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Tunable joint measurements in the dispersive regime of cavity QED
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Joint measurements of multiple qubits open new possibilities for quantum information processing. Here we
present an approach based on homodyne detection to realize such measurements in the dispersive regime of
cavity or circuit QED. By changing details of the measurement, the readout can be tuned from extracting only
single-qubit to extracting only multiqubit properties. We obtain a reduced stochastic master equation describing
this measurement and its effect on the qubits. As an example, we present results showing parity measurements of
two qubits. In this situation, measurement of an initially unentangled state can yield, with near unit probability,
a state of significant concurrence.

DOI: 10.1103/PhysRevA.81.040301 PACS number(s): 03.67.Lx, 03.65.Yz, 42.50.Lc, 42.50.Pq

In most current quantum information experiments, mea-
surements are used to extract information only about single-
qubit properties. Joint measurements in which information
about both single and multiqubit properties can be obtained
offer new possibilities. Examples are the test of quantum
paradoxes [1], test of quantum contextuality [2], realization
of quantum-state tomography with weak measurements [3–5],
and cluster-state preparation [6]. A particularly powerful
type of joint measurement is parity measurement, where
information is gained only about the overall parity of the
multiqubit state, without any single-qubit information. This
type of measurement can be used for generation of entan-
glement without unitary dynamics [7–10], for quantum error
correction [11,12], and for deterministic quantum computation
with fermions [13,14]. In this paper, we show how such joint
measurements can be realized in the dispersive regime of
cavity QED [15]. In particular, we show how the character
of the measurement can be tuned from purely single-qubit to
parity readout. As a realistic example, we present results for
circuit QED [3–5] and show that states with large concurrence
can be obtained. Entanglement generation by measurement
was previously studied in this system [16–19], but ignoring
information about the parity. With parity measurements,
entanglement generation by measurement can be deterministic
rather than probabilistic.

We consider a pair of two-level systems (i.e., qubits) of
frequencies ωaj

, with j = 1, 2, coupled to a high-Q cavity of
frequency ωr . In the dispersive limit, where |�j | = |(ωaj

−
ωr )| � |gj |, with gj the coupling strength of qubit j to the
cavity, the Hamiltonian of this system takes the form [20]

H =
⎛
⎝ωr +
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χjσ j
z

⎞
⎠ a†a +
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j

ω̃aj

2
σ j

z + Jq(σ 1
−σ 2

+ + σ 2
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+)

+ εm(t)(a†e−iωmt + H.c.). (1)

This result is valid to second order in the small parameter
λj = gj/�j . Here we have defined the dispersive coupling
strength χj = gjλj , the Lamb-shifted qubit frequency ω̃aj

,
and the strength of qubit-qubit coupling mediated by virtual
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photons, Jq = g1g2[(1/�1) + (1/�2)]/2 [20]. The last term
represents a coherent drive on the cavity of amplitude εm(t)
and frequency ωm ≈ ωr , appropriate for measurement of the
qubits. With this choice of drive frequency, we have safely
dropped a qubit driving term of amplitude λjεm [20]. To
focus on entanglement generated by measurement only, we
drop the term proportional to Jq . This is reasonable since the
possible measurement outcomes are eigenstates of the flip-flop
interaction σ 1

−σ 2
+ + σ 2

−σ 1
+, as made clear in the following.

Coupling to unwanted degrees of freedom is modeled using
a Lindblad-type master equation [21]. In Ref. [16], a master
equation for qubits only was obtained by enslaving the cavity to
qubit dynamics. This approach is valid only in the limit where
damping of the cavity κ greatly overwhelms the dispersive
coupling strength χj . Here we go beyond these results by using
a polaron-type transformation to trace out the cavity [22,23].
Starting from Eq. (1), we find, following Ref. [22], the effective
master equation:
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(2)

where D[c]· = c · c† − {c†c, ·}/2. In this expression, γ1j is the
relaxation rate of qubit j and γφj

its pure dephasing rate. The
fourth term represents Purcell damping at the rate λ2

j κ [23],
while the last contains both measurement-induced dephasing
(�xy

d ) and ac Stark shift (Axy
c ) by the measurement photons.1

In Eq. (2), x (y) stands for one of the four logical states ij

with i,j ∈ {g,e} the qubit’s ground and excited states and
�x = |x〉〈x|. Measurement-induced dephasing and ac Stark
shift are given by

