1 _ § : 4
Jab = ucaucbia Olj = ”]ala

i=a,b,c
1 _ 2.2
X = E Zui/uikoc,»,

i=a,b,c

(20)

for all j,k =a,b,c, and j # k. In practice, one wants to
maximize Ja(,? to obtain a fast gate, while minimizing
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the cross-Kerr interactions Xj(kl) to avoid the accumulation
of coherent errors. Cross-Kerr interactions are a source
of infidelity for a iSWAP-type gate, as well as in other
gate implementations [10—14,48]. In the first-order RWA
Hamiltonian, to cancel the cross-Kerr interaction between
the two transmons, we use a coupler with a positive anhar-
monicity [42] e, > 0, together with o, a; < 0, which
is distinct from using qubits of opposite anharmonicities
[10,41], or couplers with negative anharmonicity [14,49].
Equation (20) forms the basis for the optimization of the
gate parameters. Before pursuing this further, we first
derive useful corrections to the gate Hamiltonian from

the oscillatory part of the Hamiltonian, ﬁ;l)(t). Finally,
note that the first-order term Xj(kl) is only a static, i.e.,
5-independent, cross-Kerr interaction.

At second order in perturbation theory, there is no
correction to the iSWAP gate frequency J;i) = 0. In the
regimes of interest, where the coupler frequency is close
enough to the qubit frequencies for the interaction between
the coupler and the qubits to be non-negligible, the dom-
inant contribution to the second-order RWA correction to
the cross-Kerr interaction y a(lz)) is

2
2
(Z/’ =a,b,c Uaj UbjUy; “j)

w; + wp — 2w,

2
Xap 2

3 3
s UgcUpe [uaaubaaa - ubb“abab]

Wy — Wp

@n

The full expression for x 5127) can be found in Appendix C.
Inspecting the hybridization coefficients u,s and the
denominators in Eq. (21), we deduce that the second-order
correction to the static cross-Kerr interaction, correspond-
ing to the first term in Eq. (21), arises from a virtual
two-photon excitation of the coupler (generated by the
commutator [ab¢12, athT22]). This correction would not be
present in a two-level approximation [16]. On the other
hand, the second term in Eq. (21) is the lowest-order
contribution to the dynamical cross-Kerr interaction.

C. Improving the starting point of the perturbation
theory

As mentioned in the previous subsection, other choices
for H© and AH® are possible, which give better accu-
racy in comparisons with exact Floquet numerics. In this
subsection, we take the unperturbed Hamiltonian 2© ()
to consist of the Fock-space diagonal part of H (r), namely

HO() = wa'a + wpb™d + w.ete

+ 8 sin(wg?) [uga&m +u?,bh + ui&*&]

0) 0 0)
o [V PAUNIPON o
4 e pt2p2 o Tb pf2p2 | Te af2p2
2 2 2
+ xWatablh+ xVatacte + x2bThete,
(22)

where the quartic couplings in the last two rows are exactly
those defined in Eq. (20), with the superscript now changed
from 1 to 0 to reflect their presence in the unperturbed
Hamiltonian.

We expect this starting point, Eq. (22), to lead to more
precise results, because of two reasons. Firstly, the pertur-
bation A" is now off diagonal in Fock space. The effects
of the anharmonicities of the modes are now included at
the level of H®, and, in particular, we expect a dressing
of contributions corresponding to two-photon excitations,
such as Eq. (21). Secondly, due to the second row of Eq.
(22), we can derive the effect of harmonics of the drive fre-
quency through a Fourier expansion of the time-evolution
operator Uo (1), defined below.

Following the steps of the previous subsections, we
evaluate the time-evolution operator with respect to the
unperturbed Hamiltonian A © (7), that is

Uo(t) = e ot HO), (23)

with [H© (), H©(#)] = 0. The time dependence in the
exponent is handled via the Jacobi-Anger identity [50]

o3 0s d 08
Qv s — (—) +2 Z i"J, (—) coS nwgt,
wy wq

n=1
(24)

for any operator @, where J,(z) is the nth Bessel func-
tion of the first kind [50]. This expansion allows us to
keep track of all harmonics of the drive. In practice, since
the modulation amplitude is small, §/w; < 1, only a few
terms will be necessary.

We obtain to first order (and truncating after the first
Bessel function)

M 1) Suga 8”5],
Jab = “Ucqller|Jo Jo
2 wq wyq
81/!%“ Suib
+3J; Ji ; (25)
wq Wq

which agrees, up to linear terms in §, with the expression
in Eq. (20). On the other hand, the cross-Kerr interaction
at this order is vanishing x ;,1,) =0.

044003-6



ACCURATE METHODS FOR THE ANALYSIS...

PHYS. REV. APPLIED 19, 044003 (2023)

To second order in perturbation theory, the dominant
contributions to J ;i) are

)
y 8 , (1 1
J» =, UeplUl —
ab 2 e w, — . wp — o

Su Su?,
J. ce Ji d 26
X 1(@1) H O(wd>+ (26)

j=ab,c

We do not reproduce here the full form containing 20
terms. The second-order contribution ;i) is nonvanishing,
and contains approximately 450 terms in expanded form.
Despite the complexity of these full expressions, they are
easy to derive and manipulate with symbolic computation
tools [51]. Focusing on the static cross-Kerr interaction,
i.e., in the § — 0 limit, the dominant correction result-
ing from the above changes amounts to our previous Eq.
(21), but replacing the denominator of the first term of that
expression by a form that faithfully includes the contribu-
tion from the anharmonicities, as expected in the case of a
virtual two-photon excitation of the coupler mode. That is,
approximately

w; +wp — 20, —> w;, + wp — Qo + uﬁcac). (27)

The full expression for the corrected static cross-Kerr
interaction can be found in Appendix C.

In Fig. 2 we compare analytical results to numerical
results obtained from exact diagonalization (at § = 0), or
a solution of the Floquet eigenspectrum at 6 # 0 (see Sec.
V). We find that the agreement between numerics and ana-
Iytics is excellent for the gate interaction strength, as well
as for the static § = 0 cross-Kerr interaction. However, we
find that second-order perturbation theory is insufficient to
reproduce the effects of the drive on the cross-Kerr inter-
action, even for modest drive amplitudes. We expect that
higher-order perturbation theory should correctly capture
the drive-amplitude dependence of the anharmonicities,
but these contributions have been inaccessible in our study
due to the large memory demands of the computer algebra
manipulations.

IV. FULL-CIRCUIT HAMILTONIAN

Building on the previous results, we now turn to deriv-
ing an effective Hamiltonian for the full-circuit Hamil-
tonian of Egs. (1) and (2). The full-circuit model goes
beyond the toy model in that it systematically includes
the effects of the parametric drive on all of the coupling
constants. Although the simplicity of the toy model is use-
ful in developing an intuitive understanding of the effect
of parametric drives on the system, the full-circuit model
can lead to more accurate comparisons with experimental
data.

(a) Lo w,./2n wy/21
- l 0=0.0
= 0.5 !
E f ]
e 00— — 7 e
QQ — First order [ \\/—’/
>§ -0.5" — Second order ( 1
~10 Numerics i
b) 1. ]
(b) 10 6/2m =0.3 GHz

o M

Xap/2m (MHz)
=
=
f

-1.0
() 20 00 01 02 03 §/27r=0.3 GHz
~ 15 S 5 ! |
Z 10 = /
S sy /
& 5 f 1520 I
Q () i e "
= 5 A
-10° -
4. 4.75 5.5 6.
we/2m(GHz)
FIG. 2. (a) Static cross-Kerr interaction x,,(®.), from first-

(black) and second-order RWA (blue), and from the full diag-
onalization of Sec. V (light blue points) for w,/27 = 4.0,
wp/2m =5.5, a,/2m = —0.3, op/2r = —0.2, a./27 = 0.25,
g./2m =0.12, g,./2m = —0.12, all in GHz, and g /27 = 0.
(b) Analogue of (a) for dynamical cross-Kerr interaction at
8/2m = 0.3 GHz. (c) Same as (b) for the gate interaction rate
Jap(@.). Inset: J,;(8) at w. /27w = 4.25 GHz.

