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Reminiscence of Classical Chaos in Driven Transmons
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Transmon qubits are ubiquitously used in superconducting quantum information processor archi-
tectures. Strong drives are required to realize fast, high-fidelity, gates and measurements, including
parametrically activated processes. Here, we show that even off-resonant drives, in regimes routinely used
in experiments, can cause strong modifications to the structure of the transmon spectrum rendering a large
part of it chaotic. Accounting for the full nonlinear dynamics of the transmon in a Floquet-Markov for-
malism, we find that these chaotic states, often neglected through the hypothesis that the anharmonicity is
weak, strongly impact the lifetime of the transmon’s computational states. In particular, we observe that
chaos-assisted quantum phase slips greatly enhance band dispersions. In the presence of a measurement
resonator, we find that approaching chaotic behavior correlates with strong transmon-resonator hybridiza-
tion, and an average resonator response centered on the bare resonator frequency. These results lead to a
photon-number threshold characterizing the appearance of chaos-induced quantum demolition effects dur-
ing strong-drive operations, such as dispersive qubit readout. The phenomena described here are expected
to be present in all circuits based on low-impedance Josephson junctions.
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I. INTRODUCTION

Low-impedance Josephson-junction circuits, where the
Josephson energy dominates over the charging energy, are
fundamental building blocks of superconducting quantum
processors. Although the most widely used superconduct-
ing qubit is the transmon [1], capacitively shunted Joseph-
son junctions appear in other species of qubits, such as
the heavy fluxonium [2,3], the 0 − π qubit [4] and the
capacitively shunted flux qubit [5,6]. Josephson junctions
can also be used as simple nonlinear elements for para-
metrically activated multiwave mixing [7–10], or as linear
inductive elements in a Josephson junction array to realize
superinductances [11,12].

To meet the requirements of quantum information pro-
cessing with fast and high-fidelity operations, strong driv-
ing fields that are off-resonant from the qubit are often
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used in parametrically activated coupling [7,13], multi-
qubit gates [14,15], and dispersive readout [16]. However,
off-resonant drives of even moderate amplitude are often
observed to cause spurious qubit transitions [17–19]. This
is the case of the dispersive readout whose quantum non-
demolition (QND) character is observed only at very small
drive amplitudes, corresponding to a few photons (n̄ ∼ 2)
populating the measurement resonator [17]. Models based
on perturbative expansion in the qubit-resonator coupling
[20] or in qubit anharmonicity and drive amplitude [21,22]
have been explored to understand the origin of these
unwanted transitions. At large photon numbers (n̄ � 100),
qubit-resonator resonances [23] and structural instabilities
[13,24–26] have been shown to result in spurious transi-
tions. Recently, a numerical study of the full time dynamics
of the transmon has shown that qubit-resonator resonances
can lead to leakage of the transmon population to states
lying above the Josephson-junction cosine potential, some-
thing that has been referred to as ionization [27]. In that
study, ionization was shown to coincide with the loss of
QNDness experimentally observed at low photon numbers
in Ref. [17].

Here, we show that the often-neglected highly excited
states of the transmon can play an important role for cur-
rent experimental parameters and drive amplitudes, even
in the absence of ionization [13,23,28]. We find that a
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subset of the highly excited states in the spectrum of a
driven transmon, the so-called chaotic layer, significantly
and unexpectedly dresses the charge dispersion of the low-
energy transmon spectrum, with detrimental effects on the
qubit dephasing time. This phenomenon can be under-
stood as chaos-assisted [29] quantum phase slips [30]. The
increased dependence on the offset charge even for the
low-energy states suggests that in the presence of strong
drives, models, which rely on a perturbed harmonic oscil-
lator such as the Kerr nonlinear oscillator [31], cannot give
an accurate description of the system, in particular, because
the selection rules derived from these models are no longer
applicable [23]. In addition, we show that the chaotic layer
makes steady-state populations deviate significantly from
the Boltzmann distribution [26,32,33].

We draw upon the Floquet theory [32–34] of nonlin-
ear oscillators [35] to distinguish between the chaotic and
regular states [36,37] of a driven transmon. We introduce
a rescaling of the transmon Hamiltonian from which an
effective Planck constant emerges, �eff = √

8EC/EJ (� =
1). In the transmon regime, where �eff is small, the chaotic
dynamics of the classical driven transmon becomes more
resolved in the quantum spectrum as the number of chaotic
states increases. In particular, we show that the spectrum
of a single driven transmon is correlated [38]. In trans-
mon systems, this type of analysis has been performed in
the many-body regime [39]. Our study reveals that, within
the range of current experimental parameters, the size of
the classical chaotic domain is strongly sensitive to the
drive frequency, something which can lead to instabilities
in the quantum dynamics even at low drive power. Our
results suggest ways to avoid experimental realizations of
transmons from being plagued by these instabilities.

Moreover, by simulating the full transmon plus res-
onator circuit QED model, we show that chaos develops
along two directions, that of increasing resonator Fock
state number and that of increasing drive power. In addi-
tion to validating the study of the single driven transmon,
we show that the transmon and the resonator strongly
hybridize in the chaotic phase. As a result, in the context
of the dispersive readout where chaotic effects are present,
spurious qubit transitions become possible. In particu-
lar, we introduce a critical photon number around which
chaos-induced non-QND effects are expected. We also pre-
dict that spurious effects below this threshold should be
exponentially reduced with

√
EJ /8EC.

The remainder of this paper is organized as follows. In
Sec. II, we introduce a rescaled version of the Hamiltonian
along with the key parameters of the dynamics, discuss
chaos in the classical driven transmon, and briefly dis-
cuss the impact of classical chaos on the quantum system.
Section III tackles the spectral properties of the system
and the dependence of the instability on drive frequency.
In Sec. IV, we consider the coupling of the transmon to a
bath, and the impact of the chaotic layer on the coherence

properties of the low-energy sector is analyzed. Section V
focuses on the interplay of chaos and the validity of the
dispersive approximation in the full-circuit QED setup.
Section VI discusses spurious non-QND effects originating
from the interaction with chaotic states.

II. PERIODICALLY DRIVEN TRANSMON

The Hamiltonian of a transmon in a typical circuit QED
setup takes the form [1,40]

H(t) = 4EC(n − ng)
2 − EJ cos(φ)+ nF, (1)

where n and φ are, respectively, the charge and phase
operators, EC and EJ are the charging and Josephson ener-
gies, and ng an offset charge. The phase φ is compact
and takes its values in the range (−π ,π ]. The operator
F represents a classical driving field on the resonator or
the coupling to a measurement resonator in a circuit QED
setup [40]. As such, F = Fc(t)+ Fq can be expressed as
the sum of a classical part and of a quantum part. The quan-
tum part represents the displaced quadrature of the readout
resonator, i.e., Fq = ig(a† − a), where g is the light-matter
coupling. On the other hand, the classical part is assumed
to take the form Fc(t) = εd cos(ωdt) and represents either
a direct capacitive drive on the transmon or the classi-
cal amplitude of the resonator field. In this work, we are
concerned with the limit of strong drives, where the classi-
cal part dominates over quantum fluctuations, i.e., εd > g.
Expressing the drive amplitude εd = 2g

√
n̄ in terms of an

equivalent number of resonator photons n̄, this strong drive
limit corresponds to n̄ > 1. In typical circuit QED (cQED)
setup, one has g/2π ∼ 250 MHz and n̄ ≥ 2, resulting in
an effective drive εd/2π ≥ 700 MHz.

In what follows, we neglect quantum fluctuations Fq to
study the periodically driven transmon Hamiltonian

H(t) = 4EC(n − ng)
2 − EJ cos(φ)+ εd cos(ωdt)n. (2)

We return to a full circuit QED model accounting for the
presence of the resonator in Sec. V.

A. Classical model

We first consider the classical limit of the driven trans-
mon Hamiltonian where we replace the conjugate opera-
tors {φ, n} by the phase-space coordinates {φ, n}. In doing
so, it is useful to rescale energy and time using the relations
H̃ = H/EJ and t̃ = ωp t, where ωp = √

8EJ EC/� is the
plasma frequency of the transmon. Under this transforma-
tion, which preserves Hamilton’s equations, the classical
Hamiltonian takes the form

H̃(t̃) = (ñ − ñg)
2

2
− cos φ̃ + ε̃d cos(ω̃dt̃)ñ. (3)

This corresponds to the Hamiltonian of a driven charged
classical pendulum with dimensionless momentum ñ = zn
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and position φ̃ = φ [1]. Here, z = √
8EC/EJ is the charac-

teristic impedance of the transmon. In this rescaled form,
the three relevant parameters of the classical driven trans-
mon are the rescaled drive amplitude ε̃d = εd/ωp , the
rescaled drive frequency ω̃d = ωd/ωp and the rescaled
offset charge ñg = zng .

In the absence of a drive, two different types of motion of
the system can be distinguished. For H̃ < 1 (i.e., H < EJ ),
the system undergoes small and bounded phase oscilla-
tions. On the other hand, for H̃ > 1, the system experi-
ences unbounded full ±2π rotations of the phase. While
manipulations of the transmon qubit are designed such
as to only lead to small phase oscillations, the trans-
mon can be promoted to states above EJ by strong drives
[13,23,26,27]. In the quantum case, the resulting full rota-
tions correspond to quantum phase slips [1,30]. At the
boundary of these two types of motion, defined by the
trajectory of energy H̃ = 1 also known as the separatrix,
small perturbations can have a large impact, for exam-
ple, causing bounded oscillations to turn into unbounded
rotations. This structural instability results in an irregular,
chaotic motion of the pendulum at finite drive amplitude in
the vicinity of the separatrix [35].

A useful representation of the system dynamics, both
regular and chaotic, is provided by the stroboscopic
Poincaré sections obtained by plotting the value of the
phase-space coordinates {φ̃(t̃), ñ(t̃)} at every period T̃ =
ωp/ωd of the drive for some initial condition [41].
Figure 1(a) first shows this in the absence of a drive. There,
the two expected types of motions are clearly visible: the
bounded oscillations leading to the closed orbits and the
unbounded rotations to the nearly horizontal patterns. In
the presence of the drive, see Fig. 1(b), the Poincaré sec-
tions break up into regular and chaotic regions. The regular
regions consist of weakly perturbed Kolmogorov-Arnold-
Moser tori, reminiscent of the motion of the unperturbed
system, while the chaotic region develops around the
separatrix [35]. The small tori located within the regu-
lar unbounded trajectories in Fig. 1(b) are due to two
resonances where the drive frequency ±ω̃d matches the
energies of the trajectories, which pass in the vicinity of
(φ̃, ñ) = (0, ±2.5).

B. Quantum model

To compare the quantum dynamics to the classical one,
we quantize the rescaled Hamiltonian of Eq. (3). Impor-
tantly, because the rescaling does not preserve the phase-
space volume, it leads to a renormalization of the Planck
constant upon quantization with �eff = �ωp/EJ = z. As
a result, the commutation relation of the rescaled opera-
tors is [φ̃, ñ] = i�eff. Consequently, in addition to the three
parameters that determine the classical dynamics enumer-
ated above, ε̃d, ω̃d, and ñg , the driven quantum dynamics

(a) (b)

(d)(c)

FIG. 1. (a) Poincaré section of the undriven system and (b) of
the system driven at ε̃d = 0.5, ω̃d = 1.34 and with initial time
T̃/8. In the driven case, a chaotic layer develops around the sepa-
ratrix. Additional resonances within the unbounded states appear
taking the form of tori located at the border of the separatrix.
(c),(d) Mean energy per cycle as a function of drive amplitude
ε̃d for ω̃d = 1.34, ng = 0.25, and for two different values of �eff:
(c) �

−1
eff = 7.91 (EJ /EC = 500) and (d) �

−1
eff = 3 (EJ /EC = 72).

In analogy to the classical case, strong hybridization of the
states develops about the separatrix located at 〈〈H 〉〉/EJ = 2. The
insets marked by a red triangle show the Husimi functions of the
Floquet modes of the first excited state at ε̃d = 0.5. Its wave func-
tion remains globally regular and is reminiscent of the first Fock
state. The insets marked by a red dot correspond to a state located
close to the separatrix. The corresponding Husimi function is
irregular and delocalized over the corresponding classical chaotic
domain in (b). The black squares represent the phase-space area
�eff occupied by one state.

of the transmon is characterized by a fourth parameter, �eff,
characterizing quantum fluctuations.

The solutions to the time-dependent Schrödinger
equation associated to the Hamiltonian in Eq. (2) are
the time-dependent Floquet states |ψk(t)〉 = exp

(−iεkt
)

|φk(t)〉, characterized by the rescaled quasienergies ε̃k
and the time-periodic Floquet modes |φk(t)〉 [34]. The
quasienergies of the Floquet modes are defined up to
integer multiples of the drive frequencies, and hence are
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not indicative of the amount of energy stored in the sys-
tem. However, the mean energy per cycle for mode |φk(t)〉
can be defined as [42]

〈〈H 〉〉 = 1
T

∫ T

0
dt 〈φk(t)| H(t) |φk(t)〉 , (4)

where T is the period of the drive. This mean energy per
cycle is plotted in Fig. 1(c) as a function of the drive ampli-
tude ε̃d and different Floquet states k for a very weakly non-
linear transmon qubit with �

−1
eff = 7.91 (EJ /EC = 500). As

the drive amplitude increases, the perturbation hybridized
the states around the energy 〈〈H 〉〉/EJ = 1, correspond-
ing to the energy of the separatrix in the classical system,
and does so in an increasingly large bandwidth around
that energy. Remarkably the main features subsist in the
more experimentally relevant case of �

−1
eff = 3 (EJ /EC =

72), although the hybridization is visually less pronounced
because the level separations are larger, see Fig. 1(d).

