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Machine learning (ML) is a promising approach for performing challenging quantum-information tasks
such as device characterization, calibration, and control. ML models can train directly on the data pro-
duced by a quantum device while remaining agnostic to the quantum nature of the learning task. However,
these generic models lack physical interpretability and usually require large datasets in order to learn
accurately. Here we incorporate features of quantum mechanics in the design of our ML approach to char-
acterize the dynamics of a quantum device and learn device parameters. This physics-inspired approach
outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimen-
tal data obtained from continuous weak measurement of a driven superconducting transmon qubit. This
demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this
characterization task, thus laying the groundwork for more scalable characterization techniques.
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I. INTRODUCTION

Machine learning (ML) has recently been applied to
solve problems in numerous areas of physics, includ-
ing quantum-information science [1,2]. For example, ML
models have been used to tackle quantum-computing tasks
including qubit readout [3–5], quantum control [6,7], and
quantum state tomography [8–10] among others. These
“black-box” models enjoy wide applicability to different
problems, as their structure is agnostic to the physical
processes involved in the targeted task. However, infor-
mation about the physics of the learned process can also
be leveraged in an effort to improve upon these black-box
approaches by making them more trainable and inter-
pretable. Recent work has shown promising results in this
direction by using “white-box” quantum features, such as
physical laws, symmetries, and relevant correlations, in the
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ML approach. For example, including quantum features
has been used to improve the characterization of quan-
tum noise [11] as well as to learn quantum states more
efficiently [12,13] and in an interpretable way [14].

Here we are interested in developing quantum-aware
ML models in order to characterize the dynamics of
a quantum device from physical observations. Accurate
device characterization is crucial for producing high-
fidelity quantum operations and algorithms [15]. However,
just like most techniques in quantum characterization,
validation and verification, our ability to perform this char-
acterization is intrinsically limited by quantum properties
such as the lack of direct access to the state [16–18].
By tailoring the machine-learning approach to reflect as
much of our knowledge of the quantum device as pos-
sible, we seek to mitigate the effect of these intrinsic
difficulties.

As an example of a generic situation in quantum infor-
mation, we focus on the circuit QED architecture and
characterize the dynamics of a resonantly driven super-
conducting transmon qubit [19]. The driven qubit is con-
tinuously monitored by a weak dispersive measurement
[20]. By training a ML model to predict measurement
outcomes from the weak-measurement data, we can char-
acterize the qubit parameters via the quantum-trajectory
formalism [21].
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This physics-inspired approach overcomes two impor-
tant limitations of generic machine-learning tools that are
agnostic to the physics of the problem at hand, such as Ref.
[22], which also considered learning quantum trajectories
from the continuous weak measurement of a transmon
qubit. First, it is more efficiently trainable as significantly
less experimental data is needed to train the ML model.
Second, the physics-inspired approach allows for a direct
device characterization, whereas the black-box approach
lacks interpretability as the trained ML model cannot be
easily associated with an explicit physical description of
the device. We address these two limitations by designing
ML models that exploit our domain knowledge of quan-
tum trajectories and dispersive measurements in circuit
QED [20]. We also explore the relations between the train-
ing efficiency, physical interpretability, and achievable
accuracy of the ML model predictions.

In the following, we train our ML models on numer-
ically generated and experimental data. The numerical
data provides an opportunity to quantify improvements
and limitations of different learning approaches, while the
experimental data allows us to demonstrate how these
approaches can be applied with success to real quantum
systems, even in the presence of noise and imperfections.
For example, we show how our approach allows us to
learn the Hamiltonian and Lindblad operators of the exper-
imental device as well as the quantum efficiency of the
measurement chain, while accounting for state prepara-
tion and measurement (SPAM) errors. Our approach is
therefore closer to Hamiltonian learning [23–25] than to
quantum process tomography where a single process or a
discrete collection of processes is learned [9,26–29].