The full-circuit theory is constructed with the following
steps: we first introduce creation and annihilation opera-
tors for the bare circuit modes starting from the first-order
RWA driven circuit Hamiltonian in Sec. IV A. Because the
drive is taken into account at that level, the frequencies and
zero-point fluctuations of these bare modes will be explic-
itly corrected by the drive. In Sec. IV B, we perform a
normal-mode transformation amounting to a driven black-
box quantization approach. We then show in Sec. IV C how
a variety of quantum gates can be addressed by appro-
priate choices of the parametric drive frequency. Lastly,
we find corrections to the desired gate Hamiltonian using
a time-dependent Schrieffer-Wolff perturbation theory in
Sec. IVC.

A. Bare-mode Hamiltonian

To define the bare modes, we begin with the full-circuit
model Hamiltonian of Egs. (1) and (2). We normal order
expand the Josephson cosine potentials in this Hamiltonian
over a set of creation and annihilation operators, which we
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define as follows:

A

Ta .
Py = ?“(a+aT),

N R
n, = —i (a—a'),
214

(28)

with analogous equations for modes b and ¢. The coef-
ficients 7,5, are chosen such that terms proportional to

A2 12 ~ . . . . .
az,b , and ¢* vanish in the time-averaged Hamiltonian.
This amounts to three transcendental equations:

Fny)n; =8E¢ /Ey, (29)

forj = a, b, c, where we define the form factors

F(ay) = e/,

F(ne) = ae " Jy(11a8¢) c08 (1aPey)

B ., N2 _
+ ¢ 1N Ty (npd9) cos (UpPey) - (30)

Note that in the transmon limit F(1,4)) =~ 1 we recover
the usual expression 1) = /8Eca/b/E jap- Secondly, the
parameter 7. depends on the parametric drive amplitude
3¢, which indicates that the mode ¢ impedance is drive
dependent. This has consequences for the precision of the
calculation of coupling constants dressed by the parametric
drives. In particular, it allows us to capture the ac-Stark
shift of the coupler mode at the lowest order in perturbation
theory. In what follows, sine and cosine functions of the
phase are normal order expanded according to Eq. (D7) of
Appendix D. In turn, trigonometric functions of the flux
modulation are expanded in Jacobi-Anger series over the
harmonics of the frequency of the drive.

Using the above definitions, the transmon Hamiltonian
ﬁa takes the familiar form

)
H, = waﬁfﬁ —Ey, (cos o, + e‘""“%) . 31)

The second term on the right-hand side contains the nonlin-
ear part of the Josephson potential, i.e., the inductive part
is subtracted. Up to quartic order, H, takes the form

- ha | Oa st
H, = w2+ fawa2
o n n o At A AT3 A
+ 1—5 (a4 + a“) + ?“ (a*a3 + a”a) 4+ (32)

The first row of this expression is a Kerr-oscillator Hamil-
tonian as in the toy model of Sec. II, whereas the sec-
ond row contains corrections from quartic counter-rotating

terms. Here, we have introduced the mode frequency and
anharmonicity, which take the forms [29]

4Ec, 1
w,; = nc + Ef(na)naEJa ~ \/m - EC“’
o, = —Eca. (33)

Note that for the approximate equality in the first row we
use a Taylor expansion of Eq. (29) for n,. The equations
for mode b are identical from the above with a change of
subscripts and operators a — b.

The coupler Hamiltonian differs from that of the trans-
mon modes in two fundamental ways: it breaks parity
symmetry due to the external flux, and it is time dependent.
Following Eqgs. (13) and (12), we write this time-dependent
Hamiltonian as

H.0) = B.(0) + H.0). (34)

The creation and annihilation operators of the coupler
mode can then be defined by extracting the quadratic part
of the time-averaged coupler Hamiltonian. Using Eq. (28)
where a — ¢ together with

cos [@c + Ma(pext(t)] = €0S([aPext)Jo(La89) cOS(P,)
(35)

and a similar relation for the second branch of the cou-
pler [see Eq. (2)], we find in analogy to Eq. (31) for the
Hamiltonian of the transmon mode

A2
— QE 1o (1a80) COS(1aPext) (cos P+ e‘"c/“%)

— BNE e Jo(1p8¢) cOS(1pPext)

~ A2

P 77]0/4N2 P

X COoS — —
( N e 2N2)

+ aEjJo(adp) Sin(“aaext) sin @c

+ BNE;eJo(1158¢) Sin(1t @) sin % (36)

Crucially, in this first-order rotating-wave approximation
of the parametric drive, the Josephson energy is renor-
malized by the factor Jo(1a gd¢), see also Ref. [23]. We
interpret this as an effective reduction of the Josephson
potential barrier, and consequently an increase of phase
fluctuations, in the presence of drives. Moreover, the pres-
ence of the nonzero external flux results in the parity
breaking sine terms in Eq. (36).
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The second term of A, (¢) in Eq. (34), the oscillatory part,
take the form

Ho(t) = —@E ;08 [§. + ta@ext(D)]

—_——
A

— BNE.cos [% + Mﬂ%xt(f)], (37)

which can be expanded in a Jacobi-Anger series in har-
monics oscillating at the frequency nw,, where n is an
integer.

As above, the next step is to expand the coupler Hamil-
tonian up to quartic terms in the creation and annihilation
operators. In contrast to the transmon Hamiltonian of Eq.
(32), parity breaking leads to the appearance of monomials
of odd order. The nonoscillatory part is

~ PUPUE . 2N
H, = a)ccTc + TCcTzc2
Oc (4 A4 Oc (~ia3 | AT3A
+—<c +c )+—(cc +c c)
12 3
+g. <é3 + &P 3ete 4+ 36*26)

+g., (é+éT)+---. (38)

The first row of the above expression takes the form
of the coupler Hamiltonian in the approximation of the
toy model of Sec. II, while the remaining rows contain
number-nonconserving terms up to quartic order. Here, the
parametric drive-dependent mode frequency and anhar-
monicity read

4E-. 1
W, = < + _f(nc)ncEJc,
n 2

c

. = —Ec., (39)
while the prefactors of the counter-rotating terms are

g3 = —aee 32 )y (1adp) sin (LaBey) Ese/(124/2)

—_ ﬁeincﬂ“}vz

N2
X (14pPext) Ese/ (127/2),
g1 = aee—”0/4 ncl/zJO (/"leagp) sin (Maaext) EJL’/\/E

— N, 2 1
+ Be N 020y (1) sin (1pPex) Ese/ V2.
(40)

22 Jo(pd9) sin

The contribution from the oscillatory part H.(f) is too
lengthy to be reproduced here, and is given up to the sec-
ond harmonic of the parametric modulation frequency wy
in Table II of Appendix D.

Finally, the last term of the full circuit Hamiltonian to
consider is the linear interaction /{, induced by the capac-
itive coupling. Using Eq. (28), this Hamiltonian takes the
form

" 2Ecab o atyp ot
Ho=—22% G _ahb-bH+... @)
£ / Nallb

where the ellipsis represents two more terms correspond-
ing to the cyclic permutations of the mode indices.

The Hamiltonian specified by Eq. (32) and its equivalent
for the b transmon mode, together with Eq. (38), the terms
summarized in Table II of Appendix D, and Eq. (41), form
the basis of the full-circuit numerical simulation performed
in Sec. V.

B. Driven black-box quantization approach for
parametrically activated interactions

We now follow the procedure developed with the toy
model in Sec. III B to obtain effective gate Hamiltonians
under parametric modulations. To do so, we first displace
the Hamiltonian of Eq. (1) by approximate solutions to
the corresponding classical equations of motion, with the
aim of removing all contributions linear in the coordinates
@;,1;. As such, this avoids keeping the linear terms as part
of the perturbative expansion. This procedure is detailed
in Appendix D and amounts to making the following
replacement in Eq. (1):

@, — 9, +& + ¢ sin(wa). (42)

The parameters ¢;, & are found numerically. The proce-
dure above can best be understood as a change of frame
in which all coordinates @;, n; represent quantum fluc-
tuations about a known classical trajectory. In particular,
should the amplitude responses ¢; be neglected, then §&;
would be the amount by which phase variables need to
be displaced such that the subsequent Taylor expansion is
performed around the classical minimum of the potential
energy.