The diffusion of classical trajectories through the chaotic
domain translates to delocalized Husimi functions of the
Floquet modes for the driven quantum system [33,43].
This can be intuitively understood by the fact that the
Floquet modes are eigenstates of the propagator over one
period of the drive, which is the quantum analog of the
stroboscopic Poincaré map defined above [44]. In the
insets of Figs. 1(c) and 1(d), we plot the Husimi func-
tions at time T/8 of the Floquet modes indicated by the
red markers on the spectra at ε̃d = 0.5. Because the phase
is defined on (−π ,π ], we use the definition of Ref. [45]
for a coherent state on a circle. The insets indicated by
the red triangle correspond to the Husimi functions of the
Floquet modes of the first excited state. Because it is out-
side of the region where the states are strongly mixed (i.e.,
outside of the chaotic layer in the classical system), its
wave function remains globally regular and is reminis-
cent of the first Fock state. On the other hand, the insets
marked by a red dot correspond to a state located close
to the separatrix. The corresponding Husimi functions are
irregular and delocalized over the region corresponding
to the chaotic layer in the classical case, see Fig. 1(b).
The black squares in the upper right corner of the insets
indicate the phase-space area �eff occupied by one state.
A smaller �eff results in a smaller amplitude of quantum
fluctuations, and therefore in more resolved features in the
Husimi functions.

III. QUANTUM SIGNATURES OF CHAOS IN THE
DRIVEN SPECTRUM

A. Level-spacing statistics

The chaotic nature of the states near the separatrix can
be confirmed through the correlated nature of the Flo-
quet spectrum, which manifests itself in the distribution of

FIG. 2. Level-spacing statistics for �
−1
eff = 3 and ω̃d = 1.34 for

the undriven (green) and driven (red) spectrum. The set of states
comprises those of mean energy satisfying 0.6 < 〈〈H 〉〉/EJ <

1.5. The statistics is generated using the Floquet spectra cor-
responding to 200 values of ng uniformly distributed over the
interval [0, 0.5]. The driven spectrum distribution follows the
Wigner-Dyson distribution (dashed line), while the distribution
of energies for the undriven system follows the Poisson distri-
bution (dotted line). The inset shows the integrated distribution
I(�) = ∫ �

0 dsP(s).

level spacings P(�). Indeed, the strong level hybridiza-
tion observed near the separatrix results in level repulsion
and, in turn, to a Floquet spectrum with strong correla-
tions in the distribution of the spacing between levels.
In that situation, P(�) is expected to follow the Wigner-
Dyson distribution (dashed line in Fig. 2) [38]. In contrast,
in the regular regime levels are uncorrelated and their
distribution is Poissonian, as is characteristic of random
uncorrelated events (dotted line in Fig. 2) [38].

To display this distribution, we consider a set of N states
with sorted quasienergies ε1 ≤ · · · ≤ εN lying within the
first Brillouin zone, i.e., |εn| ≤ ωd/2 for all n. The spacing
between adjacent quasienergy levels is defined by �n =
(εn+1 − εn)/�̄ for n = 1, . . . , N − 1, where �̄ = ωd/N is
the mean level spacing. We also define �N = (ε0 − εN +
ωd)/�̄ at the boundary of the Brillouin zone. In the limit
of large N , the distribution P(�) is expected to follow
the Wigner-Dyson statistics for correlated spectrum [46],
whereas it is expected to follow a Poisson distribution for
an uncorrelated spectrum.

In analogy with the study of classical chaos, we define
the chaotic domain using the mean energy per cycle 〈〈H 〉〉.
As can first be seen in Fig. 1(c) for �

−1
eff = 7.91, the mean

energies of the chaotic states are concentrated around EJ ,
and are separated from the regular states by a gap. The
relevant energy bandwidth of the chaotic zone depends
on the drive amplitude and, for ε̃d = 0.5, we take the N
states whose energies satisfy 0.6 < 〈〈H 〉〉/EJ < 1.5. How-
ever, for the value of �

−1
eff = 3 corresponding to a typical

transmon qubit, the spectrum displays only a handful of
chaotic states in this energy bandwidth. With about N ∼ 7
levels, see Fig. 1(d), this is far from enough to generate
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meaningful level-spacing statistics. To circumvent this
problem, we use the offset charge ng uniformly distributed
in the interval [0, 0.5] to generate statistics. This is possible
because, even in the transmon regime, the chaotic states are
not confined in the cosine potential well making them very
sensitive to the offset charge. We return in Sec. IV to some
of the observable implications of this ng dependence of the
chaotic states.

We plot in Fig. 2 the cumulative histograms of P(�)
obtained from adding the distributions corresponding to
200 values of ng uniformly distributed in the interval
[0, 0.5] for ε̃d = 0 (green bars) and ε̃d = 0.5 (red bars). In
the absence of a drive, the system is regular and P(�) fol-
lows the Poisson distribution expected for an uncorrelated
spectrum. This also suggests that the undriven spectrum
is well randomized by the variation of ng . In contrast,
at ε̃d = 0.5, P(�) approaches the Wigner-Dyson distri-
bution. The number of states N in the selected energy
bandwidth has increased in the chaotic case. This is due
to the hybridization of states with mean energy close to
the separatrix region 〈〈H 〉〉 ∼ EJ , as mentioned above.
More generally, the extent of the chaotic layer is seen
to increase with the drive amplitude, something which is
particularly clear in Fig. 1(c). The inset of Fig. 2 shows
the integrated distribution I(�) = ∫ �

0 dsP(s) for which the
statistical variations are reduced because of the integra-
tion, thereby allowing for a clearer distinction between
uncorrelated and correlated spectra [38].

B. Drive-frequency dependence

In addition to spreading over an increasingly large
energy bandwidth with increasing drive amplitude, the size
of the chaotic region also strongly depends on the drive fre-
quency. This is illustrated in Figs. 3(a)–3(d), which shows
the Poincaré sections for ω̃d = 0.75, 1.25, 2.25, and 4.25.
The mean energy spectra of the corresponding quantum
systems are shown in Figs. 3(e)–3(h) as a function of ε̃d/ω̃d
for �

−1
eff = 2.45 and ng = 0.25. To compare the effect of

different drive frequencies, the ac-Stark shift computed
from the quasienergies of the ground and first excited states
is fixed to 100 MHz in (a)–(d) (see Sec. A). The corre-
sponding drive amplitudes are represented by a vertical
black dashed line in Figs. 3(e)–3(h). In (a)–(d), the width
of the chaotic layer is observed to be maximal for interme-
diate drive frequencies ω̃d ∼ 1 − 2. This observation is in
qualitative agreement with the approximate expression for
the width of the chaotic layer around the separatrix

Wc/EJ ≈ ε̃dω̃dsech
(
πω̃d

2

)
, (5)

a result, which is valid for ω̃d > 1 [41,47]. Following this
expression, the chaotic layer is expected to have a maxi-
mal width for 1 < ω̃d < 2, and to exponentially decrease
in width with increasing ω̃d for ω̃d > 2.

The approximate expression for the width, however,
does not account for resonances that result in the additional
tori observed in Figs. 3(a)–3(d). In particular, in the range
0.6 � ω̃d � 3, which includes the regime of operation of
current experiments, we find that resonances play an essen-
tial role in drive-induced instabilities. The origin of these
resonances can be qualitatively understood by expressing
the classical Hamiltonian of Eq. (3) in the equivalent form

H̃(t̃) = (ñ − ñg)
2

2
− cos

[
φ̃ + ε̃d

ω̃d
sin(ω̃dt̃)

]
. (6)

Using the Jacobi-Anger expansion to first order in ε̃d/ω̃d,
this can be approximated as

H̃(t̃) ≈ (ñ − ñg)
2

2
− J0

(
ε̃d

ω̃d

)
cos φ̃

+ J1

(
ε̃d

ω̃d

) [
cos(φ̃ − ω̃dt̃)− cos(φ̃ + ω̃dt̃)

]
, (7)

where Jk(z) is the kth Bessel functions of the first kind. The
first line of Eq. (7), H̃ε̃d = (ñ − ñg)

2/2 − J0(ε̃d/ω̃d) cos φ̃,
describes an undriven pendulum with a potential energy
reduced by the factor J0(ε̃d/ω̃d). The second line is of
smaller amplitudes and describes the first harmonic of
the time-dependent perturbation. Higher-order harmon-
ics of the drive are neglected because their amplitude is
suppressed by the factor Jk(ε̃d/ω̃d) and because the corre-
sponding resonances occur at higher frequency, ω̃ > 2ω̃d.
The effects of the perturbation can be understood by insert-
ing in the second line of Eq. (7) the solution (φ̃(t), ñ(t))
of the system under the time-independent Hamiltonian H̃ε̃d

with initial conditions (φ̃0, ñ0). Depending on the drive fre-
quency, resonances can occur either within the bounded
states or the unbounded states.

The trajectories representing the bounded states of the
pendulum can be generated in the Poincaré sections with
the initial conditions (φ̃0 < π , ñ0 = 0). For small oscil-
lations, the pendulum behaves as a slightly anharmonic
oscillator, and its oscillation frequency decreases as the
oscillation amplitude φ̃0 increases. For |φ̃0| < 0.8π , the
nonlinearity does not play an important role and the pen-
dulum frequency varies smoothly. This corresponds to a
frequency range 0.65 � ω̃ < 1 for the pendulum oscil-
lation. In this case, under H̃ε̃d the trajectory that passes
through (φ̃0, 0) takes the standard form φ̃(t) ≈ φ̃0 sin(ω̃t̃)
where we have neglected the higher harmonics of the
motion. Inserting this expression for φ̃(t) in the sec-
ond line of Eq. (7) leads to the slowly rotating terms
J1

(
ε̃d/ω̃d

)
J2k+1(φ0) cos[(ω̃d − (2k + 1)ω̃)t̃].

The case k = 0 corresponds to a 1:1 resonance, i.e.,
ω̃d = ω̃ ∈ [0.65, 1], which strongly impacts the low-
energy states of the system. At ω̃d = 0.75 this resonance
appears as a second set of tori located close to the central
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. (a)–(d) Poincaré sections at time T/8 for the drive frequencies (a) ω̃d = 0.75, (b) ω̃d = 1.25, (c) ω̃d = 2.25, and (d) ω̃d =
4.25. The drive amplitudes are chosen such that the frequency of the 0 − 1 transition in the quantum system is ac-Stark shifted by
100 MHz for all ω̃d. (e),(f) Mean energy spectra as a function of ε̃d/ω̃d at the same respective drive frequencies, with �

−1
eff = 2.45 and

ng = 0.25. In each case, the drive amplitude yielding an ac-Stark shift of 100 MHz is indicated by the vertical black dashed line—the
above Poincaré sections have been computed for these amplitudes. For the parameters of (a),(c),(d), a 1:1 resonance occurs between
the drive and the system. In (a), this resonance results in a second set of tori within the bounded states of the system (red region). The
overlap of the small oscillation and this resonance results in a large chaotic layer. In the quantum system (e), this leads to strong level
hybridization. In (c),(d), the drive comes in resonance with the unbounded states, resulting in two additional out-of-phase sets of tori
rather than one (red regions). From (c),(d), these tori move away from the center as the drive frequency increases. In (c),(d), 3:1 and
5:1 resonances emerge (green region). In (c), the proximity of the 1:1 (red) and 3:1 (green) resonances to the regular island also causes
large instabilities, both in the classical and quantum systems. In (d), the resonances are far and the width of the chaotic layer is smaller,
as expected from Eq. (5). In (b), the resonance is absent.

tori, see the red-colored region in Fig. 3(a). Large instabil-
ity results from the overlap between these two tori, with a
chaotic layer arising at their separatrices [35]. The result-
ing increased width of the chaotic layer is not captured
by the approximate expression of Eq. (5). The case k = 1
leads to a 3:1 resonance for ω̃d = 3ω̃ ∈ [2, 3]. For ω̃d =
2.25 this resonance results in three sets of tori surround-
ing the central regular island, see the three green-colored
regions in Fig. 3(c). Although of smaller amplitudes than
the 1:1 resonance, the overlap of this resonance with the
main set of tori is likely to produce unstable motion at the
boundary of these. Note also the appearance of a weak 5:1
resonance at ω̃d = 4.25 resulting in five small tori within
the regular island, see the green-colored region in Fig. 3(d).

In contrast, no direct resonance occurs for the case 1.1 <
ω̃d < 1.5, which is common for the dispersive readout, see

Fig. 3(b) for ω̃d = 1.25. Nevertheless, as expected from
Eq. (5), the width of the chaotic layer is large at this drive
frequency.

In the quantum case, the resulting large chaotic layer
translates into a large hybridization of the states even
at low drive amplitude, see the mean energy spectra
Figs. 3(e)–3(g). This hybridization can be further observed
from the modification of the rate matrices (see Sec. A).
This state hybridization can lead to loss of the QND char-
acter of the dispersive readout. As a concrete example,
the value of �

−1
eff and ω̃d = 0.75 of Fig. 3(f) is cho-

sen to match the experimental parameters of Ref. [28]
where the dispersive readout fidelity was observed to
degrade for measurement photon numbers n̄ > 2.5, some-
thing which was attributed to measurement-induced mix-
ing of unknown origin. Using the light-matter coupling of
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g/2π = 208 MHz reported in Ref. [28], n̄ = 2.5 can be
converted to an effective drive ε̃d = 0.105 on the trans-
mon. As can be observed in Fig. 3(e), the first excited
state is “absorbed” in the chaotic layer for εd � 0.1. Since
chaotic states often lead to strong hybridization between
the transmon and the readout resonator (see Sec. V), this
hints at chaos-induced state mixing and non-quantum-
demolition effects in the readout beyond that drive ampli-
tude. Although the above mean-field analysis can qual-
itatively predict unstable behavior of the transmon, the
agreement cannot be expected to be quantitative at low res-
onator photon numbers since vacuum fluctuations of the
resonator field and qubit-resonator parametric processes
occurring in the presence of a readout tone can play an
important role. We address some of these mechanisms in
Sec. V.