The paper is organized as follows. After presenting the
experiment, its numerical model and the generic machine-
learning model in Secs. II–IV, we present two main
approaches to introduce quantum features in the ML model
and show their impact on numerically generated data.
Namely, we implement a loss function that encourages
quantum mechanical features in a recurrent neural network
in Sec. V and we tailor the architecture of the ML model
based on the formalism of quantum trajectories in Sec. VI.
We then apply these techniques to experimental data in
Sec. VII and analyze the parameters resulting from such
device characterization approaches in Sec. VIII.

II. EXPERIMENT

As schematically illustrated in Fig. 1, the experiment
consists of a superconducting transmon qubit, which
is continuously probed by a weak dispersive measure-
ment via a microwave cavity. Together with this weak-
measurement tone, an additional continuous tone at the
qubit transition frequency produces Rabi oscillations of the
qubit. The interaction-picture Hamiltonian describing the
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FIG. 1. Schematic overview of the three-step experiment (I-
III) and the associated learning task. The weak measurement
of a transmon qubit under the action of a resonant Rabi drive
produces time-series data �Mt (step II). This information is com-
plemented by data from state preparation (step I) and a final
projective readout of the qubit (step III), constituting the inputs
to the ML model. The model is composed of a recurrent neural-
network (RNN) unit augmented by encode and decode neural
layers. The role of these layers is to directly relate the hidden
state of the network ht with the state r̃t of the qubit at time t. Dis-
tinct realizations of the experiment are labeled by the outcome of
the projective readout, illustrated by a light blue dot. The generic
ML model is trained to minimize the distance between the final
probability distribution associated with r̃T and the actual read-
out outcome for an ensemble of trajectories, as quantified by the
cross-entropy loss LCE. Relevant physical information about the
qubit dynamics can be extracted from the output quantum trajec-
tories, such as the parameters HR, L, and η defined in Eqs. (2)
and (3).

system is H = Hint + HR, where [20]

Hint = �χ

2
a†aσz, (1)

HR = ��R

2
σx. (2)

Here, χ is the dispersive qubit-cavity coupling, �R
the Rabi frequency, a† (a) the creation (annihilation)
operator for the cavity mode, and σx,y,z are the qubit’s
Pauli operators. In our experiment, we have �R/2π =
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0.222 MHz, χ/2π = −0.47 MHz, and cavity linewidth
κ/2π = 1.56 MHz.

The experiment is realized in three essential steps. The
qubit is first prepared in one of the six cardinal points of the
Bloch sphere (|0〉 , |1〉 , |±〉 , |±i〉). A weak-measurement
tone is then applied at the cavity frequency of 6.679 GHz
to continuously probe the qubit state in the σz basis for a
variable time T all the while a microwave drive applied
at the qubit frequency of 5.473 GHz drives Rabi oscilla-
tions. Finally, at the end of the prescribed evolution time,
a strong projective measurement of one of the qubit opera-
tors σx,y,z is performed. After being amplified and digitized,
the weak-measurement signal takes the form of a voltage
time series �Mt, whereas the strong readout signal is inte-
grated and discriminated to yield a single binary output
m ∈ {+1, −1}. In the machine-learning trainings, this final
projective measurement is used to quantify the accuracy of
the ML model in learning the quantum trajectories of the
monitored qubit.

In order to build the dataset used to train our machine-
learning models, we perform a total of 3.5 million shots
of the three-step experiment. For each of the 18 possi-
ble preparation-measurement setups (six preparations and
three strong-measurement axes), the weak-measurement
records are acquired for different total evolution time T
between 0 μs (corresponding to a projective readout imme-
diately following the preparation) and 8 μs in time steps
of �t = 0.04 μs. The resulting dataset formed by the
weak measurements, together with their associated prepa-
ration and readout, is then divided into training, validation,
and test sets with proportions of 0.75, 0.20, and 0.05,
respectively.