Next, we collect under H® the time-independent
quadratic terms, in a procedure analogous to the one above.
We then eliminate the linear coupling I:lg of Eq. (41) from

H®O through a normal-mode transformation

H? = @'+ wblA)TlA) + it + A,
= w,a'a+ wpb'b + w.iTe. (43)
The linear transformation is determined by a set of 18

hybridization coefficients that relate bare mode coordi-
nates to normal-mode coordinates (see Appendix E for the
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procedure to compute these coefficients)

o WL/S A ot
Do ﬂ;cﬁ(ﬂJrﬂ),

he= Y LB B 44
fig ﬁ;clﬁw A, (44)

for o = a,b,c. We stress that the hybridization coeffi-
cients u4g, Vop depend on the amplitude of the parametric
drive. As a result, drive effects such as the ac-Stark shift
of the nonlinear oscillators are accounted for already at
the level of the normal-mode decomposition of the circuit
Hamiltonian.

In analogy with our treatment in Sec. II of the toy
model, we take H4© to be the unperturbed Hamiltonian
with respect to which the interaction picture is defined. Pri-
marily in order to keep the expressions more concise, we
opt to neglect the corrections analyzed in Sec. I1I C. With
A the unperturbed Hamlltonian the remaining interac-
tion terms are AHV () = H — A (O) Expressmg these in

the interaction picture Wlth respect to Uy = il Ot
Eq. (8), we find

as in

M@ =Ty [Aw - A0 O, @5)
which, as before,
nonoscillatory parts.

As a first example, to realize a beam-splitter interaction,
the first-order RWA Hamiltonian is obtained in the form of
Eq. (19) for a modulation frequency that satisfies

is decomposed into oscillatory and

Wy = Wp — Wy. (46)

Of note, as already mentioned, the right-hand side of the
above definition depends implicitly on the drive frequency
wy, since it is defined in terms of ac-Stark shifted normal-
mode frequencies. In Sec. V we present a numerical
procedure to obtain the parametric drive frequency.

With this choice of modulation frequency, the effective
Hamiltonian takes the form

ABY = (it + H
; =J, (—ia'b+H.c)
+ @atzaz + 9 )bﬁbz 4 e él)wz 22
2 2 2
+ xVatabth + xVbthete + xVeteata
+ 5 (—iataath + He.)
+J5, (—ib'hath + H.c.)
+J4) (—ieTea’h + Hee.)
+ K (@2 + He). (47)

In contrast to the effective gate Hamiltonian Eq. (19)
obtained for the toy model, there are additional terms in the
last four rows, namely photon-number-conditioned beam-
splitter terms and a photon-pair beam-splitter term. The
couplings appearing in the above Hamiltonian are

”““2 b J1(8,) sin(&,)Eq

_ UpaUpb

(1)
Jab -

J1(&p) sin(Ep) E gy

u Ucp
L 01 (Lo + 1ad) SINE, + taPex) B

ucaucb .BJ1 <§C

BEEY, N + ,u,g690> sin

& _
" (rv‘ + B ) B

(1) /
Z ulJEJl’

i=a,b,c
m_ 1
Xk = Z Z Ui tkEJzﬂ
i=a,b,c
2
th;; = : J;;), forj =a,b,c,
K(l) all abJ( ) ( )E
ab — 16 2(&a) cos Ea Ja
u2 2
bi 6bbJ2 (¢p) cos(Ep)Ep

u2 2
— C;6Cb aJy (é‘c + Mu5€0) COS(sc + //Lot(pext)EJc

ugaugb /3 %
~ 6 ]WJZ <ﬁ + uﬂ&p> cos

& _
x (ﬁ + 1Pt ) B (48)
where we use

2 a2 a2

E), = e “al 4 a1l ]y (£,) cos(€,) Ea,
.2 _ .2 .2

E)y = e/ e/ ] (4) cos (&) Ep,

E}, = ado(Ce + 11a89) cos(Ee + taPex) EY

B Le & _ )
+ N3J0 N + Vvﬂ&/’ COs N + HBPext E_/Cﬁ >

E}‘C)‘) = e—um/4—u§b/4—ugc/4 Ee,
2 2_,2 2_,2 2
E;Cﬂ) = efuw/4N 7ucb/4N —uz. /4N EJc- (49)
The above expressions depend on the drive both explic-

itly, through the arguments of the Bessel functions, and
implicitly, through the hybridization coefficients ;. While
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the amplitude responses on the two transmon qubits are
expected to be small, i.e., {,p < ¢, and &, <K &, these
contributions show that, through hybridization, all Joseph-
son elements contribute to the resonant parametric interac-
tion. The first three lines of Eq. (48) are similar in form
to those obtained for the toy model in Eq. (20). Of the
two additional classes of terms possible in the full-circuit
model at this order in perturbation theory, the photon-pair
beam-splitter term, in the last row of Eq. (47), is generated
by the second harmonic of the drive. However, since this
term is fourth order in the hybridization coefficients, it can
only become comparable to the beam-splitter interaction
at vanishing external flux .., & 0, or if §¢ is set to cancel
JO,

As in the case of the toy model, going to second order
in perturbation theory using Eq. (14) we find corrections to
the coupling constants derived above to first order. Noting
that parity-breaking terms significantly dress the coupler
0 — 1 transition frequency, we absorb this renormaliza-
tion into a reparametrization of the external flux ., —
0L (Pexe) such that w.(g.,) = ©P (@), i-€., we absorb
the corrections to the coupler pole at second order in per-
turbation theory into a redefinition of the coupler normal
mode, in a self-consistent approach that can be further
validated with exact numerics.

30
~ 25 L
N * 000
I E
= 20 * 001
§ 15¢ e 002
10¢
\% ] 003
o e 004
0,
20
£ 10} -
>
c O =
«
;5; -10¢ -
—ooL . ‘ ‘ ‘ ‘
0.0 0.1 02 0.3 04 05
Pext /27
FIG. 3. Coupling constants in the effective Hamiltonian for the

full circuit as a function of external dc flux @, Dots (lines)
represent Floquet two-tone spectroscopy data with Hilbert-
space dimension 10 per mode (second-order RWA calculations).
Color (see legend) encodes parametric drive amplitude ¢ /2.
Parameter choices: C, = 134.205 fF, C, = 134.218 fF, C. =
75.987 fF, C,e = 11.11 fF, Cp. = 11.22 fF, Cpp = 0, E}, /27w =
37 GHz, E;;/2n = 27 GHz, Ej./2m = 50 GHz, « = 0.258, 8 =
I, and N =3, e =5/6 and ug = —1/18. We attribute large
discontinuities in the numerical curves to state tracking errors
near avoided crossings (see Sec. V).

In Fig. 3 we show a comparison between exact Flo-
quet numerics (see Sec. V) and second-order perturbation
theory for the full-circuit model. We find that the analyt-
ics reproduce with good accuracy the numerical results
for the gate interaction rate J,, in the region where the
coupler 0 — 1 frequency lies between the two transmons:
W, < W, < w,. There are poles in the numerical gate rate
Jup for w. < w, or for w, < w, that we expect to capture
only at third order in perturbation theory. The numerical
cross-Kerr interaction, as in the case of the toy model,
only agrees well with analytics in the static case §¢ = 0.
Focusing our attention on the curves obtained from Flo-
quet numerics, we see that with a typical set of parameter
gate rates as large as J,;,/2m ~ 20 MHz (equivalent to a
25 ns +/ISWAP gate) can be achieved while maintaining a
vanishing dynamical cross-Kerr interaction. The tools pre-
sented in this paper feed into a larger scale optimization of
the circuit parameters, which forms the subject of a future
study.

C. Other parametric gates

The space of parametric gates is not limited to beam-
splitter-type, or red sideband, terms. Indeed, different inter-
actions can be activated by appropriate choices of the
frequency of the parametric drive [16,52—58]. For exam-
ple, if instead the modulation frequency targets the blue
sideband,

Wy = W + wp, (50)

then the resulting interaction is a two-mode squeezing
term. The effective gate Hamiltonian is formally the same
as Eq. (47) with the simple modification

a'h — atbt, (51)

in the first line and in the last four lines of Eq. (47). The
coupling constants remain formally as in Eq. (48). Note,
though, that quantitatively the rates will differ, since the
classical responses and the hybridization coefficients are
dependent on drive frequency. As opposed to the beam-
splitter interaction, we expect [59] nonadiabatic effects
at the larger modulation frequency Eq. (50), which will
require higher orders in perturbation theory beyond the
scope of this work.