The drive can also come in resonance with unbounded
states of the pendulum with energy H̃ε̃d>−1 + 2J0

(
ε̃d/ω̃d

)

∼ 1. The trajectories at those energies take the approx-
imate form φ̃(t̃) = ±ω̃t̃ + F(t̃), where F is a function
of period 2π/ω̃ [35]. Using this expression in Hamil-
ton’s equation of motion for the phase, we find that
the oscillation frequency satisfies ω̃ = |〈ñ − ñg〉| � 1.5,
where |〈ñ − ñg〉| is the averaged momentum of the tra-
jectory over one period. This lower bound can vary with
the drive amplitude through the effect of the reduction fac-
tor J0

(
ε̃d/ω̃d

)
. To leading order, substituting this expres-

sion for φ̃(t̃) in the second line of Eq. (7) results in the
term A0J1

(
ε̃d/ω̃d

)
cos[±(ω̃ − ω̃d)t̃], where A0 is the zeroth

Fourier component of cos[F(t̃)]. Hence, for ω̃d = ω̃ � 1.5,
this resonance appears in the form of two tori moving
clockwise and anticlockwise, corresponding to ±ω̃d, as
depicted by the red-colored regions in Fig. 3(c) for ω̃d =
2.25 and Fig. 3(d) for ω̃d = 4.25. At ω̃d = 2.25, the prox-
imity of the resonance with the regular island results in
a large chaotic domain, which translates in strong state
hybridization in the quantum case, see Fig. 3(g). Because
the average momentum associated to this resonance is
|〈ñ − ñg〉| = ω̃d, the pair of tori move further away from
the center of phase space with increasing drive frequency.
For this reason, at ω̃d = 4.25, this resonance is far from the
separatrix of the undriven system and does not affect the
chaotic layer. As a result, for ω̃d = 4.25 and at larger drive
frequencies, the width of the chaotic layer is exponentially
suppressed as expected from Eq. (5). In this situation, the
absence of instability yields a mean energy spectrum with
little state hybridization, see Fig. 3(h). This fact is fur-
ther illustrated by the regular structure of the charge matrix
elements in Sec. A.

To summarize the above, the frequency ranges 0.65 <
ω̃d < 1 and 1.5 ≤ ω̃d ≤ 3 lead to strong instabilities, in
particular for the former. The parameter regime 1.1 <
ω̃d < 1.5 avoids resonances but has a large chaotic
layer around the separatrix. For ω̃d ≥ 3.5, resonances do
not affect the bounded states (or very weakly through

resonances of order greater than 5), and the width of the
chaotic layer is suppressed. As shown in the next sections,
the presence of the chaotic layer impacts the coherence
times of the transmon qubit, and it should therefore be
minimized when operating the transmon with strong drive,
e.g., in dispersive qubit readout. The frequency ranges
1.1 ≤ ω̃d ≤ 1.5 and ω̃d ≥ 3.5 seem to be more benign.

IV. IMPACT ON COHERENCE PROPERTIES

Having established that the driven capacitively shunted
Josephson junction exhibits signatures of chaos even at the
large �eff corresponding to the transmon regime, we now
turn to the impacts of this observation on coherence prop-
erties of the transmon in the presence of a bosonic bath. In
this situation, the total Hamiltonian now takes the form

H(t) = 4EC(n − ng)
2 − EJ cos(φ)+ εd cos(ωdt)n

+ in
∑

k

gk(b
†
k−bk)+

∑

k

ωkb†
kbk, (8)

where bk and b†
k are the annihilation and creation operators

of the bath modes. Because of hybridization with states
in the chaotic layer, which have a strong charge disper-
sion, it is important to keep the gate charge ng in Eq. (8)
even when interested in the coherence properties of the
low-lying eigenstates of the system.

A. Rate matrix and steady-state population

Within the Floquet-Markov description of the system-
bath coupling, the bath-induced transition rate from Flo-
quet state j to i is given by [34]

	ij =
∑

k

|nijk|2[
(�ijk)+ nB(|�ijk|)]J (|�ijk|), (9)

where 
(x) denotes the Heaviside function, nB(x) is the
thermal occupation number of the bath, and �ijk = εj −
εi − kωd. The spectral function J (x) is assumed to that of
an Ohmic bath, i.e., J (x) ∝ x exp(−|x|/ωc), where ωc is
a high-frequency cutoff. In the expression for 	ij , k can
be interpreted as the number of drive photons participating
positively or negatively to the transition. We also introduce
the charge operator matrix elements

nijk = ωd

2π

∫ 2π/ωd

0
dt 〈φi(t)| n |φj (t)〉 exp(i�ijkt), (10)

where |φj (t)〉 are the Floquet modes of the driven system.
The rate matrices of the driven transmon at ε̃d = 0.4

and a temperature of T = 10 mK are shown for ng = 0.5
in Fig. 4(a) and for ng = 0.25 in Fig. 4(b). As a com-
parison, the insets show the rate matrices in the undriven
case. For a given transition 	ij , the blue (red) squares sum
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(a) (b)

(d)(c)

FIG. 4. Top panels: rate matrices in units of the coupling
strength to the bath, at ε̃d = 0.4, �

−1
eff = 3, ω̃d = 1.34, and T =

10 mK for (a) ng = 0.5 and (b) ng = 0.25. The states are sorted
by their mean energy 〈〈H 〉〉. The blue (red) squares correspond to
the sum of rates involving an even (odd) number of drive photons
k. The insets show the rate matrices of the undriven systems. At
finite drive, the instability develops around the separatrix leading
to an irregular block in the rate matrix also allowing for upward
excitation rates. At the symmetric point ng = 0.5, the red and
blue squares do not overlap, while at ng = 0.25, hybridization
of parity sectors can be observed through the presence of pur-
ple squares even in the low-energy sector. The purple squares in
(a) are due to numerical errors (see text). Bottom panels: steady-
state population as derived from the above rate matrices for (c)
ng = 0.5 and (d) ng = 0.25. In the driven system, a plateau forms
over the states that are part of the chaotic block of the rate matri-
ces, instead of the regular exponential distribution in the undriven
case, as shown in the insets.

the contributions from even (odd) values of k, with purple
squares indicating contributions from both even and odd
values. At zero drive, the upper triangular sector of the rate
matrices (corresponding to upward transitions) contains
negligible but nonzero elements due to the finite tempera-
ture (not visible in the insets). At finite drive, the instability
develops around the states located on the separatrix (typi-
cally around the eighth excited state), forming an irregular
block in the rate matrix. In particular, states within the
chaotic layer are all coupled to one another through the
charge operator. In addition, because of the drive photons,
upward transitions are now apparent. The appearance of
an irregular block in the rate matrix directly relates to the
repulsive statistics of the quasienergies. In fact, chaotic
systems can be accurately described by random matrices
in the limit of a large number of chaotic states [38]. In
Sec. E, we leverage this property to estimate the average
charge matrix element between two chaotic states when all
the low-energy states are chaotic.

In the transmon regime, the low-energy sector is almost
independent of the offset charge and, if one neglects its
influence, the Hamiltonian becomes effectively symmet-
ric under the parity transformation φ → −φ and n → −n
(see Sec. B). Because it neglects the gate charge, this sym-
metry is implicit in the Kerr nonlinear oscillator model
of the transmon. Although this symmetry is exact only at
ng = 0 and ng = 0.5, at zero drive it results in a suppres-
sion of the matrix elements of the charge operator ni,i+2 in
the low-energy sectors for all values of ng , and forbids the
transition i → i + 2, see insets of Figs. 4(a) and 4(b). The
fact that this is only an approximate symmetry at ng = 0.25
is apparent for the states in the separatrix region and above.

In the presence of a drive term εd cos(ωdt)n, the inver-
sion symmetry only holds together with the time trans-
lation t → t + π/ωd [34]. This symmetry of the driven
Hamiltonian defines even and odd parity sectors among the
time-dependent Floquet states (see Sec. B). Because the
charge operator is antisymmetric, under this generalized
parity symmetry, transitions through the charge operator
between two states of the same (opposite) parity can only
involve an odd (even) number of drive photons k. As can
be seen in Fig. 4(a) for ng = 0.5, blue and red squares
do not mix (i.e., there are no purple squares) indicating
that the symmetry is respected for that gate charge. The
purple squares appearing for states 18 and 19 only result
from numerical precision errors. The situation is very dif-
ferent at ng = 0.25 where purple squares appear in the
chaotic layer but also for transitions involving the low-
energy states. This results in transitions that are otherwise
forbidden at the symmetric points ng = 0 and ng = 0.5. As
discussed in further details in the next section, the break-
ing of this effective symmetry in the low-energy sector is a
consequence of a strong increase of the band dispersion in
the presence of drive. Interestingly, transitions forbidden
by the apparent inversion symmetry of the transmon were
experimentally observed under strong drives, but remained
unexplained [23].

The rate matrix can also be used to compute the system’s
steady-state density matrix ρss. Under the assumption of
weak system-bath coupling, the steady state is diagonal in
the Floquet basis

ρss(t) =
∑

j

pj |φj (t)〉 〈φj (t)| , (11)

where the populations pj satisfy the rate equations pj =∑
i 	jipi − ∑

i 	ij pj . The insets of Figs. 4(c) and 4(d)
show these steady-state populations for the undriven sys-
tems for �

−1
eff = 3 which is typical of the transmon regime.

As expected, the populations follow the thermal distribu-
tion with populations quickly dropping below 10−10. In
contrast, in the driven systems (here with ε̃d = 0.4), the
steady-state populations form a plateau corresponding to
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the chaotic layer. This behavior is typical of chaotic sys-
tems [32,33]. Increasing the drive amplitude, the chaotic
layer and therefore the plateau grow until all the low-
energy states are part of the plateau, including the ground
state. This results in a dramatic decrease of the purity of the
transmon’s steady state, an observation, which is in agree-
ment with numerical [26] and experimental results [13].

This discussion sheds light on the distinction between
the time dynamics of the transmon ionization numerically
observed in Ref. [27], and the ionization in the steady state
[13,26]. In the former, one captures the dynamics of the
dispersive readout of a transmon qubit. As the cavity rings
up on a timescale κ−1, where κ is the photon loss rate,
the effective field amplitude εd on the transmon increases.
Starting in the ground or first excited states, the system
follows the corresponding first or second line in the mean
energy spectrum of Fig. 1(c). Ionization occurs when one
of those lines crosses a large resonance with a chaotic state,
i.e., when the mean energy suddenly increases in Fig. 1(c),
something which happens at ε̃d ≈ 1.1 for the ground state
and at ε̃d ≈ 0.75 for the first excited state. Once a chaotic
state is populated, it decays either through the transmon-
bath coupling or through the transmon-resonator coupling
due to its numerous possible transitions at various frequen-
cies (see Sec. V). On the other hand, ionization in the
steady state is only a function of the rate matrix, which
in turn depends on the matrix elements of the charge oper-
ator in the Floquet basis. Large matrix elements between
the ground state and the chaotic states are likely to lead
to ionization through bath-induced transitions. Although a
resonance leads to large matrix elements, the contrary is
not necessarily true.

B. Chaos-assisted tunneling: effects on T2

A defining feature of the transmon is its charge dis-
persion, which is exponentially suppressed with 8�

−1
eff =√

8EJ /EC, making it almost insensitive to charge noise [1].
Here, we show that this exponential suppression does not
necessarily hold in the presence of a periodic drive.

In the previous section, we have seen that the Hamilto-
nian of the driven transmon can be approximately divided
into regular blocks of states: phaselike states at the bot-
tom of the cosine potential well; chargelike states above
that potential, on which the drive acts pertubatively; and
one chaotic block with a strongly correlated spectrum.
From perturbation theory performed on the regular block,
one would expect a drive to lead to a slow hybridiza-
tion amongst regular low-lying states. In this situation,
the ground and first excited states would therefore weakly
inherit an offset-charge sensitivity from weak dressing with
higher energy states, leading to an overall small increase
of the band dispersion with the drive amplitude. In prac-
tice, we find that the presence of the chaotic layer results
in the energy dispersion of these states to be significantly

(a) (b)

FIG. 5. (a) Band dispersion of the first excited state for the
undriven (dashed lines) and driven (solid lines) transmon with
ε̃d = 0.4, for �

−1
eff = √

EJ /8EC in the range [1, 7]. The experi-
mentally relevant value of �

−1
eff = 3 is highlighted in red. The

exponential suppression of the dispersion of the undriven case
is strongly modified by the presence of the drive, showing both
an overall increase and sharp features. The latter are due to small
resonances with chaotic states that have a large charge disper-
sion. (b) Fourier coefficients of the energy ε1(ng) of the first
excited state at finite drive amplitude ε̃d = 0.4 as a function of
the Fourier index n. These Fourier components are understood as
phase-slip rates of order n. The spikes or “abrupt” resonances in
(a) are responsible for the slowly decaying tail in (b) that trans-
lates to long-range tunneling between the Josephson potential
wells. The inset shows the tunneling rates of the undriven sys-
tems with the expected exponential suppression with the distance
between wells.

modified when the system is driven. This is illustrated
by the solid lines in Fig. 5(a) for the first excited state
of the transmon with values of �eff in the range 1 to 7
as labeled by the different colors. As a comparison, the
dashed lines correspond to the undriven transmon and for
which the exponential suppression of the charge dispersion
is clearly observed. In contrast, in the driven transmon the
energy bands are disrupted by peaks of multiple orders of
magnitude in addition to being, on average, substantially
larger than in the undriven case. The sharpness of these
peaks is indicative of a weak resonance between the first
excited state and strongly ng-dependent states located in
the chaotic layer.

These results are obtained by identifying the first excited
state |φ0

1〉 of the undriven system, then tracking the cor-
responding Floquet mode |φ1(t)〉 as a function of the
drive amplitude ε̃d. More precisely, |φ1(t)〉 is the Flo-
quet state maximizing the overlap with |φ0

1〉 at time 0.
As the maximum overlap decreases with drive amplitude
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due to state hybridization, this method is likely to fail at
high drive amplitude, typically for ε̃d ≥ 0.4. To circumvent
this problem, at every increase of 0.1 in the drive ampli-
tude, we update the reference state to which the overlap is
computed to the previously identified state, hence progres-
sively accounting for state hybridization. The same method
is used to track the ground state.

This phenomenon is closely related to chaos-assisted
tunneling (CAT) [29]. In CAT, tunneling between two sets
of disjoint regular states is facilitated by their coupling to
delocalized states in the chaotic layer. Moreover, because
of the participation of states within the chaotic layer, the
tunneling rates are expected to vary widely with the control
parameters [29]. For the transmon, chaos can assist tunnel-
ing between different wells of the cosine potential. Because
the phase of the transmon is compact, tunneling between
wells distant by δφ = 2πn translates to n 2π swings of the
transmon phase or, equivalently, to quantum phase slips of
order n. The transmon states acquire their ng dependence
through these full phase rotations [1]. In the undriven trans-
mon, the rate of these events decreases exponentially with
n for large �

−1
eff .