III. NUMERICAL MODELING

Single realizations of the experiment can be described
by the formalism of quantum trajectories [21]. A quantum
trajectory fully captures the evolution of a qubit state ρ

over time. Trajectories can be extracted from the continu-
ous weak measurement by integrating a stochastic master
equation (SME) of the form [30]

dρt = −i [HR, ρt] dt + D[L]ρtdt

+
√

η

2

(
H[L]ρtdWI

t + H[−iL†]ρtdWQ
t

)
. (3)

In this expression, the Lindblad operator L = √

d/2 σz

describes the weak-measurement backaction on the qubit
with 
d the measurement-induced dephasing rate, which is
a function of the weak-measurement power, and η ≤ 1 is
the quantum efficiency of the measurement chain (includ-
ing signal amplification and detection) [20]. Moreover,
the independent, Gaussian-distributed Wiener increments
dWq

t have mean E(dWq
t ) = 0 and variance Var(dWq

t ) = dt,
for both quadratures q ∈ {I , Q} of the weak-measurement

signal at every time t. D[L]ρ = LρL† − 1
2

(
L†Lρ + ρL†L

)
is the standard dissipator and H[L]ρ = Lρ + ρL† −
ρTrρ(L + L†) is the measurement superoperator describ-
ing the backaction of the weak measurement on the quan-
tum state [30]. In Eq. (3), we assume that both quadra-
tures of the measurement record are monitored, something
which is known as heterodyne detection [20]. We also
assume that the cavity-mode dynamics are much faster
than that of the qubit, allowing us to adiabatically eliminate
the cavity degrees of freedom from the SME [31].

Experimentally, one has access to the weak-measurement
record �M q

t corresponding to a finite sampling in time of
the otherwise infinitesimal signal dM q

t . These stochastic
variables are related to the Wiener increments through [30]

dM q
t =

√
η

2
Tr

[
ρt(cq + cq†)

]
dt + dWq

t , (4)

where cq = L (cq = −iL†) for the I (Q) quadrature. The
measured signal �M q

t is composed of a deterministic por-
tion holding information about the qubit state that scales
as �t and a larger stochastic contribution (noise) of order√

�t.

A. Numerical data

The numerical data is generated by integrating the SME
of Eq. (3) using the positivity-preserving scheme intro-
duced by Ref. [32] and implemented in QuTiP [33]. To
avoid most numerical integration errors from affecting the
numerical datasets, we use a small integration step of
0.001 μs and then coarse grain the weak-measurement
results to match the experimental time steps of �t =
0.04 μs. In this way, we generate 1.2 × 106 trajectories
for the training, 0.3 × 106 for the validation and 0.3 × 106

for the test sets. Note that we generate a test set as large
as the validation set to ensure that we accurately compare
the prediction accuracy of the different ML models. Impor-
tantly, we generate experimentally realistic data by using
the parameters obtained from independent experimental
calibration of the superconducting device. Below, we refer
to these as the true parameters {�R, 
d, η} of our physi-
cal model given by Eqs. (1)–(3). Using only realistic data
allows us to transparently extend the machine-learning
improvements drawn from the synthetic results to actual
experimental settings.

IV. MACHINE LEARNING

Finding a physical model accurately capturing the
dynamics of a quantum device and precisely calibrating
all the parameters involved in the model is nontrivial and
requires extensive quantum measurements and computa-
tional resources [16]. However, evaluating the accuracy
of a given model at predicting measurement outcomes
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is relatively simple. Thus, the task of finding a good
model to characterize observed quantum dynamics natu-
rally lends itself to a machine-learning-based approach,
where the accuracy of the trainable model can be opti-
mized on a given dataset. In this context, neural networks
are particularly attractive as they can serve as universal
function approximators [34]. Specifically, recurrent neural-
network (RNN) architectures can preserve local time cor-
relations [35] that are present in the weak-measurement
time-ordered data. This architecture is therefore a good
candidate for the task at hand.