It is also possible to obtain a CNOT interaction induced
by a parametric drive at wy; = w,, which makes the «
transmon mode into the target mode of a cross-resonance
protocol [30,31]. Following the same procedure as in
the preceding subsection, with this choice of modulation
frequency we arrive at the effective gate Hamiltonian

- . A ARNRTR A atyata
A = —=iQqp(a—a")b'b —iQ,.(a—a')c'c

—iQqa—a" —iQu.a'aa —a'ata).  (52)
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The first term of above expression generates the cross-
resonance gate, while the second term is a coupler-state
conditional drive on mode a, which is negligible for
(¢T¢) &~ 0. On the other hand, the second row contains local
operations on qubit a.

The coupling constants in Eq. (52) take the form

1" 3 o
Qa = ucaE‘],ca Qa;a = ”caEJ,c/2a

Qup = ucaquE./l/:co Qe = uc”uzCEfl/jC’ (53)
where we define
Efl/c = ijl (e + Had@) cos (Sc + lu“Olant) Ey?
SV ’
B ¢ & _ ®
L Y ) cos| — Ey¢,
+ ﬁ | v + npdep N + UBPext Jc
Ef/”c = —iJl (Cc + mad@) cos (Sc + ru““aem) E}"‘Z
, /2 ’
B ‘e & _ B
_ J 2= dp)cos| = Eje-
ﬁNz | v + updep N + UpPext J.c
(54)

For brevity, in the expressions above we drop the smaller
contributions proportional to J;(¢,,). While in the stan-
dard cross-resonance gate protocol the gate is activated by
a microwave tone on one of the qubits [30,31], here it is the
coupler mode c that is parametrically driven. This protocol
to achieve a CNOT gate is advantageous if the coupler mode
is much more strongly coupled to the transmon modes «
and b than their direct capacitive coupling. In the standard
cross-resonance protocol [31,32], the CNOT gate rate 2.
saturates as a function of the amplitude of the paramet-
ric drive; in this model saturation could be in part due to
the Bessel function J;. Table I summarizes the different
interactions that can be obtained for different choices of
modulation frequencies.

V. FLOQUET NUMERICS

In this section we use exact numerical Floquet methods
to extract the effective gate Hamiltonian from quasienergy
spectra. Floquet theory validates the results obtained using
perturbation theory in Secs. III and IV C. On the other
hand, this numerically exact method is applicable beyond

the regime of wvalidity of perturbation theory. In this
section, we first briefly introduce the method and the nota-
tion in Sec. VA and, as an example application, return
to our toy model to extract the cross-Kerr interaction x,p
and the +/iSWAP gate amplitude J ;. Using these results,
we show how to adjust the system parameters such as
to cancel the dynamical cross-Kerr interaction during an
~/iISWAP gate. Then, in Sec. V B, we apply the method to
the full-circuit Hamiltonian. In particular, we perform a
numerical experiment analogous to two-tone spectroscopy
for the parametrically driven circuit. For completeness, an
introduction to Floquet theory is presented in Appendix F.

A. Effective Hamiltonian from Floquet spectra

Our analysis starts from the observation that the effective
Hamiltonian is unitarily equivalent to the Floquet Hamil-
tonian according to Egs. (8) and (9), and therefore their
quasienergy spectra (see Appendix F) are identical. In the
laboratory frame, we can write

Hep — i0, = =G0 [ﬁl(t) - iat] 0. (55)
The perturbative expansion for e=¢®, and consequently
that for I:Ieff, is therefore an iterative approach to finding
the Floquet spectrum.

In this section we compute the Floquet spectrum exactly
and show how the parameters of the effective Hamiltonian
can be extracted from it. ac-Stark shifted normal-mode
frequencies, self- and cross-Kerr interactions, and gate
amplitudes are formulated as linear combinations of appro-
priately identified eigenvalues of the Floquet Hamiltonian.
For illustration, in this subsection we confine our attention
to the Floquet analysis of the toy model of Eq. (5).

To identify states in the Floquet quasienergy spectrum,
we find eigenvectors that have a maximum overlap with a
set of known, unperturbed states. We let the state |i,ipi.)
be the eigenstate of the time-independent Schrdédinger
equation for the undriven Hamiltonian, that has maximum
overlap with the Fock state |i,) |ip) |i.), and denote its
eigenenergy by Ej ;.. Finally, we define |i,ijic)r as the
Floquet eigenmode having maximum overlap with |i,ii.),
and we denote its quasienergy with €;,;,; . In what fol-
lows, we label kets by three integers as above, in the order
a—b—c.

TABLE 1. List of the most accessible gate Hamiltonians realizable with a parametric drive in the analyzed architecture.
Gate Bosonic operator Drive frequency Dominant unwanted interaction Equation
iSWAP and beam splitter —ia'h + ibta wa — Wp atabth Eq. (47)
Two-mode squeezing —ia'b" +iba Wy + wp atab™h Egs. (47) and (51)
CZ and Ising ZZ atab™h No drive Eq. (47)
CNOT —i(a —ahHb'h Wy —i(a —ahata Eq. (52)
CSWAP —icte@th — bta) Wa — Wy —ia'b + ib'a Eq. (47)
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FIG. 4. Quasienergies of the Floquet modes with maximum
overlap with eigenstates |0,1,0.) and |1,0,0,), for the toy model.
The light and dark blue dashed lines correspond to the eigenen-
ergies of the uncoupled system. The inset shows the population
of the Floquet states, Py, ,,n (£) = |7 (nanpne| ¥ (D)2, compared
to the state populations of a two-level system (dots), driven
resonantly with Rabi rate J,;, where J,; is the gate amplitude
obtained from the avoided crossing in the Floquet spectrum.

With these definitions, the gate amplitude J,; has a nat-
ural interpretation in the Floquet formalism. As shown
above, the +/iSWAP interaction arises in the toy model if

wqg = wp — g = E190 — Eoo- (56)
Since the parametric drive enters via a term proportional
to ¢'¢, which couples the undriven eigenstates in the two-
state manifold {|100),|010)}, there is an avoided crossing
between the Floquet modes |100; £ + 1) and |010; k), as
shown in Fig. 4. Because the gate operation is analogous to
Rabi oscillations in the two-state manifold {|100) , |010)},
the size of the avoided crossing is twice the effective gate
amplitude, 2J,. For example, if an excitation is origi-
nally prepared in the transmon b, then population dynam-
ics would obey Po1o(7) = |#(010]y(£))|> = sin® (Jf) and
Pioo = 1 — Py, in full agreement with exact numerics
(inset of Fig. 4). Away from the avoided crossing, the dif-
ference between the dressed states and the undriven states
corresponds to the ac-Stark shift of the transmon normal
modes due to the off-resonant drive.

Note that, in practice, the two-state manifold {|100),
|010)} is coupled by the drive to other levels. The resonant
drive frequency wy is then slightly shifted from Eq. (56)
due to the ac-Stark effect induced by these additional cou-
plings, and the exact value can be determined numerically
by minimizing the size of the anticrossing.

The dynamical cross-Kerr interaction y,; is written in
terms of a Walsh transform [15] of the quasienergies

Xab(8) = €110 — €100 — €010 + €000, (57)
and reduces to the static cross-Kerr when the parametric
drive is turned off:

Xab(0) = E110 — E100 — Eo10 + Eooo. (58)

Along with J,, and x,, any ac-Stark-shifted quantity per-
taining to the effective Hamiltonian can, in principle, be
obtained by taking appropriate linear combinations of the
quasienergies in the Floquet spectrum.

Since the Floquet quasienergy spectrum can be obtained
from the propagator U(27 /wg, 0) over one period of the
drive (Appendix F), the Floquet method is numerically effi-
cient as compared to the simulation of the dynamics over
the complete gate time. The period of the drive is on the
order of 1 ns, which is between 2 and 3 orders of magnitude
shorter than the gate times studied here. Due to its rela-
tively small computational footprint, the Floquet method
allows us to efficiently search for optimal gate parame-
ters, e.g., a maximal J,;, with a minimal residual cross-Kerr
interaction, x,». As an example, in Fig. 5 we study the
behavior of J,, and x, as a function of the bare coupler
frequency w, for different choices of drive amplitude, §,
and bare coupler anharmonicity, o..