To evaluate the phase-slip rate in the presence of a
drive, we compute the Fourier transform of the energy
bands of the system [48]. Indeed, the Fourier compo-
nents tn = ∫ 0.5

−0.5 dngε1(ng)ei2πngn of the energy ε1(ng) of
the first excited state corresponds to the rate of phase
slips of order n when the system is in the first excited
state [49]. The components tn are plotted as a function of
the index n in Fig. 5(b). The inset shows the exponen-
tial suppression of tn expected for the undriven case. In
the driven case (main panel), tn is no longer exponentially
suppressed with n. Instead, it shows a long tail, indicat-
ing that the sharp features seen in Fig. 5(a) results from
long-range hopping between the wells. Note that the tun-
neling rates tn remain globally suppressed with �

−1
eff , see

Fig. 5(b). This is explained by an exponential suppres-
sion of the matrix elements nijk between the regular states
and the chaotic states with �

−1
eff . We discuss this point in

Sec. VI.
In cold atoms trapped in a driven optical lattice, the sig-

natures of CAT have been observed by measuring coher-
ent oscillations between states localized in distinct wells
[50,51]. Because the phase coordinate of the transmon is
compact, tunneling oscillation between wells cannot be
measured. However, phase slips (due to CAT or not) lead
to a phase accumulation, which depends on the gate charge
ng due to the Aharonov-Casher effect [12]. Because the
gate charge is a fluctuating function of time, this results
in enhanced dephasing of the transmon. The increased
phase-slip rate due to CAT can thus, in principle, be wit-
nessed through sharp variations of the pure dephasing
rate γφ associated to the driven transmons logical states
|φ0(t)〉 and |φ1(t)〉, as a function of ng and of the drive
amplitude ε̃d.

Within the Floquet-Markov theory, the dephasing rates
takes the form [52]

γφ = Ae|2g0,φ|
√

| logωIRtm| +
∑

k �=0

2S(kωd)|gk,φ|2. (12)

The first term represents 1/f charge noise, while the sec-
ond term comes from the possible conversion of a photon
loss to a dephasing event due to the hybridization of the
logical undriven states |0〉 and |1〉. In the first term, Ae is the
amplitude of charge noise, gk,φ = n11k − n00k where nijk is
a matrix element of the charge operator defined in Eq. (10),
ωIR is the infrared cut-off, and tm is the characteristic mea-
surement time. Typical values are

√| logωIRtm| ∼ 4 and
Ae = 10−4e [53]. In the second term, S(ω) is the spectral
function of the relevant bath, here assumed to be Ohmic. Its
amplitude is chosen such that the lifetime of the undriven
transmon is 50 µs.

The dephasing rate obtained from Eq. (12) and the
numerically obtained Floquet modes |φ0(t)〉 and |φ1(t)〉
corresponding to the logical states in the presence of a
drive is shown in Fig. 6(b) as a function of ε̃d for 50 values
of ng uniformly spaced in the range [0, 0.5] (red lines). All
curves show a slow quadratic increase of γφ with the drive
amplitude due to dielectric losses through the hybridiza-
tion of |0〉 and |1〉 by the drive. This quadratic increase in
the rate with the amplitude of the drive is a signature of a
perturbative effect. More interestingly, the dephasing rate
also displays sharp peaks whose position strongly depends
on ng and ε̃d, as is expected for CAT. To better understand
the origin of these structures, the mean energy of the dif-
ferent Floquet mode is plotted in Fig. 6(a) for ng = 0.13 as
a representative example. The value of γφ obtained for the
same gate charge is highlighted in Fig. 6(b) (blue line). By
comparing the two plots (see the vertical dashed lines), it
becomes clear that the sharp increases in γφ correspond to
resonances between regular states (ground or first excited
state) and chaotic states. As mentioned above, the resulting
hybridization of the computational states with states that
have a strong charge dispersion leads to a sharp increase
in the dephasing rate. The black line is an average over
all realizations of the gate charges. Depending on the time
scale of the charge fluctuations [54,55] and of time needed
to measure γφ , this average may be more representative of
potential experimental observations.

In summary, in this section we have first shown that
chaotic states form an irregular block in the rate matrix
of a driven transmon coupled to a bath. The growth of
the chaotic layer with drive results in the breaking of
the effective parity symmetry of the low-energy states.
The existence of the chaotic states also strongly impacts
the steady-state population. Secondly, we find that the
band dispersion of the ground and first excited states of
the transmon is dramatically modified under drive due to
chaos-assisted quantum phase slips. Due to 1/f charge
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0.0 0.5
ng

(a)

(b)

FIG. 6. (a) Mean energies of Floquet states of the driven trans-
mon as a function of the drive amplitude, with �

−1
eff = 3, ω̃d =

1.34, and ng = 0.13. While the ground and first excited states of
the transmon are tracked as we vary the drive amplitude (blue
lines), the rest of the states are not tracked (black dots). (b)
Dephasing rate of the transmon as a function of drive amplitude
due to 1/f charge noise and dielectric losses (see text) for 50
values of ng distributed uniformly between 0 and 0.5 (red lines)
and the same parameters used in (a). The blue line corresponds
to ng = 0.13, as in (a). Small resonances between the computa-
tional states and the chaotic states that can be observed in (a)
result in sharp peaks in the dephasing rate, due to 1/f charge
noise. The average dephasing rate over the offset charge (black
line) is dominated by 1/f charge noise.

noise, these processes impact the coherence time of the
transmon.

V. CIRCUIT QED: TRANSMON COUPLED TO A
RESONATOR

We have so far treated the drive seen by the qubit as a
purely classical field. To account for vacuum fluctuations
and the richer structure of the energy levels in the presence
of a cavity, we now consider a circuit QED setup where
the transmon is capacitively coupled to a cavity. In this
situation, the Hamiltonian takes the form [40]

H(t) = 4EC(n − ng)
2 − EJ cos(φ)+ εd cos(ωdt)n

+ ωaa†a − ign(a − a†)

− (a − a†)
∑

k

gk(bk − b†
k)+

∑

k

ωkb†
kbk. (13)

The first line of this expression is the Hamiltonian of the
driven transmon qubit, as in Eq. (2). The second line con-
tains the free cavity Hamiltonian defined by a frequency
ωa, together with the transmon-cavity capacitive coupling
g. We take g/2π = 250 MHz and ωa/2π = 8 GHz, with
the drive detuned from the cavity at ωd/2π = 7.5 GHz,
while keeping the same parameters for the transmon qubit
as in the previous sections. Finally, the last line represents
the capacitive coupling of the cavity to a bosonic bath. The
drive term on the qubit can be either seen as directly act-
ing on the qubit in the laboratory frame, or as resulting
from a drive on the resonator. In that latter situation, the
Hamiltonian of Eq. (13) is to be understood as expressed
in a displaced frame where the drive on the cavity has been
removed, i.e., εd = 2g

√
n̄ where n̄ is the cavity steady-state

photon number in the laboratory frame. In this section, we
find the Floquet spectrum of Eq. (13) in the absence of
coupling to the bath, and then calculate transition rates in
linear response theory [26]. Details on the Floquet simu-
lations are provided in Sec. C. In the following, the gate
charge is set to ng = 0.25. We have numerically checked
that the phenomena observed here are qualitatively the
same for other values of the offset charge.

A. Structure of the Floquet spectrum

To characterize the structure of the Floquet spectrum,
for each Floquet mode we compute expectation values
of a pair of operators that are good quantum numbers in
the undriven and decoupled Hamiltonian: the transmon
excitation number Nt = ∑

i,n i |in〉 〈in| and the resonator
excitation number Nr = ∑

i,n n |in〉 〈in|, where |in〉 is a
bare state of the joint transmon-cavity system. In Fig. 7
we show these quantities on a two-dimensional grid in
the (〈〈Nt〉〉, 〈〈Nr〉〉) plane, the (a)–(d) representing different
drive amplitudes ε̃d. As in Eq. (4), the double angle brack-
ets represent the time-averaged expectation value of the
operator in a given Floquet mode over a period of the drive.
In the absence of coupling and drive, this grid is expected
to be rectangular. In the coupled case, for high enough res-
onator photon number 〈〈Nr〉〉 or for large enough drive
power, some Floquet modes deviate strongly from the
regular rectangular grid. These strong deviations are asso-
ciated with state dressing, and a significant hybridization of
the two subsystems. More precisely, horizontal deviations
from the rectangular grid can be interpreted as hybridiza-
tion of transmon states, while vertical deviations originate
from hybridization of Fock states. The hybridization of
Fock states usually occurs through entanglement of the
two systems, implying also a hybridization of the transmon
states.

The degree of hybridization between the two subsystems
is measured by the purity of the transmon reduced den-
sity matrix. Encoding this purity into the color of the grid
points in Fig. 7, deviations from the rectangular grid appear
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(a) (b)

(c) (d)

FIG. 7. Grid of Floquet modes in the (〈Nt〉t, 〈Nr〉t) plane. The
purity of the transmon reduced density matrix is encoded in
the symbol color, for four different drive amplitudes: ε̃d = 0(a),
0.25(b), 0.5(c), and 0.95(d). In a zero-drive decoupled system,
the points should form a square grid. In the coupled system, as
〈Nr〉 and ε̃d increase, level hybridization leads to grid-point dis-
placement, and purity drops. With increasing drive, for 〈Nr〉t ≈ 0,
there is a purity drop in Floquet modes corresponding to the
chaotic layer. Steady state of Floquet-Markov master equation is
represented by a red cross. The thickness of each arrow between
a pair of Floquet modes is proportional to the corresponding rate
	ij at zero temperature, apart from an offset to render the small-
est rates visible. An arrow is plotted if 	ij > 10−3κ for (a),(b),
or 10−2κ for (c),(d). Rates of the undriven system are dom-
inated by single-photon relaxation (vertical lines), and Purcell
decay (left-to-right arrows for 〈Nt〉t � 6) and rate flows tend to
increase purity (a). Rates become increasingly nonlocal as the
drive strength is increased. (b)–(d) Steady-state populations of
each Floquet mode are encoded in the radii of circles around each
grid point. For sufficiently low drive, the steady state is domi-
nated by the vacuum state (a)–(c), unlike steady states above the
ionization threshold (d). See Fig. 14 for the same data at higher
drive power.

to correlate with drops in purity, i.e., an increase of entan-
glement entropy between the transmon and the resonator.
In particular, purity drops are drastic for states whose trans-
mon excitation number corresponds to the chaotic layer
identified in the previous sections for similar drive powers.

We can gain further understanding of the purity drop by
first diagonalizing the time-dependent Hamiltonian of the
driven transmon [first line of Eq. (13)], and then express-
ing the transmon-resonator coupling −ign(a − a†) in the
joint basis of the transmon Floquet states {|ĩ〉} and cavity
Fock states. In a frame rotating at the drive frequency for

the resonator and at the quasienergies for the transmon, the
Hamiltonian reduces to

H(t) = �a†a

− ig
∑

i,j ,k

nijk |ĩ〉 〈j̃ | (ei�ij ,k+1ta − ei�ij ,k−1ta†), (14)

where � = ωa − ωd. The charge-matrix elements nijk and
the energy differences �ijk are defined in Sec. IV, and
the Floquet modes of the transmon are evaluated at t =
0. Large hybridization occurs between the states |ĩ, n〉
and |j̃ , n + 1〉 if the coupling strength is of the order of
the transition frequency, i.e., 2g

√
n + 1nijk ∼ �ij ,k−1 −�.

Note that, for small detuning �, the transition frequen-
cies �ij ,k−1 −� are small for k = 0, 1, and consequently
hybridization of the states is mainly due to the matrix ele-
ments nij ,k=0 and nij ,k=1. For chaotic states, we derive in
Sec. E an estimate of the matrix elements nijk and the fre-
quencies �ij ,k−1. Using these estimates and the previous
expression allows us to obtain a threshold value on the pho-
ton number n for strong transmon-resonator hybridization
(see details in Sec. F). For the parameters of Fig. 7, we find
that the transmon states become strongly coupled even at
the lowest Fock states. This strong hybridization can result
in large decay rates for chaotic states, as explained in the
paragraph below.

Transition rates, defined within linear response theory
for the charge operator of the resonator −i(a − a†)/

√
2 in

a similar way as in Eq. (9), are shown as gray arrows con-
necting the grid points in Fig. 7. For simplicity, we take
in this section a flat spectral function for the bath coupled
to the resonator, i.e., J (ω) ∝ 
(ω). At low drive power,
rates are predominantly local, consisting of single-photon
relaxation (vertical downward-pointing arrows connecting
neighboring grid points), and qubit Purcell decay (hor-
izontal left-pointing arrows also connected neighboring
grid points). The existence of one dominant rate allows
identification of states corresponding to definite transmon
excitation number [27,56]. In contrast, in the chaotic layer
where the purity is low, at finite drive amplitude, the rate
matrix becomes nonlocal connecting nonadjacent points.
Note that here, dissipation on the resonator is treated in
linear response theory. In Sec. H, we verify that typical
loss rates of readout resonators (κ/2π ∼ 10 MHz) do not
alter the spectrum of the undriven system. In particular,
hybridization is not weakened by the linewidth of the Fock
states considered in Fig. 7.

Using the transitions rates, we can now find the steady
state of the Floquet-Markov master equation [26]. In order
to avoid the saturation of the resonator Hilbert space (see
Sec. C), we impose a cutoff by setting all rates involving
states with 〈〈Nr〉〉 ≥ 15 to vanish. We find that this causes
only a small quantitative change in the steady-state density
matrix. The transmon and resonator excitation numbers in
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this steady state are represented on Fig. 7 as a red cross
for each drive power. Moreover, the occupation pi of each
Floquet mode in the steady state is encoded in the area of
a circle centered at each grid point. For sufficiently low
drive power, the steady state is dominated by the state
with 〈〈Nr,t〉〉 ≈ 0, i.e., the dressed-state closest to the vac-
uum state. Beyond a threshold drive amplitude, the steady
state of the Floquet-Markov Lindblad master equation has
significant weights on the chaotic states (see Fig. 14 of
Appendix C, which shows similar results as Fig. 7 but
for larger drive amplitudes). This threshold corresponds to
transmon ionization where states above the cosine poten-
tial of the transmon become populated [13,26,27]. Notably,
strong hybridization leads to nonzero resonator photon
number in the steady state, that is 〈〈Nr〉〉 � 2 at ε̃d = 0.95,
see Fig. 13.