A. Recurrent neural network

Figure 1 shows the structure of our machine-learning
model. The RNN consists of a unit cell that is repeated
at every new input �Mt of the time-series data, producing
an output ht known as the hidden state. This hidden state
is then combined with the next time-series input �Mt+�t,
allowing information to propagate through the sequence
and weight on the outputs at future times. Here, we use
a RNN architecture known as gated recurrent unit (GRU)
[36]. Further details on the structure of our RNN imple-
mentation can be found in Appendix A. To relate the
hidden state of the neural network ht to the targeted state
of the qubit rt, we complete our ML model with two feed-
forward neural layers named encode and decode layers.
The encode layer maps a “one-hot” encoded preparation
vector �p to the initial hidden state h0 of the RNN. The
decode layer transforms a hidden state ht to a prediction
for the qubit state r̃t = (〈̃σx〉t, 〈̃σy〉t, 〈̃σz〉t).

The machine-learning task then consists of inferring an
accurate quantum state for the qubit at every time t dur-
ing the evolution, given a selected preparation �p and the
acquired weak-measurement time series �Mt. The train-
ing label corresponds to a one-hot encoded vector �m of
the projective measurement outcome m ∈ {+1, −1} for the
measured operator σx,y,z. This label �m represents a sin-
gle bit of information about the qubit state acquired from
the projective measurement at the very end of the weak
measurement. In other words, the task amounts to recon-
structing the quantum dynamics of the qubit by learning
its quantum trajectory r̃t, without having explicit access to
the true quantum trajectory rt.

B. Training

Because in the laboratory we do not have access to rt,
the task at hand is inherently difficult. What is accessible
experimentally are the coarse-grained results of the contin-
uous weak measurement of the observable 〈σz〉, which are
obscured by noise, as well as the final projective measure-
ment outcome. Importantly, we train our models on this
data only, since it represents all that is realistically avail-
able in experiments. This is in contrast with other work
where the training is based on the assumed knowledge of

perfect, or slightly noisy, quantum states throughout the
evolution [8,37–39]. Although this data can in principle
be acquired, it would require impractically many quantum
process tomography experiments. It is also worth point-
ing out that the learning task at hand is drastically different
from other nonquantum ML approaches to solve ordinary
or stochastic differential equations [40,41], where informa-
tionally complete observations of the state can be made at
intermediate times during the evolution.

The training of our ML models is done by computing
the gradients of a loss function L and updating the neural-
network parameters using backpropagation and gradient
descent [34]. Such a training is done using either experi-
mental or numerically generated weak-measurement data.
In both cases, the model is incrementally updated based on
its performance on the training set until the performance on
the validation set starts to degrade, which indicates overfit-
ting. We then verify and compare the performances of the
different models on the test set.

V. LOSS FUNCTIONS

A. Cross entropy

In supervised learning, a black-box approach might con-
sist in training a generic neural network using a loss
function that is agnostic to any features or physics asso-
ciated with the learning task. The loss function simply
measures the distance between the true observed outputs
(of the labeled dataset) and the predicted outputs of the
model. An example is the binary cross entropy, also known
as negative log likelihood, which in our case quantifies
the separation between the qubit-state measurement prob-
abilities predicted by the ML model and the observed
projective-measurement outcomes [22]. The cross-entropy
loss on N trajectories takes the form

LCE = − 1
N

N∑
n=1

[
(1 + mn)

2
log(�α

n )

+ (1 − mn)

2
log(1 − �α

n )

]
, (5)

for the pairs (mn, �α
n ) of projective measurement outcome

mn ∈ {+1, −1} and the probability �α
n ∈ [0, 1] predicted

by the ML model of measuring the outcome +1 for the
operator σα .