From these studies we can, for example, find parame-
ters for which the cross-Kerr interaction x,; vanishes. As

(a)
101 a./2m
. 80 MHz
o —— 120 MHz
= — 180 MHz
S 0
o™
3
>
710<
(b) 3 4 5 6 ‘ 7
101 o/2n
< 0 MHz
E —— 100 MHz
— 0 —— 200 MHz
&
=
>
_10<
(c)
5 2] F 1
jum)
%/
o
=
55l

-

3 4 5 6
we/2m (GHz)

FIG. 5. (a) Static y, interaction at § = 0 for the toy model
versus the coupler frequency for different values of the cou-
pler anharmonicities, with remaining parameters ,/27w =
4.0, wp/2mr =575, a,/2n = ap/2r = 0.2, and g, /27 =
—g,./2m = 0.05 GHz. (b) Dynamical x,, versus bare coupler
frequency for the parameters above and «./27 = 0.12 GHz, for
different values of the drive amplitude. (c) Gate amplitude J,,
for the parameters in (b). The Hilbert-space dimension for each
mode is 5.
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already mentioned, this is helpful to obtain high-fidelity
two-qubit gates and relies on choosing a positive coupler
anharmonicity, o.. In Fig. 5 we find that, while varying
o, does not affect J,; to lowest order in perturbation the-
ory, it has a considerable impact on x,;. Indeed, Fig. 5(a)
shows the static y,, for multiple values of «,, and illus-
trates that it is possible to fine tune &, to cancel x,;. We
observe empirically that, in the RWA, whenever the bare
anharmonicities obey ;' + &' +a_ ! = 0, one can find
w, for which x,;, = 0 at a sweet spot, where 3 x,5/33 ~ 0.

For the dynamical cross-Kerr interaction yx,, one
observes complex variations with §. The main resonances
appear for . ~ ®,, @p, and (&, + @p)/2 but the slopes
and the sign of x,, change and additional resonances
appear away from the qubit frequencies, especially when
the drive amplitude and coupling strengths g, 4. are suf-
ficiently large. As illustrated in Fig. 5(b), by tuning the
drive amplitude it is possible to find a bare coupler fre-
quency, w., for which the effective x,;(§) = 0. On the
other hand, as seen in Fig. 5(c), the gate rate increases
with § without qualitative changes of its dependence on
.. Therefore, as the gate is turned on or off by varying §,
one can adjust the bare coupler frequency @, to maintain
the instantaneous x,;,(8) = 0. This defines a cross-Kerr-
free curve in the parameter space (w.,8) connecting the
“off” point § = 0, x4»(0) = 0,J,,(0) = 0 to the “on” point
8 # 0, xap(8) = 0,J,5(8) # 0. We study this in detail on
the realistic full-circuit model in Sec. V B.

B. Full-circuit simulation

In this section, we apply the Floquet numerical method
to the full-circuit Hamiltonian of Sec. IV A. We study the
dependence of the coupling constants in the effective gate
Hamiltonian versus dc flux and as a function of the drive
amplitude.

Figure 6 shows the analogues of the plots in Fig. 5
for the gate amplitude J (@) and of the cross-Kerr
Xab(@Pexy) now for the full-circuit Hamiltonian. State track-
ing is performed as described in the previous subsection.
However, in the vicinity of avoided crossings, it is impos-
sible to identify with certainty the states generated by the
relatively large capacitive couplings considered here. We
therefore introduce exclusion regions where state tracking
is unreliable. Even though the tracking is expected to be
complicated by the presence of counter-rotating terms cou-
pling states with different photon numbers in the full device
Hamiltonian of Sec. IV A, we find that this is not a signifi-
cant source of tracking error, as compared to errors due to
large hybridization.

In Fig. 6(b), we represent x,; versus the dc flux @, for
different values of the flux-drive amplitude. Unlike the toy
model, x,» does not go to zero away from the qubit-coupler
resonances. This is because the qubit-coupler detuning sat-
urates as a function of ¢, as opposed to the toy model

@ xo /21

/ENT 28 0— 0.05

z

5 0 I
32 ¥
(b) _38 I 1T 111

Xab/2m (MHz)
y
f

-20
0.0 0.1 0.2 /2 0.3 0.4 0.5
Pext/ 4T

C
(c) 80
¢
~ 20
tN: 0 = =
3 -20 @
~ -40 '

“eod II I11

-10 0 10 -10 0 10 -10 0 10

Xab/2m (MHz)

FIG. 6. Same parameter choices as Fig. 3. Gate amplitude J,,
(a) and cross-Kerr x5 (b) for different parameteric drive ampli-
tudes 8¢ (encoded in curve color) and as a function of the
static flux @, from Floquet simulations. Data has been excluded
where deficient state tracking in the vicinity of avoided crossings
led to unphysical discontinuities in the quantities. (c) for regions
1,11, and 1] identified in (a) and (b), we eliminate the common
parameter @, and plot J(x4s). This allows us to identify those
regimes in which the +/iSWAP gate interaction can be turned on,
while maintaining a vanishing dynamical xp.

where the detuning could be increased arbitrarily. In the
undriven case (black), we see that for this set of device
parameters there does not exist a flux value for which y,;,
vanishes. However, increasing the drive amplitude allows
for an active cancelation of the dynamical y,, at some
flux value. The corresponding behavior of J,;, is shown in
Fig. 6(a). In Fig. 6(c), we synthesize the numerical results
into three favorable regions of operation for the parametric
gate, denoted /, /I, and /11, respectively [see (a)]. For these
regions, we eliminate the external flux and plot directly the
gate amplitude J,, against the dynamical cross-Kerr inter-
action y,p. This allows us to determine regimes of optimal
~/ISWAP gate operation. We conclude that gate amplitudes
as high as 40 MHz, corresponding to a gate time of 12.5
ns, can be achieved with vanishing cross-Kerr interaction
for these parameter choices.

For both J,;, and yx,; there exist peaks away from the
qubit-coupler resonances, situated at eyt /27m ~ 0.13,0.42.
These correspond to avoided crossings appearing in the
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FIG. 7. Two-tone spectroscopy data from Floquet numer-
ics. Each point corresponds to a possible transition and its
size is weighed by the matrix element of the charge oper-
ator of bare qubit a, X = n,. Parameters chosen as in
Fig. 3 with 8¢/2m = 0.0 (black dots) and 0.03 (crosses).
The subscripts «, 8 sweep over the subset of Floquet modes
{1000)x, [100),|010),]001)-}, whereas the drive photon
number k takes integer values between —15 and 15.

driven Floquet spectrum, corresponding to the hybridiza-
tion of Floquet levels involving distinct numbers of drive
photons. For example, the Floquet level |100,%)r can
couple to the Floquet level |001,k — 1)r. This can be
seen by unfolding the Floquet spectrum in spectroscopy
simulations (see Fig. 7).

To exemplify the full extent of the Floquet analysis,
we generate two-tone spectroscopy data from our simula-
tions according to Egs. (F2) and (F3) in Appendix F, by
focusing on the experimentally relevant situation where
the parametric drive is on, while the (second) probe tone
acts on the bare charge operator n,. In Fig. 7 we rep-
resent the numerically computed spectrum close to the
two-qubit transition frequencies. The size of each point
is proportional to the absolute value of the correspond-
ing matrix element. The black dots correspond to transition
frequencies in the undriven spectrum. As expected, the dot
sizes are larger for the transitions involving the probed
qubit a. The large avoided crossings around @.,./2m ~
{0.32,0.38} result from the capacitive couplings between
the coupler and the qubits. Secondary avoided crossings
appear between the coupler mode and the transmons near
Gext/2m ~ {0.13,0.42} in the driven spectrum, and are
responsible for the secondary poles mentioned in the dis-
cussion of the coupling constants of the effective Hamil-
tonian, Fig. 6. Furthermore, as we detail in Appendix G,
counter-rotating terms induce corrections when attempt-
ing an accurate comparison with spectroscopic data from
experiments.

VI. CONCLUSION

In summary, we present two complementary meth-
ods for the analysis of parametrically activated two-qubit
gates, one based on analytical time-dependent Schrieffer-
Wolff perturbation theory, and one based on numerical

Floquet methods. Although we mostly focus on coupler-
mediated parametric +/iSWAP gates, a larger collection of
gates can be generated in the same model Hamiltonian.
The methods presented here allow one to efficiently evalu-
ate the terms present in the effective gate Hamiltonian.