Comparing to the mean-field study of a driven trans-
mon of the previous sections, we find that the qualitative
features of the spectrum of the off-resonantly driven cir-
cuit QED Hamiltonian match those of the driven transmon
qubit. To illustrate this, we plot in Fig. 8(a) the transmon
excitation number 〈〈Nt〉〉 for the full circuit QED model
of Eq. (13) (colored dots) versus drive amplitude; to avoid
overcrowding the plot, we retain only those Floquet modes
for which 〈〈Nr〉〉 ≈ 0 (in practice, we retain only modes
with 〈〈Nr〉〉 < 0.73). We compare this excitation number
to the corresponding observable in the Floquet spectrum
of Eq. (2) with the same parameters, but corresponding
to a transmon driven by a classical field (black crosses).
As in Fig. 7, for the former, color encodes the purity of
the transmon-reduced density matrix. While the agreement
between the full circuit QED simulation and the mean field
driven transmon is excellent for regular states, deviations
appear within the chaotic layer where the purity drops. Dif-
ferences within the chaotic layer between the two models
are expected due to strong hybrization between the trans-
mon and the resonator (not accounted in the mean field
model), and due to fine sensitivity of chaotic spectra on
external parameters [38]. Nevertheless, in the two models,
the threshold values of ε̃d for the onset of chaos agree.

B. Frequency response of the resonator

Performing the analog of a numerical two-tone spec-
troscopy experiment, in Fig. 8(b) we plot the pulled fre-
quency response of the cavity versus drive amplitude ε̃d.
To obtain these results, we first identify the cavity vac-
uum states corresponding to each transmon occupation
number, i.e., 〈〈Nr〉〉 ≈ 0. Then, for each of these vacuum
states, labeled i, we identify the dominant transition corre-
sponding to the largest matrix element |nijk|; with j , k thus
identified, we plot a point whose x coordinate is ε̃d and
whose y coordinate is the difference between �ijk and the
bare cavity frequency mod ωd. The corresponding transi-
tion rate is encoded in the symbol size. As in Fig. 8(a),
the symbol color encodes the purity of the corresponding

(a)

(b)

(c)

FIG. 8. (a) Agreement of transmon population 〈〈Nt〉〉 between
the full circuit QED simulation (color encodes purity of
transmon-reduced density matrix; only states satisfying 〈〈Nr〉〉 ≤
0.73 are shown) of Eq. (13) and the driven transmon model
of Eq. (2) (black crosses). (b) Pulled resonator frequency as
obtained from two-tone spectroscopy, with colors representing
purities of Floquet modes corresponding to the resonator vac-
uum (only purities above 0.85 are retained, thus excluding cavity
frequency pulls due to chaotic states). Pulls from perturbation
theory Eq. (15) are shown as black crosses. (c) Resonator fre-
quency response in the steady state. Only states where the
steady-state population times the square of the transition matrix
element exceeded 0.001κ .

vacuum state. Only states with purity above 0.85 are plot-
ted, for which the cavity vacuum can be well identified,
since the states are close to a tensor product state, so the
condition 〈〈Nr〉〉 ≈ 0 is easily fulfilled.

Figure 8(b) shows that, as expected, low-energy regular
states of the transmon correspond to a traceable resonator
pull that is monotonically decreasing with drive strength
[27,40,56]. In particular, there is a group of four levels
(corresponding to pulls up to slightly below 30 MHz at
zero drive), which exhibit ac-Stark shifts monotonically
decreasing with drive strength ε̃d towards the bare fre-
quency of the cavity, for sufficiently low drive. These
levels correspond to resonator states pulled by the lowest
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regular transmon states of Fig. 8(a), and the corresponding
curves terminate for drive strengths where the correspond-
ing transmon level strongly hybridizes with the chaotic
layer. The pull is vanishing for the chargelike states of the
transmon, as can be identified by an inspection of the trans-
mon excitation numbers 〈〈Nt〉〉 (not shown). On the other
hand, the resonator frequency pull associated with chaotic
states is not shown here because the two systems strongly
hybridize when the transmon is in a chaotic state, render-
ing impossible the identification of the resonator vaccuum.
Nonetheless, we address this point below when computing
the steady-state density matrix.

Although it fails in the chaotic layer, perturbation theory
in the transmon-cavity coupling can be used to compute the
cavity pull in the regular regime, see the black symbols in
Fig. 8(b). To second order, using Eq. (14), the cavity pull χi
associated to the transmon Floquet state i is given by [57]

χi =
∑

j ,k

g2n2
ijk

(
1

ωa +�ijk
− 1
ωa −�ijk

)
. (15)

Here, nijk and �ijk can be numerically computed by
diagonalizing the time-dependent Hamiltonian of the sin-
gle driven transmon [see Eq. (14) above], thereby fully
accounting for the effect of the drive on the transmon. In
this way, we avoid the heavy computational cost of the
Floquet operator on the full transmon-cavity system. Per-
turbation theory (black symbols) agrees well with the full
simulation only for regular states, which can be identified
in Fig. 8(b) by their large purity. In particular, the pertur-
bation theory for the cavity pull of the two computational
states of the transmon agree with the full numerical calcu-
lations over the whole range of drive amplitudes for which
the states remain regular. This suggests using the Floquet
basis as a starting point for perturbative treatments of mul-
timode coupling used in two-qubit gate analysis [14,58]
or qubit readout [22]. The idea was recently applied to
describe the coupling between two resonators induced by
a driven ancilla in Ref. [59]. Note that for a small enough
coupling strength g, the formula, Eq. (15), is expected to
be valid also for chaotic transmon states.

Additionally, we show in Fig. 8(c) the frequency
response of the cavity in the steady state. This is distinct
from the result in Fig. 8(b), which illustrates the cavity pull
by each transmon state individually. Specifically, for each
value of ε̃d, we plot points with y coordinate the transition
frequency �αβk, for all possible transitions. The point size
is proportional to

√
pα|nαβk|, where pα is the population of

the Floquet mode α in the steady state. That is, Fig. 8(c)
weighs the result Fig. 8(b) by steady-state population. A
cutoff is imposed on small, indiscernible, weights to reduce
plot size. For ε̃d ≥ 0.95 the average cavity response is cen-
tered on the bare cavity frequency, with a large variance. In
Refs. [13,26], the cavity response at the bare frequency was
attributed to the Josephson potential essentially becoming

transparent under strong drives, and the transmon being in
a mixture of chargelike states. We rather observe here that
this response is caused by the transmon entering a low-
purity state with significant weight on a large number of
chaotic Floquet modes, which corresponds to the transmon
becoming strongly hybridized with the cavity and giving
vanishing pull on average.

To summarize the results of this section, we have shown
that in a driven-circuit QED system, chaos develops along
the directions of increasing drive amplitude and increas-
ing resonator photons. For typical circuit QED parameters,
the main features of the full-circuit QED spectrum can
be explained using the classically driven transmon model,
which validates the mean-field analysis of the previous
sections. In particular, the onsets of state ionization remain
the same. This allows us to interpret the recently observed
cavity response at the bare frequency under strong drive
[13,24,26] as resulting from chaotic behavior of the driven
transmon.

VI. NON-QND EFFECTS ORIGINATING FROM
THE CHAOTIC STATES

The purity drops and the connecting arrows in Fig. 7
can be used to quantify the quantum demolition charac-
ter of the light-matter interaction in Eq. (13). For example,
through its coupling with the resonator, the transmon can
relax through the resonator bath. This effect, known as
the Purcell decay, results in the left-pointing arrows con-
necting the low-energy states of the transmon in Fig. 7(a).
Moreover, approximating the transmon as a weakly non-
linear oscillator, recent works have shown that the small
anharmonicity of the transmon can result in non-QNDness
via correlated photon emission of the transmon-resonator
systems [21,22,60]. However, the magnitude of these cor-
rections, controlled by the relative transmon anharmonicity
and the relative detuning of the transmon with the res-
onator, remains small compared to the Purcell effect at
sufficiently large detuning as considered in this paper. In
addition, these correlated effects occur primarily at the
qubit frequency, which could be efficiently suppressed by
a Purcell filter. Here, we show that the presence of chaotic
states in the transmon spectrum leads to non-QND effects
that cannot be captured by a perturbative treatment.

In the previous sections, we have shown that part of the
transmon spectrum is rendered chaotic when the system
is driven and/or coupled to a resonator. Through the cou-
pling with the resonator, see Eq. (14), regular states can
decay to chaotic states through multiphoton transitions.
This is further illustrated by the large nonlocal arrows in
Fig. 7 connecting distant dots in the (〈〈Nt〉〉, 〈〈Nr〉〉) plane.
The inherently strong nonlinearity of these states cannot
be accounted for by perturbative models taking the rel-
ative anharmonicity as a small parameter. Moreover, as
shown in Sec. IV, chaotic states strongly depend on the
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gate charge ng , while this parameter can be gauged away
in oscillator models for the transmon where the phase
becomes noncompact. We stress that, as compared to per-
turbative treatments where correlated effects occur at a few
dominant frequencies, the transition frequencies involved
in this decay are numerous and highly depend on the
system parameters.

Spurious bath-assisted decay from the regular to the
chaotic states can therefore result in a source of non-
QNDness during strong-drive operations such as disper-
sive readout. In this section, in order to characterize such
an effect, we introduce a “chaos-assisted” critical pho-
ton number nca, based on the onset of large hybridiza-
tion between low-lying regular states and higher-energy
chaotic states. Due to finite matrix elements between these
states, transitions to the chaotic layer arise below nca. We
propose to exponentially suppress this effect by increasing
the ratio EJ /EC.

A. Chaos-assisted critical photon number

Going back to our analysis of a driven transmon in
the absence of quantum fluctuations from the resonator
of Sec. II, an “ionization threshold” between regular and
chaotic levels occurs at a critical drive amplitude, and
can be graphically identified from the plots of the mean
energy of the transmon, see Figs. 1(c) and 1(d). For each
regular state, the critical drive corresponds to the drive
amplitude ε̃d,ca for which the level gets “absorbed” into the
chaotic layer. As can be observed in Figs. 1(c) and 1(d),
as the drive amplitude increases, the chaotic layer grows
into a conelike shape whose tip corresponds to the separa-
trix energy, and thus the boundary between chaotic layer
and regular states depends on drive amplitude. The closer
a state is to the separatrix at zero drive, the smaller the
critical drive amplitude necessary to have it completely
hybridize with the chaotic layer. This critical drive ampli-
tude then matches the so-called “ionization threshold” of
the respective regular state [27].

Having associated the critical drive amplitude to the
boundary between regular and chaotic states, we can
observe this boundary in Figs. 1(c) and 1(d) for two values
of �eff. From these figures, we see that the dependence of
the mean energy 〈〈H/EJ 〉〉 at the boundary as a function of
ε̃d is roughly independent of �eff, as this is ultimately tied
to the energies of orbits at the regular-to-chaotic bound-
aries in the classical phase space in Fig. 1(b). Remarkably,
this implies that the mean energy 〈〈H/EJ 〉〉 at the bound-
ary solely depends on the parameters of the classical driven
pendulum, i.e., ε̃d = εd/ωp and ω̃d = ωd/ωp .

As emphasized in Sec. II, what does depend on �eff
is the number of regular states below the chaotic layer.
This number controls which mean energies 〈〈H/EJ 〉〉 are
accessible by the quantum states, and ultimately the criti-
cal drive amplitudes at which regular states get absorbed

into the chaotic layer. As discussed in Sec. III B, the size
of the regular central island in the Poincaré sections, e.g.,
in Figs. 3(a)–3(d), depends on the drive frequency and
decreases with drive amplitude. When quantizing the sys-
tem, in the semiclassical limit, we expect the number of
states contained in the low-energy regular subspace to be
directly proportional to the inverse of the effective Planck
constant �

−1
eff and to the area of the regular island [36,37].

Hence, the critical drive amplitude for, say, the excited
state, is defined as the amplitude at which the area of the
regular island is equal to 2�eff, i.e., it contains two states,
the ground and the excited. The critical drive amplitude
therefore increases with �

−1
eff for any given state: the larger

the ratio EJ /EC, the larger the critical drive amplitude
needed to absorb the level into the chaotic layer.

Similarly, for the case of an undriven transmon coupled
to a resonator, one can define a critical photon number
nca = (εd,ca/2g)2, where εd,ca is the critical drive amplitude
of the driven transmon without coupling to a resonator.
We justify this definition by noting that the two systems,
i.e., the driven transmon and the undriven transmon cou-
pled to a resonator, have similar spectra (see Sec. D). This
hints towards the fact that one could replace the driving
field by a quantum field without affecting the ionization
threshold. For photon numbers n > nca, we expect the joint
transmon-resonator states corresponding to the first excited
state of the transmon to hybridize strongly with the states
in the chaotic layer. The validity of nca is numerically
demonstrated in Sec. G for the parameters of Sec. V.

A few comments are in order regarding the definition
of nca. First, the definition of nca differs from the usual
critical photon number ncrit of circuit QED defined in
Refs. [16,40]. In these works, ncrit is used to ensure the
validity of the dispersive approximation through a small
hybridization of the transmon (or two-level system) with
the resonator. In contrast, nca corresponds to a threshold
for chaos to affect the computational states, and can also
be seen as the onset of strong nonlinear effects. Moreover,
the definition of nca results from the analysis of the clas-
sical analog of the driven transmon. As such, it does not
account for the influence of the offset charge, since the lat-
ter does not affect the dynamics of the classical system. As
illustrated in Sec. G, the offset charge strongly affects the
onset of chaos in the high excited transmon states. How-
ever, the photon numbers at which the ground and first
excited states “ionize” have a weaker dependence on the
offset charge, and nca provides a good estimate.

B. Exponential suppression of spurious decay to the
chaotic layer with �

−1
eff

In this section, we argue that going to a deeper regime
of the transmon, i.e., larger ratio EJ /EC, is a favorable
regime in the presence of drive. Indeed, another benefit
of working in the large EJ /EC regime for the transmon is

020312-15



COHEN, PETRESCU, SHILLITO, and BLAIS PRX QUANTUM 4, 020312 (2023)

that the magnitude of the spurious interactions between the
low-energy states and the chaotic states is exponentially
suppressed with �

−1
eff = √

EJ /8EC. This suppression mech-
anism is related to that of charge dispersion with

√
EJ /EC

[1]. Charge dispersion manifests itself through phase-slip
events, which are in turn exponentially suppressed with√

EJ /EC in an undriven transmon. In a driven transmon,
chaos-assisted phase slips can occur through the interac-
tion of the low-energy states with the chaotic states (see
Sec. IV). Since phase slips involve the full nonlinearity of
the cosine potential, they result in multiphoton transitions
[61]. Nonetheless, as explained below, these chaos-assisted
events are also exponentially suppressed with

√
EJ /8EC.