In addition to using LCE as a training loss, we use
the cross entropy to compare the performance of different
models at predicting the experimentally observed (or sim-
ulated) measurement outcomes. Using the cross entropy as
a performance metric is motivated by the fact that, in the
present case where the measurement outcomes are fixed,
it is equivalent up to an additive constant to the Kullback-
Leibler divergence [34]. Moreover, using the cross entropy
allows us to quantify the accuracy of the trained ML
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model at the level of its individual output trajectories,
without having to introduce statistical errors by binning or
averaging the trajectories to yield the desired metric.

Figure 2 presents the performance of RNNs trained on
numerically generated data—we come back to experimen-
tal data in Sec. VII. Panel (a) illustrates the deviations of
the learned quantum trajectory (light blue line) from the
true trajectory (dark blue line) for a single representative
component of rt and r̃t sampled from the test set. As is
made clear from this example, because the model is only
trained to be accurate at the very end of the quantum evolu-
tion where the projective measurement is performed, there
are little variations between true and learned trajectories
with the generic LCE black-box neural-network (BBNN)
approach at late times. However and for the same reason,
the learned quantum trajectories deviate from the true tra-
jectories at early times. This observation is made more
quantitative in Fig. 2(b), which shows the mean squared
error as a function of time between the true trajectories
and those learned using the cross-entropy loss (light blue
line). The corresponding cross entropy between the gener-
ated trajectories of the entire test set and the RNN-learned
ones is, moreover, shown in Fig. 2(c).

In short, a RNN trained with the loss function LCE is rel-
atively accurate at predicting the measurement outcomes
of unseen data, but fails to precisely capture quantum
dynamics during the entire evolution. Extracting informa-
tion about the device parameters with this approach is
therefore expected to lead to flawed results.

B. Physics-inspired loss functions

To improve the situation, we now expand the loss func-
tion with terms penalizing learned trajectories which do
not respect specific quantum mechanics features. Such reg-
ularization of the training allows the RNN to explore the
optimization space more efficiently [42].

Our first physics-inspired loss is the positivity loss,
which is aimed at penalizing ML outputs corresponding to
unphysical qubit states living outside of the Bloch sphere.
It takes the form

Lposit = 1
N (Nt + 1)

Nt∑
t=0

N∑
n=1

ReLU
(∣∣r̃t,n

∣∣2 − 1
)

, (6)

where ReLU(x) = max(0, x) is the rectified linear unit and,
as above, r̃t = (〈̃σx〉t, 〈̃σy〉t, 〈̃σz〉t) is the RNN prediction of
the qubit state. We note that a BBNN tends to learn states
that violate this positivity constraint at early times.

The second loss term proposed is the preparation loss,
which is intended to make the RNN predictions accurate
at the beginning of the quantum trajectory by using our
knowledge of the qubit’s initial state. This loss is expressed

as

Lprep = 1
N

N∑
n=1

∣∣r̃0,n − r0,n
∣∣2 , (7)

where, when dealing with experimental data, we can set the
targeted preparation states r0 to be consistent with SPAM
errors. To do so, we consider the subset of data where
the projective readout immediately follows the preparation
(i.e., the data with a weak-measurement time T = 0 μs).
The states r0 are then inferred by extracting the expectation
value of the σx,y,z operators on the prepared cardinal states
of the Bloch sphere, thus effectively carrying out quantum
state tomography of these initial states [26]. This simple
preprocessing of the dataset based on our understanding
of the dynamics then allows us to train the ML model to
output the best initial states given the same measurement
data.

The third physics-inspired loss that we introduce is the
prediction loss. The objective is to force the model to use
directly the deterministic information about the qubit state
that is present in the time-series data. To do so, we add an
output �M̃ q

t to the RNN model that serves as a prediction
for the next input of the time-series weak-measurement
data �M q

t+�t. The prediction loss is implemented as a mean
squared error

L�M = 1
NtN

Nt−1∑
t=0

N∑
n=1

(
�M̃ q

t,n − �M q
t+�t,n

)2 , (8)

that pushes the model to make predictions about the next
weak measurements that are as accurate as possible. Note
that the mean squared error is equivalent to a cross-entropy
loss for a Gaussian random variable like �M q