�
xy

d = (χx − χy)Im[αxα
∗
y ], (3)

Axy
c = (χx − χy)Re[αxα

∗
y ], (4)

1In the single-qubit case, this last term reduces to Eqs. (3.11) and
(3.13) of Ref. [22].
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where χx = 〈x| ∑j χjσ
j
z |x〉 and αx is the amplitude of the

coherent state when the qubits are in state |x〉. This amplitude
satisfies

α̇x = −i(ωr + χx)αx − iεm(t)e−iωmt − καx/2. (5)

The reduced master equation, Eq. (2) is a very good approxi-
mation to the full dynamics when κ/2 � γ1j . Since γ1j does
not include Purcell damping, this inequality is easily satisfied
with current Purcell limited qubits [24].

To go beyond information about average evolution, we
use quantum trajectory theory of homodyne measurement on
the transmitted cavity field to obtain information about single
experimental runs [25]. Following the approach in Ref. [22],
we find the reduced stochastic master equation (SME) in the
multiqubit case,

ρ̇J = LρJ + M[cφ]ρJ ξ (t) − i[cφ−π/2,ρJ ]ξ (t)/2, (6)

and the measured homodyne current is proportional to
J (t) = Tr[cφρJ ] + ξ (t). Here M[c]· = {c, ·}/2 − Tr[c·]·, and
ξ (t) is Gaussian white noise satisfying E[ξ (t)] = 0 and
E[ξ (t)ξ (t ′)] = δ(t − t ′), with E[·] denoting an ensemble
average over realizations of the noise. This stochastic equa-
tion is valid for κ/2 � γ11 + γ12, which is again easily
satisfied [24].

In Eq. (6), the joint measurement operator cφ is

cφ =
√

�10(φ)σ 1
z +

√
�01(φ)σ 2

z +
√

�11(φ)σ 1
z σ 2

z , (7)

where

�ij (φ) = κη|βij |2 cos2(φ − θβij
),

βij = [αee + (−1)jαeg + (−1)iαge + (−1)i+jαgg]/2, (8)

where φ is the phase of the local oscillator, θα = Arg(α), and
η the efficiency with which the photons leaking out of the
cavity are detected. �ij represents the rate of information
gained about the first qubit polarization (ij = 10), second
qubit polarization (ij = 01), or parity (ij = 11). An optimal
measurement occurs when cφ−π/2 = 0 since, in this case, all
the back action arising from the measurement is associated
with information gain [22]. Given the form of cφ−π/2, this
cannot be realized, except in trivial cases.

Given that χj , �r = ωr − ωm, and φ can be changed in
situ [3–5], the form of the measurement operator cφ can be
tuned (in the dispersive approximation, changing εm only leads
to an overall rescaling). There are several useful choices of cφ .
For example, an equally weighted joint measurement (all |�ij |
equal) is ideal for quantum-state tomography since in this case
both the required single-qubit information and the two-qubit
information are on an equal footing. In the limit |χ1 ± χ2| �
κ , this is achieved by choosing ωm to match one of the four
pulled cavity frequencies ωr + χx . As shown in Fig. 1(b), for
χ1 = χ2, an equally weighted joint measurement is realized by
setting �r = ±2χj . For this choice of χj , however, at �r = 0
it is not possible to determine which qubit is excited, and as a
result, the measurement either is completely collective (σ 1

z +
σ 2

z ) for φ = 0 [16] or, more interestingly, extracts information
only about the parity (σ 1

z σ 2
z ) of the combined two-qubit state

for φ = π/2.
This can be understood by considering the steady-state

cavity amplitude αx . Figure 1(a) shows a phase-space plot
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FIG. 1. (Color online) (a) Phase-space illustration of the station-
ary states |αij 〉 for g1 = −g2 = −15κ and χj ∼ 1.5κ . The drive is at
resonance with the bare cavity �r = 0, and its amplitude is ε = κ/2.
(b) Normalized rates of information gain for φ = 0 or φ = π/2:
�01(φ) = �10(φ) [solid (red) line] or �11(φ) [dashed (purple) line].
Vertical lines are at ±2χj . (c) Normalized rates at �r = 0 as a
function of χj : �01(0) = �10(0) [solid (red) line]. �11(π/2) [dashed
(purple) line]. The vertical line indicates the value of χj used in b.
Other rates, �11(0), �01(π/2), and �10(π/2), are 0 and are not shown.