In a quantum system, the regular island and the chaotic
layer are not dynamically separated as is the case in the
classical system. Spurious transitions from the computa-
tional states to the chaotic states might occur well below
the critical drive amplitude. The regular states have a finite
overlap with the chaotic layer in phase space, resulting in
finite coupling between regular and chaotic states. Note
that CAT, studied in Sec. IV, is an example of such possi-
ble regular-to-chaos transition. When a bath or a resonator
is coupled to the driven transmon through the charge oper-
ator, this results in a finite decay from the regular states
to the chaotic layer. Being concerned with high-fidelity
operations such as qubit readout, one wished to minimize
such effects.

First, to avoid these effects, one can maximize the size of
the regular central island by driving at a suitable frequency,
as discussed in Sec. III B. Second, one can maximize the
number of states contained in the regular island. Previous

(a) (b)

FIG. 9. Unitless coupling Nij ,k∈{−1,0} of the ground state (a)
and first excited state (b) with the Floquet states of index l ≥ j
over the Brillouin zones k = −1, 0 [see Eq. (16)], for three values
of �

−1
eff = 2, 3, 4 corresponding to the ratios EJ /EC = 32, 72, 128.

The drive amplitude is set to ε̃d = 0.1 (triangles and solid lines),
and ε̃d = 0 for comparison (filled circles and dashed lines). The
values of the matrix elements are averaged over 50 values of the
offset charge. The coupling to the chaotic layer is exponentially
suppressed with �

−1
eff .

works [43,62] have shown that for a state of a given exci-
tation number, the tunneling rate to the chaotic layer is
exponentially suppressed with �

−1
eff . Intuitively, this follows

from an exponential suppression, as a function of �
−1
eff , of

the phase-space overlap of a regular state with the chaotic
layer decreases exponentially. In other words, the coupling
of a regular state to the chaotic layer is mediated by the
regular states in between, resulting in an exponential sup-
pression with the number of intermediate states, thus with
�

−1
eff . Note that at large values of �

−1
eff , other processes such

as resonance-assisted tunneling can alter this exponential
law [62].

In practice, this translates to an exponential suppression
of the matrix elements of the charge operator between reg-
ular and chaotic Floquet modes. As mentioned in Sec. V,
the matrix elements nijk with k = −1, 0 between Floquet
modes determine the ability of the driven transmon to
hybridize with the resonator and potentially decay into
the resonator bath similarly to a Purcell effect. For a Flo-
quet state |ĩ〉 of the driven transmon, we define its unitless
coupling to the subspace of “high-energy” Floquet states
above a threshold index j > i as

Nij ,k∈{−1,0} =
√ ∑

l≥j ;k=−1,0

|nilk|2, (16)

where the matrix elements nijk are defined in Eq. (10),
and where the Floquet states are sorted through their mean
energies defined in Eq. (4). By its definition in Eq. (16),
the dimensionless coupling Nij ,k∈{−1,0} is a monotonically
decreasing function. Relevant information about the cou-
pling to the chaotic layer is encompassed in how fast this
decrease is as a function of the threshold state index j .

In Fig. 9(a) [respectively (b)], for three values of �
−1
eff ,

and the same parameters as in Fig. 5, we plot the coupling
Nij ,k∈{−1,0} as a function of the index j for the ground state
i = 0 (respectively, the first excited state i = 1), at zero
drive (dotted line) and ε̃d = 0.1 (solid line). As the matrix
elements fluctuate as a function of the offset charge, they
are averaged over 50 values of ng . At zero drive, the matrix
elements are exponentially suppressed with the state index
j for all three values of �

−1
eff . At finite drive, after a rapid

decay, all three curves stabilize on a plateau marked by
comparatively slower decrease in both Figs. 9(a) and 9(b).
This plateau is due to the near equality of the matrix
elements nilk when l belongs to the chaotic layer. While
the width of the plateau should grow with �

−1
eff , as the

chaotic states are more numerous, its value is exponen-
tially reduced with �

−1
eff . Due to its proximity to the chaotic

states, the first excited state is more strongly coupled to
the chaotic states than the ground state, which translates to
larger values of the dimensionless coupling Nij ,k∈{−1,0} for
the excited state than for the ground state, both within and
away from the plateaus.
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Note that at this relatively small drive amplitude
(ε̃d = 0.1) and for a light-matter coupling strength
g/2π = 250 MHz, the transmon-resonator interaction
term involves transitions with the chaotic states at a cou-
pling strength of approximately 20 MHz in the case �

−1
eff =

3 (EJ /EC = 72). The associated frequencies �ij ,k−1 −�

strongly depend on the drive amplitude and the offset
charge. With the fluctuations of the offset charge and the
ac-Stark shift leading to a sweep across the spectrum
during readout [23,27], these transitions might result in
non-QND effects during transmon readout.

To summarize this section, we have introduced a chaos-
assisted critical photon number nca to characterize the
onset of strong non-QND effects. Below this threshold,
spurious transitions to the chaotics states remain possible,
but transition rates are exponentially suppressed with �

−1
eff .

VII. CONCLUSION

In summary, we have shown that the presence of clas-
sical chaos has repercussions in the driven-dissipative
quantum dynamics of transmon qubits. One consequence
is that part of the spectrum of the driven transmon becomes
strongly correlated, i.e., it exhibits strong level hybridiza-
tion, which favors chaos-assisted quantum phase slips that
significantly enhance charge dispersion and qubit dephas-
ing. This could also affect the coherence times of other
Josephson-based qubits, such as the fluxonium, which
involve arrays of hundreds of Josephson junctions [11,
12,63]. However, as pointed out in Ref. [64], the induc-
tively shunted transmon remains stable even at large drive
powers.

With full-circuit QED simulations, we have also shown
that states corresponding to the chaotic layer have lower
purity, which indicates that perturbation theories such as
the dispersive approximation [16] or black-box quanti-
zation [31] become inapplicable. In particular, the Kerr
nonlinear oscillator model of the transmon does not cap-
ture the large enhancement of charge dispersion and the
strong correlations within the spectrum. This situation is
analogous to recent studies of arrays of transmons [39],
which show that a dispersive theory cannot reproduce the
spectrum in the chaotic phase. Moreover, we show that
the response of the resonator at large drive amplitudes,
commonly referred to as “bright-stating” the qubit, cor-
responds to entering a steady state massively populating
chaotic states, which exhibit high hybridization with the
resonator, with the resonator pull averaging to zero [13,65].

This important population of the chaotic states also
means that, in order for numerical studies to capture chaos-
induced effects on the low-energy states of a single driven
transmon, it is necessary to use a Hilbert space size, which
contains the entire chaotic layer. That is, in some instances
it may be necessary to revisit the conventional wisdom
that using a few transmon states is sufficient for accurate

simulations of the driven transmon. Moreover, based on
the study of instabilities in the classical system, it may
be possible to identify favorable frequency placement for
which the width of the chaotic layer is minimal, results
that can be used to find optimal parameters for operations
with strong drives such as dispersive qubit readout. The
identification of the chaotic layer as a function of the clas-
sical parameters ωd/ωp and εd/ωp leads to the definition
of a chaos-induced critical photon number in the quantum
system, which increases as a function of EJ /EC. In particu-
lar, spurious transitions during strong-drive operations are
expected to be minimized in the regime of large EJ /EC.
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APPENDIX A: SUPPRESSION OF CHAOTIC
BEHAVIOR AT HIGH-FREQUENCY DRIVING

In Sec. III B, we study the dependence of the chaotic
layer on the drive frequency. To have a fair comparison
between the effects at different frequencies, we fix the abso-
lute value of the ac-Stark shift of the 0-1 transition to
100 MHz, and correspondingly choose the drive ampli-
tude. This is made possible by tracking the ground and first
excited states as a function of drive amplitude to obtain
the difference of the quasienergies, ε1 − ε0. The negative
absolute value of the ac-Stark shift is plotted in Fig. 10 as

ac
 S

ta
rk

 s
hi

ft
 (

G
H

z)

FIG. 10. ac-Stark shift of the 0-1 transition as a function of
drive amplitude ε̃d, for various frequencies, and at �

−1
eff = 2.45.

The dashed line indicates an ac-Stark shift of −100 MHz and
the corresponding amplitudes at which the Poincaré section in
Fig. 3 are plotted. Tracking is lost beyond a certain drive ampli-
tude, which is well above that needed to work at a fixed shift of
−100 MHz.
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(d)(c)(b)(a)

(h)(g)(f)(e)

FIG. 11. Rate matrices and steady-state populations for the same parameters as in Fig. 3, with the drive amplitude corresponding to
an ac-Stark shift of −100 MHz. The rate matrices (b),(d) are more regular, resulting in a smaller plateau in the steady-state distribution.

a function of ε̃d for various frequencies. Disruptions of the
lines indicate that tracking is no longer possible.

As a complementary study to Sec. III B, in
Figs. 11(a)–11(d), we show the rate matrices at an ac-Stark
shift of 100 MHz for the same drive frequencies. The size
of the chaotic block follows that of the chaotic layer in the
Poincaré sections of Figs. 3(a)–3(d). In particular, the rate
matrix corresponding to Fig. 3(d) remains close to that of
the undriven system [see inset of Fig. 4(b)], although the
0-1 transition frequency is shifted by 100 MHz.

APPENDIX B: INVERSION SYMMETRY SECTOR
OF THE DRIVEN SYSTEM

In this section, we provide further explanation on the
inversion symmetry discussed in Sec. IV. First, let us con-
sider the eigenvalue equation H |ψ〉 = E |ψ〉 with H the
Hamiltonian Eq. (2) of the undriven transmon (εd = 0).
The eigenstates of H are eigenstates of the parity oper-
ator P, defined as P : n → −n, φ → −φ, if and only if
ng ≡ 0, 0.5 mod 1. To prove this, we define the boost oper-
ator along charge U = exp(−ingφ). After transformation
under this boost, the Hamiltonian H′ = UHU† does not
depend on ng and is therefore symmetric under P. Thus
parity acting onto an eigenstate must yield the same eigen-
state if the spectrum is nondegenerate. That is, P |ψ ′〉 =
eiθ |ψ ′〉, or 〈−φ|ψ ′〉 = eiθ 〈φ|ψ ′〉, for all φ, and some phase
θ independent of φ. Additionally, in the boosted frame,
the eigenstates obey the “twisted-periodic” boundary con-
dition 〈φ + 2π |ψ ′〉 = e−i2πng 〈φ|ψ ′〉. Writing the two con-
ditions above at φ = π gives 〈−π |ψ ′〉 = eiθ 〈π |ψ ′〉 =
e−i2πng 〈π |ψ ′〉, which implies that eiθ = ei2πng . The wave
functions are eigenstates of parity if and only if θ = 0,π ,
that is for ng = 0.0, 0.5 mod 1.

As explained in the main text, in the transmon regime,
the low-energy sector is almost independent of the offset
charge and the Hamiltonian becomes effectively parity
symmetric. When parity is a symmetry of H, matrix
elements of the charge operator 〈i|n|j 〉 �= 0 if and only
if i and j belong to different parity sectors. Therefore
if 〈i|n|i〉 �= 0 then parity symmetry is broken. By the
Hellmann-Feynman theorem, 〈i|n|i〉 ∝ dEi/dng , so when-
ever a band has nonzero group velocity, parity symmetry
is broken. This is why sweet spots (zero group veloc-
ity) occur at ng = 0, 0.5 mod 1. Exponentially small group
velocity, as in the transmon limit EJ � EC, translates to
exponentially weak breaking of parity. Thus, in the inset
of Fig. 4(b) computed for ng = 0.25 and therefore nonzero
group velocity, purple squares appear, but they are expo-
nentially dim. By extension, in the low-energy manifold,
transitions that are forbidden by parity selection rules
at ng = 0, 0.5 mod 1 are exponentially suppressed when
parity symmetry is broken, leading to an effective parity
symmetry. Note that it is this effective symmetry in the
transmon limit EJ � EC that allows us to ignore charge-
dispersion effects and express the transmon H as a Kerr
nonlinear oscillator.

At zero drive, this effective symmetry results in a sup-
pression of the matrix elements of the charge operator
ni,i+2, and forbids the transition i → i + 2 in the low-
energy sectors for both ng = 0.5 and ng = 0.25. This
can be seen in the rate matrices of the undriven sys-
tems—insets of Figs. 4(a) and 4(b)—where the squares
corresponding to these transitions remain empty. Impor-
tantly, this symmetry is not respected at ng = 0.25 for
states in the separatrix region where charge dispersion
become non-negligible.

In the presence of a drive εd cos(ωdt)n, the inversion
symmetry holds if one additionally applies the operation
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t → t + π/ωd [34]. This symmetry of the driven Hamil-
tonian defines even and odd parity sectors among the
time-dependent Floquet states. Note that the parity of a
Floquet state depends on the Brillouin zone it belongs to
in the undriven case. For example, in the undriven sys-
tem, the eigenenergy of the first excited state decomposes
as E1 = ε1 + kωd, where the quasienergy satisfies |ε1| ≤
ωd/2, and k = 1 for the parameters used in Fig. 4. Within
the Floquet formalism, the Floquet state, corresponding
to the eigenstate exp(−iE1t) |1〉 of the time-evolution
operator, reads |ψ1(t)〉 = exp(−iε1t) |φ1(t)〉, with the Flo-
quet mode |φ1(t)〉 = exp(−iωdt) |1〉. Since the Floquet
mode |φ1(t)〉 is invariant under the transformation t →
t + π/ωd and n → −n, it belongs to the even sector.
When increasing the drive, the state |φ1(t)〉 will remain
in the even sector, and expands only on even states
e−i(2k+1)ωdt |2n + 1〉 , e−i2kωdt |2n〉, with k ∈ Z and n ∈ N.

Under this symmetry, transitions through the charge
operator between two states of the same (opposite) parity
can only involve an odd (even) number of drive photons
k, as the charge operator already changes the parity. This
results in superposition of blue and red squares in at ng =
0.5, see Fig. 4(a). In contrast, at ng = 0.25, purple squares,
indicative of red and blue contributions, light up not only
in the chaotic block, but also for transitions involving the
low-energy states.