t .
Adding these different contributions, our physics-

inspired loss function takes the form

LPI = LCE + wpositLposit + wprepLprep + w�ML�M , (9)

where wj are relative weights that can be optimized simi-
larly to other hyperparameters of typical NN trainings. As
illustrated in Fig. 2, the trajectories resulting from training
the RNN with the physics-inspired loss function LPI are
significantly more accurate than those obtained using only
a physics-agnostic LCE. This is illustrated qualitatively in
Fig. 2(a) where the red line corresponds to a representa-
tive result obtained using Eq. (9). In contrast to the results
obtained with LCE (light blue line), the predicted trajectory
now matches the true trajectory (dark blue line) signifi-
cantly better at early times. Panels (b) and (c) show the
importance of the different physics-inspired loss terms by
presenting the mean squared error and the cross entropy,
respectively, for RNNs trained on different subsets of LPI.
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FIG. 2. Including quantum mechanics in the training loss function of RNN models. (a) Qualitative representation of the ability of a
black-box neural network (BBNN) and a physics-inspired NN (PINN) to reconstruct a quantum trajectory from realistically available
data. The results are obtained from numerical data generated using the SME of Eq. (3) (true). (b) Mean squared error between the true
qubit Bloch vector and the one learned by a RNN trained using different loss functions. Results are shown for the first 2 μs of the
evolution and using the entire test set trajectories. Note that the models are trained on weak-measurement time series with T = 8 μs.
(c) Total cross entropy for simulated projective measurements along the trajectories of the test set using a RNN and the same loss
functions as (b).

Figure 3 illustrates how LPI, and specifically the pre-
diction loss term L�M , helps the RNN learn significantly
better quantum trajectories. Panel (a) shows a representa-
tive example of an input weak-measurement signal �M
that was numerically generated (light blue) and the predic-
tion of the same signal �M̃ (dashed red line) from a RNN
trained using Eq. (9). We see that these two curves do not
directly correspond, which is expected from the fact that
�M is mostly composed of random noise (proportional
to

√
�t) coming from the Wiener increments in Eq. (4).

Figure 3(b) shows the agreement between the deterministic
portion of this input signal (dark blue) and the same RNN
prediction—notice the change of scale. This result shows
that our physics-inspired RNN model is able to infer the
deterministic information (proportional to �t) hidden in
the noisy weak-measurement signal, even if this relevant
information is at least an order of magnitude smaller than
the noise for our experimentally realistic parameters. Inter-
estingly, the ML model is then able to use the information
associated with this weak-measurement prediction in order
to output quantum trajectories that are significantly more
accurate throughout the entire quantum evolution.

VI. QUANTUM-TAILORED ML ARCHITECTURE

Thus far, we have used a generic RNN and shown how
leveraging prior knowledge about the structure of a quan-
tum problem allowed us to learn more accurate dynamics
while using the same input data. In this section, we follow
this intuition further by incorporating features of quan-
tum mechanics in the machine-learning model architecture
itself. To do so, we use a physically interpretable model
to learn a useful characterization of the device from the
weak-measurement data.

The idea consists of directly using our physical model
of the quantum dynamics, given by Eq. (3), as the train-
able model. This approach makes use of the direct relation
between the hidden state of the RNN and the quantum
state of the device. Since all measurement predictions are
derived from the hidden state of the RNN, the vector
corresponding to the hidden state holds an overcomplete
representation of the quantum state, and the layers that
translate it into Pauli-measurement probabilities can be
used to map this representation into the usual density-
matrix representation: ht → ρt. As such, the function F
that the RNN is set out to learn is the one updating the
quantum state given weak-measurement data

ht+�t = FRNN(ht, �M q
t ), (10)

ρt+�t = FSDE(ρt, �M q
t ),

= ρt + �ρ(ρt, �M q
t ), (11)

where the last equation is a discretized integration of Eq.
(3). Thus, we can use a stochastic differential equation
(SDE) integrator, with a set of free parameters, as our
learnable model implementing FSDE. We set those free
parameters to be the frequencies, rates and operators that
describe the experimental setup, such as {HR, L, η} that
appear in Eq. (3). With this choice, learning accurate quan-
tum trajectories from weak-measurement data becomes a
perfectly interpretable device characterization.