corresponding to the four coherent states |αx〉 for the pa-
rameters given in the caption. Since χ1 = χ2, the coherent
states αeg and αge overlap, while Im[αee] = Im[αgg] but
Re[αee] 
= Re[αgg].2 As a result, measurement of the Q (φ =
π/2) quadrature reveals information only about the parity
and I (φ = 0) the collective polarization. Since, for these
parameters, there is information in the quadrature orthogonal
to the measurement, cφ−π/2 
= 0, and this measurement is not
optimal. As illustrated in Fig. 1(c), however, as the ratio χj/κ

is increased, the measurement becomes optimal for parity
with �01(0), normalized by

∑
ij=01,10,11[�ij (0) + �ij (π/2)],

scaling as (κ/χj )2.
An application of parity measurements is the generation

of entangled states from separable ones [7–10]. In contrast
to collective polarization measurements [16–19], this can be
achieved with unit probability. For example, with the initial
separable state (|g〉 + |e〉) ⊗ (|g〉 + |e〉)/2, the measurement
ideally projects on the Bell state |φ+〉 = (|eg〉 + |ge〉)/√2
or |ψ+〉 = (|gg〉 + |ee〉)/√2. That is, evolution under
Eq. (6) shows a collapse of the separable state to |φ+〉 or |ψ+〉,
conditioned on the record J (t) being predominantly negative
or positive, respectively.

There are four main causes of errors in this collapse. The
first is relaxation and damping [dissipative terms in Eq. (2)].
Interestingly, with the parameters in Fig. 1, λ1 = −λ2 such
that |φ+〉 is immune from Purcell decay [16]. The second is
the time-dependent ac Stark shift [unitary contribution from
the last term in Eq. (2)], which causes a phase accumulation

2It is possible to interchange the role of {ee,gg} and {eg,ge} by
working with χ 1 = −χ 2.
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FIG. 2. (Color online) Mean fidelity to |φ+〉 [long-dashed vertical
(green) and solid diagonal (purple) lines] and |ψ+〉 [dotted-dashed
(red) and dotted (blue) lines] obtained from solving Eq. (2). Long-
dashed (green) and dotted-dashed (red) lines: (γ1j ,γφj ) = (0,0). Solid
(purple) and dotted (blue) lines: (κ/250,0). The measurement drive is
ε tanh(t/σ ), with σ = 1/κ , and the initial state (|g〉 + |e〉) ⊗ (|g〉 +
|e〉)/2. The other parameters are g1 = −g2 = −100κ , χj = 10κ ,ε =
κ , and κ/2π = 5 MHz.

between |gg〉 and |ee〉 in |ψ+〉. This contribution can be
seen as a slow oscillation of the fidelity F = 〈ψ |ρ|ψ〉 between
the state |ψ+〉 and those obtained by numerical integration
of Eq. (2). This is illustrated in Fig. 2. There, the mean
fidelity to |φ+〉 is always 1/2, since half the density matrices
collapse to that state, while oscillations due to the ac Stark
shift appear in the fidelity to |ψ+〉. However, this shift is
deterministic and can thus be undone. The third error comes
from c0 
= 0 causing a stochastic phase between |gg〉 and |ee〉
[last term in Eq. (6)]. For a given experimental run, this does
not reduce the concurrence or purity of the state [because ξ (t)
is known from J (t)]. However, since this phase varies from
shot to shot, the ensemble averaged state is mixed. This error
can be overcome by performing J (t)-dependent single-qubit
phase operations after the measurement or, more simply, by
operating in the large χj limit, where its effect is negligible,
as illustrated in Fig. 1(c). Finally, the measurement is not ideal
in the sense that measurement-induced dephasing affects the
measurement outcome |ψ+〉 (i.e., �

ee,gg

d 
= 0). However, this
effect can be made negligible by increasing the ratio χj/κ

since �11(π/2)/�
ee,gg

d ∼ (χj/κ)2.
To show that the system collapses to |ψ+〉 or |φ+〉, and

that entanglement is generated with unit probability, Fig. 3(a)
shows the mean concurrence E[C(ρJ )], averaged over 104

trajectories. There, departure from unit concurrence in the
dotted-dashed (red) line (no damping, unit detector efficiency
η = 1) is due only to measurement-induced dephasing. The
long-dashed (green), dotted (blue), and solid (purple) lines
take into account relaxation with κ/γ1j ∼ 250 and a detection
efficiency of η = 4/5, η = 1/5, and η = 1/20, respectively.
The latter corresponds to current experimental values [24].
The ratio κ/γ1j is slightly out of reach of current experiments
when taking into account that χj = 10κ is also required. This
cannot be achieved with transmons, as current experiments
have reached the maximal possible coupling [26]. However,
new ideas on increasing the qubit-cavity coupling can help to
achieve these parameters [27].