For the +/iSWAP interaction, we show that with exper-
imentally accessible parameters, a gate frequency of
approximately 40 MHz corresponding to a gate time as
short as 12.5 ns can be obtained with vanishing dynamical
cross-Kerr interaction. This fast gate is achieved by work-
ing with large capacitive couplings between the qubits and
the coupler, while canceling the cross-Kerr interactions by
setting the coupler anharmonicity to positive values, and
choosing the right modulation amplitude. Optimization
of realistic device parameters based on close agreements
between the Floquet simulations and the experimental data
will be published elsewhere [60].

We argue that the analytical method introduced here
and which is based on a drive-dependent normal-mode
expansion is a computationally efficient strategy to orga-
nize the perturbation theory as compared to an energy
eigenbasis calculation, for it allows the parameters of the
effective Hamiltonian to be obtained at lower orders in
perturbation theory. Moreover, this strategy is suitable in
the regime of comparatively large linear couplings, where
the dispersive approximation breaks down. Nonetheless,
we show that higher orders in analytical perturbation the-
ory are needed for full agreement with exact numerical
results, especially for higher-order interactions, such as the
dynamical cross-Kerr. Generating higher-order contribu-
tions efficiently using computer algebra techniques is the
subject of future studies. On the other hand, this work indi-
cates that Floquet numerical methods, as compared to full
time-dynamics simulations, is a numerically efficient and
exact method for minute optimization studies of parametric
gates.
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APPENDIX A: TIME-DEPENDENT
SCHRIEFFER-WOLFF TRANSFORMATION

To obtain equations for G, (1), we assume that the gener-
ator can be expanded as a series in A, that is

Gi(t)y =26V + 126G + -, (A1)
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and collect powers of A in the BCH expansion of Eq. (9)

e 01 (Hy — i9)e% = 27D — inG
DG - LG A5 - 26

— i3, + O(X). (A2)

The above expansion can be expressed compactly

w .
e 1 (Hy — ia)e = 3 3 [ﬁ];k)(t) _ if;}“] —id,
k=1
(A3)

Provided a prescription for A (A?fk) (t), we have a recursive
way of determining higher-order corrections to the inter-
action Hamiltonian: knowledge of AH ;”(t) allows one to
determine A2A1?, then A3 A etc.

The kth-order term in the generator, A* G}k) (9, is deter-
mined by the condition that the Hamiltonian be free of
oscillatory terms of order A¥ or less. This condition can
be formulated explicitly if we write, as in Eq. (11),

N —(k) ()
AP 1) = WH, + 2FH, ). (A4)

= (k)
Then oscillatory terms A*#, are canceled for every k if

¥0) L[ z®
GO0 == | Ak, . (A5)
Jo

Note that, in the above expression, we impose the bound-
ary condition G;k) (0) = 0 by specifying the lower limit of
the integration. Noting that Eq. (A5) implies

(5B 1 [ z®
Gy (t)=7/>»H1 ),

WG () = % [ / Akﬁik)(t)} . (A6)
=0

——(k)
The dc part of the generator, A*G; , is nonvanishing

here as a result of the boundary condition in Eq. (AS),
as opposed to the zero time-average property of kick
operators, to which the generator studied here is related
[47].

With the above formalism in place, we are now ready to
compute perturbative corrections. From Eq. (9) we identify

the A2 correction to the interaction-picture Hamiltonian
~ ~ ~ i X ~
VAP (1) = [P, 1G] - 5[;@“&)@5”]. (A7)

Going ahead and solving the RWA condition in Eq. (AS)
at order A!, we find the order-A? RWA Hamiltonian

2T(Z) 1[=M ()]
AMH, =-|H; ,/ AH, (¢)dY
0

1

1 =0 Lo~
—I—Z AH, (t),/ AH, (f)dt |. (A8)
0

This procedure can be iterated to higher orders, with
increasing complexity due to the proliferation of terms
from nested commutators in the BCH expansion.

APPENDIX B: CIRCUIT QUANTIZATION

In this Appendix we derive the model Hamiltonian
of Eq. (1) from the circuit Lagrangian corresponding to
Fig. 8. Assuming the individual modes of the junction
array have small impedance, guaranteed by sufficiently
large Josephson energy, the junction array can be described
by an effective one-dimensional Lagrangian where the total
phase difference across the array is spread evenly through
the junctions. The effective one-dimensional Lagrangian
associated with the bare coupler mode is

C. .
L, = k;ﬁ 7"¢i + aEj. cos[@, ] + BNE,. cos [%} ,
(B1)

where ¢, is the branch flux across the small junction and
the shunt capacitor with total capacitance Cy, ¢4 is the
branch flux across the junction array with effective capac-
itance Cg, and @, = 2w ¢,/ P, are the associated reduced
phase variables, and @, is the superconducting flux quan-
tum. The phases ¢, and ¢4 are constrained by the fluxoid
quantization, ¢, + Vg = Pext- We define the alternative
coordinates

Py = Qe+ LaPext,

Vs = =0, — Nig@ex, (B2)

with i, — Nug = 1, such that the capacitive energy in the
Lagrangian is now purely quadratic in ¢,. We thus require
Cotta + CgN g = 0. We obtain

__ G
lu’Dl_ Ca+ca7
1 G
- B3
M= TN Co+ Gy 3)
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FIG. 8. Circuit schematic and notations used in the derivation
of the circuit Lagrangian in Appendix B. The coupler consists of
two branches of total capacitances C,, and Cs (not indicated in
the figure). The o branch consists of a single Josephson junction,
while the ‘8’ branch contains N junctions in series. The bare
coupler and transmon modes are connected capacitively through
coupling capacitances Cgp pe,ca-

Up to time-dependent scalar terms, we obtain the form

C. .2
L. = 76¢c + aEj. cos [(PC + Mawext]

+ BNE,, cos [‘% T M,ggaext] . (B4)

Moreover, for the two bare transmon modes j = a, b the
Lagrangian reads

C .2
L; = Tjd’j + Ejj cos @;. (B5)

The total Lagrangian of the system then takes the form

L=Ly+Ly+ Lot Ly, (B6)

where we introduce the capacitive coupling between the
three bare modes

Che - Cea

Cab ; :
= " bubs+ b+ S beb (BT

APPENDIX C: PERTURBATION THEORY FOR
THE TOY MODEL

In this section, we reproduce expressions for the cross-
Kerr interaction obtained to second-order in perturbation
theory for the toy model. The full expression of the second-
order RWA correction to the cross-Kerr interaction in Sec.

I1I B reads

2
4(2 i—a,bc aj”bjuq"‘/>

wp — W¢

Xab,Sec. B —

4 j=ab,c Ugj uh] Uej & )

Wg — We
2
2 j=ab,c Waj Ubj Ui O )

B
<a)+a)—2a)
P
B

2
2 ij=a,b,c ajuhjaj)
w, — Wy
2
2 —abcua] ub]a])
W, — Wp
2 2
UgcUpe Zj —a,b,c Yaj Ubj (uaj - ubj)
+ 8.
Wy — Wp
(CD)

The second-order correction to the static cross-Kerr inter-
action as calculated in Sec. III C is

2
4 (Z i—ab,c a]“b/“q“/>
2 2 2
wp — we + Zj:a,b,c 2uaj (ubj - ucj) o,
5 2
4 (Z} =a,b,c Uqj ubj Uej OCj)
2 2 2
Wg — we + Zj:a,b,e 2ubj (uaj - uLj) o
) 2
2 (Zj —ab.c Uaj Ubj Ugj ®; )

w, + wp — 20, + <2uaj Up; — ug) o

2
3
2 (Z] =a,b,c uaj ubj “j)
wg —wp+ ) abc(ua 2ua]ubj)oc
3 2
2 (Zj =a,b,c Ugj ubj aj)

W, — wp + ija’b’c (2u§j uﬁj - “2]) aa'
(€2)

@
Xab Sec. I C —

_.I_

+

_|_

The expression for the dynamical cross-Kerr interaction,
Xub sec. 1 c at 8 # 0, is available from the formalism, but
it is too lengthy to be reproduced here. In the main text,
an evaluation of this expression is used in making direct
comparisons to exact numerics.
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APPENDIX D: DETAILS FOR FULL-CIRCUIT
HAMILTONIAN

In this Appendix, we record a number of results used
in Sec. 1V, in particular solutions to classical equa-
tions of motion in Appendix D1, the formulae used
for normal-ordered expansions in Appendix D2, and
the time-dependent terms in the coupler Hamiltonian in
Appendix D 3.