Transitions that do not respect the apparent symmetry
of the transmon were experimentally observed in Ref. [23]
but remained unexplained. There, the situation is slightly
more complicated as a harmonic mode is capacitively cou-
pled to the transmon, making this effectively a three-mode
problem. Nonetheless, the situation is similar, and the same
conclusions can be drawn. Indeed, the inversion symmetry
for the full Hamiltonian holds upon adding the transforma-
tion nr → −nr, where nr = −i(a − a†)/

√
2 is the charge

operator of the resonator. Because the resonator is low Q,
transitions between states are most likely to be induced by
the bath coupled to the resonator through the resonator
charge operator nr. Since nr maps one parity sector to
another similarly to n, the single driven transmon analysis
remains valid for the full driven-circuit QED setup.

APPENDIX C: FLOQUET SIMULATIONS FOR
CIRCUIT QED HAMILTONIAN

In this Appendix, we provide more details for the numer-
ical simulations presented in Sec. V. To capture the entirety
of the chaotic layer even at strong drives ε̃d ≥ 1, we use a
local Hilbert-space size of 35 for the transmon. For the res-
onator, we use 20 states, which is pertinent in the regime of
off-resonant drives (here, the drive frequency is 500 MHz
below the bare cavity frequency at 8 GHz). We character-
ize truncation errors by plotting the error in the bosonic
commutation relation in Fig. 12, and observe significant
errors of the commutator only for states with 〈〈Nr〉〉 ≥ 12.

(a) (b)

(c) (d)

FIG. 12. Commutator error, encoded in symbol color, for each
Floquet mode, expressed as |1 − 〈〈[a, a†]〉〉|.

We also observe a “reflection” at the Hilbert-space bound-
ary [66], as indicated by monotonically decreasing values
of 〈〈Nr〉〉 versus 〈〈Nt〉〉 (upper regions of the four panels of
Fig. 12).

Boundary effects in the Hilbert space become impor-
tant at strong drives, where states with high 〈〈Nr〉〉 become
populated, see Fig. 13. In particular, averaging the com-
mutator error in the steady state of the driven-dissipative
evolution, we find that it correlates well with the number
of occupied Floquet modes as determined from the entan-
glement entropy of the steady-state density matrix [64]
[Figs. 13(b) and 13(c)], which occurs at about the same
threshold power ε̃ as ionization, defined as a significant
increase in 〈〈Nt〉〉, see Fig. 13(a).

When computing the steady state, a minimal bound for
the required truncation of the resonator Hilbert space can
be estimated based on energy considerations. As discussed
in Sec. V, one can first diagonalize the driven transmon
Hamiltonian, and then write the transmon-resonator cou-
pling in the new basis (Floquet basis for the transmon
and Fock basis for the resonator). At strong drives, we
need to account for the full chaotic layer of the driven
transmon and its corresponding energy span. Although the
mean energies of these states concentrate around 〈〈H 〉〉 ∼
2EJ , their Fourier decompositions extend over multiple
Brillouin zones of width ωd. More precisely, the highest
populated Brillouin zone is approximately given by the
energy of the charge state that lies on the external boundary
of the chaotic layer. For instance, on Fig. 1(c) the bor-
der of the regular and chaotic domain is located around
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(a)

(b)

(c)

FIG. 13. (a) Steady-state population of the transmon and res-
onator as a function of drive strength. Both expectation values
become nonmonotonic beyond a threshold at ε̃d � 1. (b) Com-
mutator error (see also Fig. 12) in the steady state. (c) Number
of occupied Floquet modes in the steady state [64] as calculated
from the entanglement entropy Nocc = exp(−∑

i pi log pi).

〈〈H 〉〉max = 3.5EJ at ε̃d = 0.5, and around 〈〈H 〉〉max =
5.5EJ at ε̃d = 1.

Through the transmon-resonator coupling, the energy
stored in the Floquet modes can be converted into res-
onator photons. In fact, the chaotic behavior of the system
with increasing Fock-state number (strong hybridization)
shows the ability for the resonator to absorb energy. The
maximum energy 〈〈H 〉〉max at ε̃d = 0.5 (respectively, ε̃d =
1), can be converted into 〈〈H 〉〉max/ωa ≈ 7 (respectively,
11) resonator photons. Interestingly, this is in agreement
with the range of 〈〈Nr〉〉 of populated states in Fig. 7
(highlighted with circles). Therefore, the dimension of the
resonator Hilbert space has to be chosen larger than the
estimated highest populated Fock state.

APPENDIX D: CHAOS IN THE UNDRIVEN CQED
SYSTEM

We consider an undriven cQED system composed of a
transmon coupled to a resonator with Hamiltonian

H = 4EC(n − ng)
2 − EJ cos(φ)+ ωaa†a − ign(a − a†).

(D1)

This system is analog to a single driven transmon where
the drive is replaced by a quantum field. We show that
correlations develop in the spectrum with increasing Fock-
state number. By comparing the spectrum of this system

(a) (b)

(c) (d)

FIG. 14. Same as Fig. 7, but for higher drive strengths. Steady-
state expectation values of resonator photon number and trans-
mon excitation number deviate significantly from zero. The
steady state has significant weight over a large number of chaotic
states. An arrow is plotted if 	ij > 10−3κ for (a),(b), or 10−2κ for
(c),(d).

with the Floquet spectrum of a driven transmon where an
effective drive amplitude is varied, we find that the spec-
tra agree at low photon number and for regular states, but
show significant deviations for chaotic states.

We bring the corresponding eigenenergies Ei to the first
Brillouin zone delimited by the resonator frequency ωa,
by defining εi = Ei[ωa] ∈ [−ωa/2,ωa/2]. In Fig. 15 (black
dots), for each eigenstate |i〉 satisfying 〈Nt〉i < 20, we show
its energy εi and its mean photon number 〈Nr〉i, in the
(ε, 〈Nr〉) plane. We note the appearance of seemingly con-
tinuous lines as a function of 〈Nr〉 (note that these are
made of unlabeled dots), that can be associated to transmon
states [27]. We refer to these lines as branches.

For eigenstates with a given mean photon number n̄ =
〈Nr〉, we can compare the spectrum of the undriven system
with the quasispectrum of a single transmon driven (no res-
onator) at an amplitude εd = 2g

√
n̄ (red dots in Fig. 15).

Note that large anticrossings appear in both spectra, which
is the signature of a correlated spectrum. Although the
two spectra qualitatively agree at low photon number,
significant deviations appear at large photon number.

As recently observed numerically in Ref. [27], in the
undriven system, the frequency pull on the resonator goes
to zero as 〈Nr〉 increases. To see this, let us consider the
effect of a probe on the system in a given state |i〉, with
the probe frequency being close to that of the resonator, at
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FIG. 15. Black dots: eigenenergies of the undriven cQED
Hamiltonian in Eq. (D1). For each eigenstate, the energy εi and
its mean photon number 〈Nr〉i are plotted in the (εi, 〈Nr〉i) plane.
The energies εi are the eigenenergies folded back into the first
Brillouin zone defined by the resonator frequency. Only states
satisfying 〈Nt〉 < 20 are shown. The parameters are the same
as in Fig. 7, with ωa/2π = 8 GHz and g/2π = 0.250 GHz.
Red dots: quasienergies of the Floquet Hamiltonian Eq. (2) with
ωd/2π = 8 GHz as a function of n̄ = (εd/2g)2, for states satis-
fying 〈Nt〉 < 20. The behavior of the two spectra is qualitatively
similar, but significant deviations appear at large photon number.

ωa + δ, where δ is small. A weak enough probe can only
cause transitions to states with neighboring mean photon
number 〈Nr〉i ± 1. In addition, since the probe frequency is
ωa + δ, it can only connect |i〉 with states of energy εi ± δ,
as all the energies are plotted modulo the resonator fre-
quency. Hence, the probe causes transitions to neighboring
states in the (εi, 〈Nr〉i) plane, which correspond to neigh-
boring states on the same branch. The frequency pull is
then εj − εi, where |j 〉 is the state on the same branch with
〈Nr〉j ≈ 〈Nr〉i ± 1. Hence, the frequency pulls correspond
to the slopes of the apparent branches, which decrease with
increasing photon number 〈Nr〉.

To explain this, let us consider an eigenstate state |i〉
on one of the energy branches, at 〈Nr〉i. We pick the state
|j 〉 that has maximum overlap with a† |i〉 /||a† |i〉 ||, so that
i → j is the brightest transition upon driving the resonator
when the system is in state |i〉. By using

〈j | Ha† |i〉 = 〈j | [a†H + [H, a†]] |i〉 , (D2)

we obtain the general relation

(Ej − Ei − ωa) = g
〈j | n |i〉
〈j | a† |i〉 . (D3)

While | 〈j | n |i〉 | grows sublinearly with the square root of
the photon number

√〈Nr〉i (see Sec. E), 〈j | a† |i〉 scales as√〈Nr〉i by definition of |j 〉. Hence, the frequency difference
satisfies

|εj − εi| = |Ej − Ei − ωa| ∝ g/
√

〈Nr〉i → 0. (D4)

APPENDIX E: STANDARD DEVIATION OF THE
TRANSMON DIPOLE MOMENT IN THE

CHAOTIC PHASE

We consider a single transmon driven at high enough
power to render all of the phaselike states chaotic. The
Hilbert space is then simply composed of a finite num-
ber N of chaotic states and an infinity of regular charge
states. We define U the unitary that diagonalizes the Flo-
quet propagator UF = T exp[−i

∫ T
0 H(t)dt], where T is

the time-ordering operator. Because the system is chaotic,
the matrix elements Uij of the unitary U projected on the
chaotic subspace can be modeled as random variables,
distributed with variance 1/N and zero mean [38]. The
charge-matrix element nij in the Floquet basis (at a given
time) are related to the charge-matrix element ñij in the
Floquet basis at zero drive via the unitary U, through
n = UñU†. We can therefore write

nij =
∑

r,s

UirñrsU∗
js. (E1)

The nij ’s can thus be modeled as random variables. Taking
the average over these random variables of the modulus
squared of the above equality, we obtain

E(|nij |2) =
∑

r,s,t,u

E(UirU∗
jsU

∗
itUju)ñrsñ∗

tu

=
∑

r,s

E(|Uir|2|Ujs|2)|ñrs|2

≈
∑

r,s

E(|Uir|2)E(|Ujs|2)|ñrs|2

=
∑

r,s

|ñrs|2/N 2
ch. (E2)

The second line is obtained by observing that only squared
matrix elements |Uir|2 survive when taking the average
value. In going from the second to third line, we obtain
an approximation by neglecting the correlations between
|Uir|2 and |Ujs|2. Finite correlations exist, since the Uir
obey orthonormality conditions. However, using the prob-
ability distributions derived in Ref. [38] for random matri-
ces, we check numerically that these second-order corre-
lations are small if the number of chaotic states is large
enough, i.e., Nch > 8, and vanish in the large Nch limit. The
last line is obtained using the equality E(|Uir|2) = 1/Nch.

The term
∑

r,s |ñrs|2 can be easily estimated. Indeed,
one can write

∑
r,s |ñrs|2 = ||PchnPch||2, where Pch is the

projector on the chaotic subspace. As the regular states
are charge states, a basis of the chaotic subspace are the
Nch charge states |ncharge〉 with ncharge < Nch/2. We can
therefore calculate ||PchnPch||2 in the charge basis, giving
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||PchnPch||2 =
Nch/2∑

ncharge=−Nch/2

n2
charge

= (Nch/2)(Nch/2 + 1)(Nch + 1)
3

.

This leads to
√

E(|nij |2) ≈
√

Nch

12
.

In other words, the standard deviation of the dipole
moment for a given transition increases with the size of the
chaotic layer. Loosely speaking, the action of the unitary U
is to “randomize” the matrix elements of the charge oper-
ator. As a consequence, the regular structure of the matrix
elements of the undriven system, e.g., the harmonic oscil-
latorlike structure nij ∝ δj ,i+1 + δj ,i−1 of the low-energy
states, is not preserved.

For a numerical illustration of the above, we define the
mean dipole moment for a Floquet state i by

〈ni〉 =
√√√√ 1

M

M∑

j =0

|nij |2, (E3)

where M is an integer larger than the number of chaotic
states Nch. The matrix elements nij are taken between Flo-
quet modes at time t = 0. We also define the mean dipole
moment

〈n〉 =
√√√√ 1

M

M∑

i=0

〈ni〉2.

Using the same argument as above, we have 〈n〉 =
||PM nPM || ≈ √

M/12, where PM is the projector on the
manifold spanned by the charge states |m〉 such that
|m| ≥ M/2.

In Fig. 16(a), the mean dipole moment per Floquet state
〈ni〉 is plotted for the first 25 Floquet states (sorted by mean
energy) as a function of the drive amplitude. For clarity, we
highlight in red states that are starting close to the separa-
trix, in blue the low-energy states, and in black the charge-
like states. In green is plotted the mean dipole moment 〈n〉.
Its constant value for ε̃d < 2.5 is a good indication that
the first M states do not hybridize with higher chargelike
states for this range of drive amplitude. Note that M = 25
gives 〈n〉 = √

M/12 ≈ 1.44, which agrees with the green
curve. For ε̃d > 2.5, we note that 〈n〉 increases, indicating
the increasing hybridization of higher-energy states with
the 25 states represented here. This is also an indication
that at ε̃ = 2.5, the first 25 states are hybridized. As the
drive amplitude increases, the mean dipole moments per
Floquet states 〈ni〉 converge slowly towards 〈n〉.

However, in the definition Eq. (E3) of the mean dipole,
the diagonal matrix elements nii also contribute to the aver-
age, yielding large dipole moments for chargelike states.