A low detection efficiency reduces the ratio �11/�
ee,gg

d ,
which in turn corrupts |ψ+〉. As illustrated in Fig. 3(a), this
results in lower concurrences when η < 1. Interestingly, |φ+〉
is not affected by this detection efficiency [16]. Nevertheless,
an improvement in detection efficiency is required to match
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FIG. 3. (Color online) (a) Concurrence as a function of
time for 104 trajectories. Dotted-dashed (red) line, (γ1j ,γφj ,η) =
(0,0,1); long-dashed (green) line, (κ/250,0,0.8); dotted (blue) line,
(κ/250,0,0.2); and solid (purple) line, (κ/250,0,0.05). φ = π/2. All
other parameters are the same as in Figs. 2(b) and 2(c). Histograms
of the integrated current s(t) at (b) t = 1.6/κ and (c) t = 6.3/κ .

concurrences that can be realized with an entangling Hamil-
tonian [4]. Recent improvements with near-quantum-limited
amplifiers are a good step in this direction [28].

Having generated one of the two orthogonal entangled
states, it is necessary to distinguish them efficiently. Using
the experimental record J (t) to compute ρJ (t) from the SME,
Eq. (6), is not efficient since the record is widely fluctuating.
As a result, a useful and more efficient quantity to distinguish
the states is the integrated current,

s(t) = √
�s

11

∫ t

0
J (t ′)dt ′, (9)

where �s
11 is the steady-state value of �11(π/2). Figures 3(b)

and 3(c) show two histograms of s(t) at times t = 1.6/κ and
t = 6.3/κ . These results are for η = 1 and exclude damping
for illustration purposes. The solid (blue) lines are Gaussian
fits to the histograms. These separate at a rate of ∼�11. At
times large compared to 1/�11, but short compared to T1 and
T2, the distributions are well separated and correspond to |ψ+〉
and |φ+〉.
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FIG. 4. (Color online) Average concurrence [dashed (red) line],
average fidelity to |φ+〉 and |ψ+〉 [dotted (green) line], and success
probability [solid (blue) line] as a function of the threshold at time
t = 18.5/κ . (γ1j ,γφj ,η) = (κ/250,0,0.05). Other parameters are the
same as in Fig. 2. The ac Stark shift affecting |ψ+〉 was corrected
before evaluating the fidelity.
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As shown in Fig. 3(c), we introduce a threshold sth to
distinguish these states. All outcomes with s(t) < s0 − sth

(condition c = −) are assigned to |φ+〉, and those with s(t) >

s0 + sth (condition c = +) to |ψ+〉, where s0 is the median
of s. Values outside this range are disregarded. A success
probability Ps can then be defined as the probability of s being
outside the range s0 ± sth. To quantify the success in generation
and distinguishability of the entangled states, we define the av-
erage fidelity F̄ = [〈φ+|E−[ρJ ]|φ+〉 + 〈ψ+|E+[ρJ ]|ψ+〉]/2
and average concurrence C̄ = [C(E+[ρJ ]) + C(E−[ρJ ])]/2.
Ec[ρJ ] represents the ensemble average over ρJ for condition
c = ±. These quantities are illustrated as a function of sth for
the fixed integration time t = 18.5/κ in Fig. 4. Even when
keeping all events (sth = 0), F̄ and C̄ are large, with values of
0.92 and 0.79, respectively. That is, with this procedure, it is
possible to create and distinguish highly entangled states with
unit probability. If one is willing to sacrifice some events, this

average fidelity and concurrence are increased to 0.98 and 0.91,
respectively. The deviation from unity in the large sth limit is
due to slight corruption of the state |ψ+〉 discussed previously.

In conclusion, we have shown how measurements in the
dispersive regime of two-qubit cavity QED can be tuned
from accessing single- to accessing multiqubit information,
thus allowing for example parity measurements. In addi-
tion to allowing complete characterization of the two-qubit
states [3–5] and the implementation of quantum information
protocols [6,11,12], this allows for generation of entanglement
by measurement with unit probability.
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