1. Classical equations of motion

We consider a time-dependent unitary displacement of
Eq. (1) according to which

@, = @, +¢; (O, by — 0y +n(1), (D)

with j = a, b, c. Requiring that the Taylor expansion of

the displaced Hamiltonian do not contain any linear terms

amounts to having ¢; (¢), n; (t) obey the classical equations
of motion associated with the Hamiltonian of Eq. (1). We

J

obtain these by writing down the six Heisenberg equa-
tions of motion d@, /dt = i[A, @;], di; /dt = i[H, n;] for
j = a,b,c, then passing Heisenberg-picture operators to
classical variables @; (t) — ¢; (1), 1; (t) — n; (D).

¢u = 8Ecang + 4Eceane + 4Ecapny,
¢p = 4Ecapng + 8Ecpny + 4Ecpene,
Qe = 4Ecoghy + 4Ecpeny + 8Ecene,
ng = —Ejqsin(g,),
ny = —Ezsin(gp),

’:lc = _aEJc sin [§0c + ,Uvotgaext(t)]

. [
— BEscsin| 55+ npoe®]. (02
Differentiating the first three equations we eliminate the
charge coordinates to obtain a set of second-order equa-
tions for the phase coordinates

. . . . . [®
G+ @} sin g, + 4EcarEup sin gy + 4EceaEre | sinlpe + Hogon 0] + Bsin [ £+ ppoed] | = 0,

@b + a);b singp +4EcapEja sing, + 4EcpEe {05 sin[@. + fa@ext ()] + B sin [ﬁc + Mﬁ(pext(t)]} =0,

. . . @, . .
e + e, sin[ge + pa@ex (D] + B, sin [NC + ,U«ﬁ(pext(t)] + 4EceaEga sin @4 + 4EcpcEpp sin gy = 0,

(D3)

where we define three plasma frequencies w,; = \/8E; Ej; for j = a, b, c. These equations can be solved approximately

by considering a trial form

@; = ¢ sin(wgt) + &,

(D4)

and equating coefficients of the zeroth and first harmonics of the drive frequency w,. This leads to six coupled

transcendental equations

s, $in(€a)Jo(La) + 4EcapEpp sin(E)Jo (2s)

+ 4ECcaEJc

w2y $in(€)Jo(8) + 4E capE sa sin(Ea)Jo (o)

+ 4ECbcEJc

. _ (& _ Se
o Sln(gc + /’Lawext)‘/()(é.c + M,),a(ﬁ) + :3 sSm (ﬁ + MBPext JO —+ Mﬁ5§0 = 0:

N

: _ (& _ Se
o SIn (Sc + /’La(/)ext) Jo (&e + Hadp) + B sin <N + UpPexi | Jo | — + 1pde =0,

N

. _ . (& _ g
aa);c Sln(%-c + Mawext)JO(;‘c + //Lot8§0) + :Bwic s (ﬁc + MBPext JO NC + Mtxaq)

+ 4EceaE g sin(€,)Jo(Ca) + 4EcueE gy sin(€p)Jo(8p) = 0,

- a)jga + 260;(1 cos(&,)J1(¢a) =0,
— W3 + 22, cos(Ep)J1 () = 0,

N N

_ & _ g
— Wil + 2000}, COS(Ee + paPex)1 (L + o) + 2w, COS <— + 1gPexe | 1 | = + upde =0. (D5)
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The equations above are solved numerically by search-
ing for the root closest to the response of the decoupled
system (Ecay = Ececa = Ecpe = 0) to a static external field
(8¢ = 0), i.e., zero amplitude response {; = 0, in addition
to &, = 0 and &, the minimizer of the static potential of
the coupler defined by the current conservation condition

o Sil’l(gc + :U“Olaext) + ﬂ sin (f_\; + /“Lﬂaext) = 0. (D6)

We finally make the assumption that displacing the quadra-
tures by the classical solutions obtained above will remove
from the Hamiltonian, to a good approximation, the terms
that are linear in the quadratures @;, i; forj = a,b,c.

2. Normal-ordered expansions of trigonometric
functions. Jacobi-Anger expansions

Sine and cosine are expanded in normal order using
the following two expressions [61] [recall that ¢, =

Vna/2@+ahi:

Cos Py = e /4 E

(=%)""" atmar

>

m!n!
m,n=>0
m+n= even
m+n—1/2 a4~

16 = ol [Na (=%) aa
sing, =e 17 [ — E , (D7)

2 m!n!

m,n>0
m-+n= odd

with analogous expressions for the operators band ¢.

3. Time-dependent terms in the coupler Hamiltonian

Terms corresponding to the Jacobi-Anger expansion up
to the second harmonic of the drive in the bare coupler

Hamiltonian A () in Sec. IV are listed in Table II. The
operator monomial at the beginning of each row is to be
multiplied by the sum of the two following columns, and
then results from all rows are to be summed. The coeffi-
cients of the missing monomials ¢, &2, 8 ¢ ¢t e are
obtained by Hermitian conjugation.

APPENDIX E: NORMAL-MODE
TRANSFORMATION

In Sec. IV, we make use of a normal-mode transfor-
mation that eliminates the off-diagonal capacitive coupling
terms from the time-independent quadratic Hamiltonian. In
this section we provide the steps to obtain the normal-mode
coefficients.

Consider the quadratic form (repeated indices are
summed over):

H = Aaﬁfl(xﬁﬂ + Baﬂ@a@ﬁ- (El)
We make a simplification by assuming that there are no
off-diagonal inductive terms, Byg o 8og, Which is valid for
the circuit studied here. The diagonalization involves three
steps:

Step 1. Rescale the variables so that the diagonal part
of the Hamiltonian, the inductive part, contains terms
with the same inductive energy. For this, let us define
the square root of the product of the inductive ener-

gies B = (]_[a Baa)l/ * and the dimensionless coefficients

TABLE II. Time-dependent terms, up to quartics, in the bare coupler Hamiltonian.
Monomial J1(8) 5 (8)
ef ﬁaee”“/“\/EEjﬂJl (8 e sin (twy) cos (/La@m) + \/Eaee”’C/“\/EEJCJZ (8Ly) cos Ltwy) sin (,uo@ext) +
2 . — _ 2 . —
V2BNe /4N /0. [N2EeJy (8115) sin (twg) cos (pPey)  V2BNe /N /1o IN2Ees (Si1p) cos (2twy) sin (1t sPey)
efef - %aee‘n”c/“ncE Jed1 (i) sin (twg) $in (Ka@ey) %aee‘";‘/“ncE 102 (8ike) €08 (214) €08 (1aPexs)
—Bnee N EjJi (8ip) sin (twg) sin (1pPex) /2N +Bnce N Ejedy (811p) €08 (2twq) cos (1pPex) /2N
¢ —aee " neE ]y (Site) Sin (0q) sin (1aPex) Faee " neE > (Bi1a) €08 (21ey) €08 (HaPex:)
_IB ncf_mEJch (SMB) sin (twd) sin (/’Lﬂaext)/N +IB ncf_mEJch (SMB) Cos (2ta)d) Ccos (/’Lﬁaext)/N
efefef —aee™ TP E ) (Siie) sin (twg) cos (a®ext) /682 —aee™ TP E s (S11g) cos (2twy) sin (HaBexi) /682
_ e . - _ e - . -
—Bnee w2 /;’/—Echjl (8[1,,3) sin (fwy) cos (p_,g(pext)/GﬁN —Bnee 4N? /%EJL.JQ (S,uﬁ) cos (2twy) sin (u,g;(pext)/6\/§N
¢fefe —aee™ TP E ) (S11y) sin (twg) cos (Ha®ext) /242 —aee™ F 2P E s (S11g) cos (2twy) sin (HaBext) /282
- L . — — ”76 . —
—Bnee” 2 [ISE ey (Sip) sin (1wg) €08 (1pPex) /2V2N  —Bnee W2 IS Ejey (811p) cos (21q) sin (1pPex) /272N
¢fefefet 1 /48ae$*”6/4nfE o1 (1) sin (twg) $in (Ka@ey) —1 /480(6’]6”70/4 N2E )y (S1ke)) €08 (21w) €08 (Lo Peyy)
+BnZe W Ejedy (Sup) sin (twg) sin (1P ey ) /48N —Bnle W Ejdy (Spp) cos (2twy) cos (1gPey) /48N
¢fefefe 1/12a€e™/* n2E .y (81te) Sin (t0q) $in (1o Pexs) —1/12aee™/* 12 Epeds (Siaq) €08 (2t04) €08 (1o Pexs)