(a) (b)

FIG. 16. (a) Mean dipole moment 〈ni〉 associated to each Flo-
quet mode i, as a function of the drive amplitude, for the same
parameters as in Fig. 1(d), except ng = 0.12. The states are sorted
through their mean energies. For each Floquet state i, the aver-
age in Eq. (E3) is performed over the first 25 transmon states j .
For clarity, the low-energy states (0 ≤ i ≤ 3) are colored in blue,
the states initially close to the separatrix (4 ≤ i ≤ 8) appear in
red, and the above initially chargelike states are colored in black.
The average dipole moment 〈n〉 is shown in green. Its constant
value from ε̃d = 0 to 2.5 indicates that higher-energy states do
not yet hybridize with the represented states here. For ε̃d > 2.5,
we see that 〈n〉 starts to increase. (b) Same as in (a) but using
the definition (E4) for the dipole moment 〈n �

i =〉, where the aver-
age is performed over states with j �= i. The dipole moment is
low for chargelike states until they enter the chaotic layer. The
average dipole moment 〈n � =〉 increases with the drive amplitude,
due to the increasing number of chargelike states with initially
high dipole moment 〈ni〉 hybridizing with chaotic states. The
average dipole moment 〈n〉 is plotted for comparison as a green
dashed line. At ε̃d ≈ 2.5, the states are fully hybridized and 〈n � =〉
is close to 〈n〉. For ε̃d > 2.5, hybridization with higher-energy
states start to decrease 〈n � =〉, where the average is performed
only on the first 25 states. Besides, the dipole moment of low-
energy states 〈n �

i =〉 (in blue) dramatically increase upon entering
the chaotic layer.

As nii does not result in transitions to other states, we define
the more meaningful dipole moment for the state i,

〈n�
i =〉 =

√√√√ 1
M − 1

M∑

j =0,j �=i

|nij |2, (E4)

and the mean dipole moment

〈n� =〉 =
√√
√√ 1

M

M∑

i=0

〈n�
i =〉2.
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These quantities are plotted in Fig. 16(b), with the same
color code used in (a). If the values of 〈n�

i =〉 are qual-
itatively the same as in Fig. 16(a) for the blue and red
states, the behavior is dramatically different for the charge-
like states, for which 〈n�

i =〉 is small at low drive power.
This is a consequence of the fact that the charge opera-
tor is mostly diagonal for chargelike states. Crucially, we
note that as the drive strength increases, the mean dipole
moments 〈n�

i =〉 converge toward 〈n� =〉, which increases
(green curve). This is due to the increasing participation of
chargelike states in the chaotic layer. Note that at ε̃d = 2.5,
all 25 states are hybridized, and 〈n� =〉 has come close to
〈n〉 [green dashed line in Fig. 16(b)].

Finally, note that the mean dipole moment of the ground
state, corresponding to the lowest blue line in Fig. 16(b),
undergoes a fourfold increase upon entering the chaotic
layer for ε̃d > 1.

APPENDIX F: ONSET OF STRONG
HYBRIDIZATION BETWEEN THE TRANSMON
AND THE RESONATOR IN THE PRESENCE OF

DRIVE

In this section, we study in detail the onset of the
hybridization of the transmon and resonator when the
(driven) transmon is in a chaotic state. We start with the
Hamiltonian of the driven transmon coupled to a resonator,
Eq. (13) in the main text, reproduced here in the absence
of the coupling to the bath

H(t) = 4EC(n − ng)
2 − EJ cos(φ)+ εd cos(ωdt)n

+ ωaa†a − ign(a − a†).

Moving to the Floquet basis {|ĩ〉} for the driven trans-
mon, and in the frame rotating at the drive frequency, this
Hamiltonian reduces to

H(t) =
∑

i

εi |ĩ〉 〈ĩ| +�a†a

− ig
∑

i,j ,k

nijk |ĩ〉 〈j̃ | (ei(k−1)ωdta − ei(k+1)ωdta†),

(F1)

where � = ωa − ωd, and εi are the quasienergies of the
driven transmon. Assuming that |�| � ωd and as |εi| <
ωd/2, the interaction term (second line) can come close to
resonance for k = 0, 1 (term in a) and k = −1, 0 (term in
a†). In order to study the impact of chaotic transmon states
on the resonator, for simplicity we assume that the drive
strength is large enough for all the phaselike states to be
ionized, as in Sec. E.

We consider the tensor product state |ĩ〉 ⊗ |n〉, com-
posed of a chaotic transmon Floquet mode |ĩ〉 and the nth
Fock state of the resonator. The term −ignij ,−1a† cou-
ples this state to the state |j̃ 〉 ⊗ |n + 1〉 with a coupling

FIG. 17. Spectrum of the uncoupled driven system corre-
sponding to the Hamiltonian in Eq. (F1) with g = 0, �/2π =
200 MHz, and the same parameters as in Fig. 16. The ener-
gies εi represent states of the form |ĩ〉 ⊗ |n〉, where only the
first 13 transmon states |i〉 (sorted through mean energies) are
represented here, along with the n = 0, 1 Fock states of the res-
onator. The states |ĩ〉 ⊗ |0〉 (black dots) and |ĩ〉 ⊗ |1〉 (blue dots)
are translated by �. The dots form lines, which are interrupted
when hybridization with higher-energy levels occurs (accompa-
nied by a sudden increase of mean energy). As explained in the
text, at finite g, the two subspaces are coupled through the term
−ignij ,−1a† + h.c. At ε̃d = 0.05, the green line represents the
dominant coupling the state |1̃〉 ⊗ |0〉 (black dot) with the state
|0̃〉 ⊗ |1〉 (blue dots). The thickness of line is proportional to the
coupling strength. The couplings to other states |j̃ 〉 ⊗ |1〉 are too
small to be drawn (1000 times smaller). A dominant coupling
results in an energy shift whose sign depends on the detuning. At
ε̃d = 1.15, almost all states are strongly hybridized. As an exam-
ple, we randomly pick one state |ĩ〉 ⊗ |0〉 and we plot in red the
lines representing the coupling to states of the one-photon sub-
space (with a slight horizontal offset for clarity). The couplings
are numerous and of similar amplitude as shown by the thick-
ness of the lines, with positive and negative detunings. All of
these transitions contribute positively and negatively to shifting
the energy of the state |ĩ〉 ⊗ |0〉.

strength gnij ,−1
√

n. Let us first give an intuitive picture
of the physics by projecting the Hamiltonian in Eq. (F1)
on the vacuum and first few Fock states of the resonator.
The corresponding situation is depicted in Fig. 17, where
we plot the quasispectra of the uncoupled system corre-
sponding to the Hamiltonian in Eq. (F1) with g = 0, for
the states |ĩ〉 ⊗ |0〉 (black dots) and |ĩ〉 ⊗ |1〉 (blue dots).
Only the first 13 states |ĩ〉 (sorted through mean energies)
are represented, which are all part of the chaotic layer of
the driven transmon at εd ≥ 1. The two quasispectra are
detuned by �, due to the term �a†a in Eq. (F1). Here, we
choose �/2π = 200 MHz for visual clarity.

At εd = 0.05, the possible transitions, due to the term
−ign1j ,−1a† + h.c, involving the state |1̃〉 ⊗ |0〉 and the
states |j̃ 〉 ⊗ |1〉, are shown as green vertical lines, where
the thickness of the lines is proportional to the coupling
strength. These lines couple one black dot and several blue
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dots. As expected from the harmonic oscillatorlike struc-
ture of the matrix elements, one transition is dominant,
corresponding to the transition with the state |0̃〉 ⊗ |1〉. The
coupling with the latter is the main contribution to the
energy shift of the state |1̃〉 ⊗ |0〉. Other green lines, repre-
senting coupling to other states, do not appear here as their
coupling strength is more than a thousand times smaller
than that of the dominant transition.

At εd = 1.15, almost all states represented are strongly
hybridized. We pick one state of the form |ĩ〉 ⊗ |0〉 (rep-
resented as a black dot), and similarly, the possible tran-
sitions and coupling strength are represented by red lines.
To be able to visually distinguish between the numerous
lines, we slightly offset these lines from each other on
the x axis. However, they represent the couplings of one
black dot (corresponding to |ĩ〉 ⊗ |0〉) to multiple blue dots
at the same drive amplitude. Contrary to the situation at
low drive power, the transitions are numerous and of sim-
ilar coupling strength, along with positive and negative
detuning. The resulting energy shift on |ĩ〉 ⊗ |0〉 is null on
average (in the sense of random matrix model, see Sec. E).

Strong hybridization between the resonator and the
driven transmon can occur through the terms −ignij ,k=−1,0
a† + h.c, depending on the ratio between the coupling
strength geff = 2gnij ,k=−1,0

√
n + 1 and the effective detun-

ing δeff of the transition i ↔ j [40]. Below, we propose
a possible estimate of the minimal Fock-state number n
for which this happens [40]. Recall from Sec. E that for
chaotic states, we have

√
E(|nij ,k=0|2) ≈ √

Nch/12, where
Nch is the number of chaotic states (typically 10 at the
ionization point of the ground state for the parameters in
Sec. V). This yields an effective coupling strength geff =
2g

√
n + 1

√
Nch/12. Note that this is an upper bound, as

the contributions from the matrix elements nij ,k=−1 are usu-
ally smaller. Besides, the mean level spacing of the driven
transmon is ωd/Nch. Accounting for the detuning � of the
resonator with respect to the drive, the effective detuning
between the set of states |ĩ1〉 ⊗ |n〉 and the states |ĩ2〉 ⊗
|n + 1〉, can be as low as δeff = min(ωd/Nch, |ωd/Nch −
|�||). Note that due to the repulsive statistics, the energy
levels do not bunch, and the resulting variance of the effec-
tive detuning is rather small. On average, one has δeff =
ωd/Nch.

The condition geff ∼ δeff reads 2g
√

n + 1
√

Nch/12 ∼
ωd/Nch, leading to the definition of a critical photon
number,

nch
crit ∼ 3ω2

d

g2N 3
ch

,

above which strong transmon-resonator hybridization
occurs. Note that this relation is valid for chaotic trans-
mon states. This criterion is sensitive to the fluctuations of
the energy levels and of the charge-matrix elements as a
function of the system parameters, and therefore can only
give a rough estimate. The strong hybridization between

(a) (b)

(c) (d)

FIG. 18. Same as Fig. 7, for g/2π reduced by a factor
√

6.

the systems occurs in the steady state if this condition is
satisfied for the lowest Fock states as well.

As an example, for the parameters of Sec. V, at a drive
amplitude such that Nch ∼ 12 (Nch can be estimated by
how many grid points of the first row come together in
Fig. 7), we find geff/2π ∼ 0.5 GHz and δeff/2π ∼ 0.6 GHz,
leading to nch

crit ∼ 0.5. A large drop in purity is expected to
occur even for the lowest Fock states [see Fig. 7(d)]. As a
second example, we consider the parameters of Sec. V sys-
tem with g = 0.250/

√
6 GHz instead of g = 0.250 GHz in

Fig. 18. This reduction of the coupling g makes the value
of nch

crit an order of magnitude higher.

APPENDIX G: CHAOS-ASSISTED CRITICAL
PHOTON NUMBER DERIVED FROM POINCARÉ

SECTIONS: AGREEMENT WITH DRIVEN
QUANTUM SYSTEM

In this section, we numerically check that the criti-
cal photon number nca introduced in Sec. VI provides a
good estimate for the onset of strong nonlinear effects,
for the set of parameters used in Sec. V. We determine
nca as follows. First, from the Poincaré sections of the
classical driven pendulum, we extract the area A of the
central regular island for various drive amplitudes. Using
the Bohr-Sommerferld quantization rule, A = 2π�eff(N +
1/2), we convert the area to a number of quantum states N ,
here taking �

−1
eff = 3 (EJ /EC = 72). Converting the drive

amplitude to an equivalent photon number n̄ = (εd/2g)2

(with g/2π = 0.25 GHz as in Sec. V), we obtain the
photon numbers n̄N at which the central island contains
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FIG. 19. The mean energy spectra of the driven transmon is
plotted for six values of the offset charge, as a function of
the photon number n̄ = (εd/2g)2. The parameters are the same
as in Sec. V. The dashed lines indicate the photon numbers
at which the area of the central island of the corresponding
Poincaré section can contain N quantum states (see text). The
red dashed line indicates nca, the photon number above which
strong nonlinear effects start affecting the first excited state of the
transmon.

N states. The critical photon number is defined as nca =
n̄N=2. In the semiclassical limit, the first excited state is
expected to ionize for n̄ satisfying n̄N=1 ≤ n̄ ≤ n̄N=2, and
the ground state for n̄N=0 ≤ n̄ ≤ n̄N=1.

In Fig. 19, we plot the mean energy spectra of the driven
transmon for six values of the offset charge, as a function
of the photon number. The dashed lines indicate the values
of the photon numbers nN . As expected, the photon num-
bers at which the ground and first excited states ionize, fall
between n̄N=0 and n̄N=1, and n̄N=1 and n̄N=2, respectively.

APPENDIX H: EFFECT OF THE RESONATOR
DISSIPATION ON THE SPECTRUM

In Sec. V, we have not accounted for the effect of the
resonator dissipation on the spectrum. In the limit of very
large κ , the two systems decouple and chaos disappears.
However, for a given Fock state |n〉 of the resonator, the
effect of dissipation on the system (not on resonance, i.e.,
ωd �= ωa) should be small as long as the decay rate of
nκ is small compared to the effective coupling strength
g
√

n. This leads to the condition κ � g
√

n. For typical
experimental parameters, κ/2π = 10 MHz and g/2π =
250 MHz, dissipation will affect Fock states with n �
(g/κ)2 = 625. As a numerical check, we diagonalize the
non-Hermitian undriven Hamiltonian

H = 4EC(n − ng)
2 − EJ cos(φ)

+
(
ωa − i

κ

2

)
a†a − ign(a − a†). (H1)

FIG. 20. Eigenenergies of the undriven system described by
the Hamiltonian in Eq. (D1), with the same parameters as in
Fig. 7(a). For each eigenstate, the energy εi and its mean pho-
ton number 〈Nr〉i is plotted in the (εi, 〈Nr〉i) plane. The energies
εi are the eigenenergies modulo the resonator frequency. Only
states satisfying 〈Nt〉 < 20 are shown. Blue dots correspond to
κ/2π = 0, and red dots to κ/2π = 10 MHz (see Sec. H). In
both cases, the spectrum exhibits correlation at large 〈Nr〉. The
spectrum is unchanged for this range of Fock states under weak
dissipation.

In Fig. 20, the real part of the energy εi and the photon
number 〈Nr〉i of each state are plotted in the (εi, 〈Nr〉i)

plane for κ = 0 (blue dots) and κ/2π = 10 MHz (red
dots). Qualitatively, the spectrum is the same in both
cases. In particular, anticrossings, which are signatures
of resonances of the coupled system, do not seem to be
attenuated.
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