_ e . . _
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Jo = «/B/Byy. Then we introduce alternative canonically
conjugate coordinates:

Oy =1 Gur iy = falla. (E2)
In terms of the alternative coordinates, and letting 4;,; =
Aqp/(fofp) (no implicit summation), we have

H = Al 7, iy + BSopfl, @) (E3)
Step 2. Diagonalize the capacitive coupling matrix 4’. We
assume here that this is possible and is achieved by an
orthonormal matrix S, such that

A:xﬂ = (ST)Ot/LD[LUSVﬁ = S/L()ZDMVSU/S’ (E4)

with D,, a diagonal matrix. Rewriting the above as
A;'B(ST)ﬂy = (ST)QMDMVSUﬂ(ST)/Sy = (ST)O{/LD/,L)/a or A’-
ST = ST. D, then the matrix S contains the eigenvectors
of A’ on its rows. This diagonalization leads to

H = 8,uDyu,Supil, ity + BSup @l @ (E5)

Inspecting the first term, we again define alternative coor-
dinates
~I

AL
n, = Spally,

@Z = W‘f’fx- (E6)
One can verify that the alternative double-primed coor-
dinates are canonically conjugate because the trans-
formation is orthonormal: [7}, 9] = SuaSuslity, 93] =
i8,aSv80ap = 1S,aSve = i8,,. With this, we obtain a diag-
onal form for the Hamiltonian

H = i Dogitly + BSup@ly ). (E7)
where in the second term we use the fact that the orthogo-
nal transformation preserves the inner product.

Step 3. Finally, we need to undo the rescaling transfor-
mation of step 1. That is, introduce a third and last pair
of canonically conjugate coordinates, the normal-mode
coordinates

Qo =JaBlr P =S A, (E8)
At last the quadratic Hamiltonian reads
A N N B(Saﬂ A A
H = nofofpDapitp + ———Pup
67 fo(f»ﬁ o
= ﬁo(ftxfﬁDaﬂﬁﬁ + @aBotﬁ@ﬁ' (E9)

This is the final normal-mode Hamiltonian.
Hybridization coefficients. 1t is helpful to summarize
the normal-mode transformation by skipping over the

intermediate variables (primed, and double primed). For
this we have to invert the definitions of the intermediate
coordinates to obtain

Gu =Y JuSpaly ' Pp =) Uapp
B B

e =Y fo 'Spafpitp =Y Vaphp,  (E10)
B B

where we use ¢, = S,¢,, and 71, = S,471;,. Note that U -
VT =1, i.e., the transformation from bare to normal modes
is canonical.

Creation and annihilation operators. Lastly, we con-
sider the creation and annihiliation operators. In order for

squeezing terms to disappear in the Hamiltonian, we need

bu= Y “LB+BY,

B=a,b,c ﬁ
2 vo[ A A
=Y —2(p—ph, (E11)
ﬂ:a,b,cl 2
where
N Vap (E12)
Uap = Ugp/€s Vap = .
NG

Finally, we obtain the hybridization coefficients entering
Eq. (44) in the main text. The approach given in this
Appendix generalizes to an arbitrary number of modes
with off-diagonal coupling in either the capacitive matrix,
or in the inductive matrix.

APPENDIX F: FLOQUET THEORY

This Appendix provides a practical summary of Flo-
quet theory. The spectrum of a monochromatically driven
system can be obtained from the Floquet formalism
[20], according to which the time-dependent Schrodinger
equation for a periodically driven Hamiltonian H () =
H(+ 27 /wy) can be recast into a numerically solvable
eigenproblem for the so-called Floquet Hamiltonian [19]

[0 =0, 1gu0) = e lut0). D)

The eigenvalues are the quasienergies €,, and whose
eigenvectors are the Floquet modes, which are periodic
functions of time with |¢, (1)) = |py (t + 27 /wy)). In terms
of these, the solution to the time-dependent Schrédinger
is Yo (£)) = e " |, (1)). Of note, the solutions to Eq.
(F1) are only defined up to an integer multiple k& of the
drive frequency wy, for if {€,, |¢,(?))} is a solution, then
so is {Eak =€ + kwda |¢o{k(t)> = eied! |¢a (D)}e which is
a consequence of the periodicity of the Floquet modes.
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Information about the monochromatically driven system
can be obtained from the quasienergy spectra. For exam-
ple, two-tone spectroscopy experiments where a weak tone
is used to probe the spectra of the driven system can be
modeled in the linear response regime [23]. In such exper-
iments, probe-tone-induced transitions occur at frequency
differences

Aaﬂk =€, — €+ kwy, (F2)

provided that the operator corresponding to the probe tone,
denoted generically as X', has a nonzero matrix element
between the corresponding Floquet modes. With the above
notation, the corresponding matrix elements read

1 T ) N
Ko = 7 /0 dt e (s (01X 16 (0)),  (F3)

where 7 =2m/w,; is the period of the drive. This
takes the form of a Fourier series coefficient f; =
1/T fOT df e~ /D? £ () of the matrix element of the oper-
ator X between the two Floquet modes |¢a,5 (t)).

Numerically, the Floquet spectrum is efficiently
obtained from the time-evolution operator over one period
of the drive, which has a compact expression in terms of
the Floquet modes [20]

U+ Tty = Te I AW

=Y e g, (1) (g ®],  (F4)

where 7 is the time-ordering operator. According to
the above expression, the Floquet modes at time ¢ =
0, |¢p4(0)), are the eigenvectors of U(T,0), whereas the
quasienergies are obtained modulo an integer multiple of
wy from the eigenvalues. The time-dependence over one
period of the drive is obtained by propagating each mode
| (0)) with the time-evolution operator 17(t, 0) in the
interval 0 < ¢t < T.

To summarize, the steady-state dynamics can be
obtained from the propagator U(t,0) over a single period
of the drive, which makes the Floquet method an efficient
alternative to numerical simulation of the dynamics over
the complete gate time. Indeed, the period of the drive, on
the order of 1 ns is between 2 to 3 orders of magnitude
shorter than the typical gate times. In this work we obtain
the quantities above by using the QuTip implementation of
the Floquet formalism [62], to which we have contributed
[63], amended by a numerically efficient evaluation of the
time-evolution operator developed by Shillito et al. [64].

APPENDIX G: NON-RWA EFFECTS IN FLOQUET
SIMULATIONS OF THE FULL DEVICE

In this Appendix we briefly discuss the role of counter-
rotating terms in the Floquet simulations of the full device

~ 6.5 %’%

jan]

D604 Xagk ™,

S Xioopr

N

E < Xowgk

(JCS57 = Xoor sk

5.0 T - T T T
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@ert/ 27

FIG. 9. Floquet eigenspectrum for a rotating-wave approxi-

mation in which all photon-number nonconserving terms are
removed from the full-circuit Hamiltonian analyzed in Sec. V B.
This figure is to be compared to the analogous result for the full
Hamiltonian in Fig. 7.

Hamiltonian. Counter-rotating terms (among which the
parity-breaking cubic terms play a significant role) in the
coupler Hamiltonian induce a helpful correction to the cou-
pler frequency, as can be seen by comparing Figs. 9 to 7.
This indicates, among other things, that a mere approx-
imation of the coupler Hamiltonian as a Kerr nonlinear
oscillator, as done in the case of the toy model, would
be insufficient for precise comparisons with experimental
data. Moreover, the speedup obtained by using the Floquet
method, together with the numerically efficient method
for computing the time-evolution operator, enables us to
study non-RWA effects efficiently as compared to full time
dynamics.
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