We implement the SDE integrator based on the Mil-
stein method [43] using an autodifferentiable library. This
implementation allows the model to operate on a GPU and
to be trained efficiently using backpropagation in the same
way as generic neural networks [34]. In the following, we
refer to this machine-learning approach as SDE learning.
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FIG. 3. Finding the deterministic information of a noisy signal
using the physics-inspired loss of Eq. (8). (a) Weak-measurement
input signal (blue) and recurrent neural-network prediction of
the same signal (dashed red) for a given quantum trajectory of
the test set. The input signal is composed of information about
the qubit state, through the expectation value of the (c + c†)

operator, but it is dominated by quantum noise, see Eq. (4). (b)
Enlargement of the RNN prediction and comparison to the true
value of the deterministic information about the qubit state (dark
blue). Results are obtained from numerically generated data.

We note that the use of a differential equation integrator
as a trainable model can be straightforwardly extended
to other parameter-estimation problems described by a
differential equation. As such, the authors of Ref. [44]
independently developed a similar learning approach for
control problems, although they analyze only the perfor-
mance on numerical data with high temporal resolution.
We emphasize that realistic experimental restrictions, such
as the size of the time increment �t, have important con-
sequences on the performance of these learning schemes,
which we address in Appendix C.

Using SDE learning on numerically generated data, we
have found that this approach is able to reconstruct the true
quantum trajectories up to numerical-integration errors
(not shown). Here, errors are due to the finite and real-
istic time step of the weak-measurement data, which is
set to �t = 0.04 μs. The SDE model based on Eq. (3)
outperforms the RNN models at the task of learning the
correct system dynamics, achieving a total mean squared
error of 6.3 × 10−5 on the trajectories of the test set. In
comparison, the physics-inspired RNN gives an error of
5.1 × 10−3 when trained on the same data. Importantly,
the SDE-learning approach also directly outputs the device

parameters and the generators of the quantum dynam-
ics. The characterization of the device resulting from this
approach is further discussed in Sec. VIII. We note that
we can also account for SPAM errors in the SDE-learning
approach by learning the preparation and projective mea-
surement maps from the initial state tomography subset
data, similarly to what can be done with the preparation
loss.

While the excellent performance of the SDE learn-
ing is to be expected for numerically generated data, the
next section explores the application of this approach to
experimental data where the model of Eq. (3) does not
capture all of the physical dynamics present in the weak
measurements.

VII. EXPERIMENTAL RESULTS

We now move from numerically generated data to
experimental data obtained from measurements on a super-
conducting qubit. Because we have already limited the
training to experimentally accessible quantities, there are
no differences in the training process. However, since the
true quantum trajectories are now unknown and the exper-
imental data is affected by nonidealities and noise beyond
what can be captured with the physical model of Eq. (3),
quantifying the degree of success of the training is more
difficult in this case. For this reason, we use the cross
entropy to quantify the ability of the trained models to
capture the qubit dynamics based on their predictions for
the projective measurement acquired at the end of every
experiment.

Figure 4(a) shows the cross entropy obtained using
three different approaches: the physical model of Eq.
(3) with independently calibrated parameters (gray), SDE
learning (blue), and physics-inspired RNN trained using
LPI (red). As an illustration of the outcome of training
our ML models on experimental data, Fig. 4(b) shows
a representative quantum trajectory reconstructed with
these three approaches while using the same input weak-
measurement data. Comparing the gray and leftmost blue
bars in Fig. 4(a), we see that the SDE-learning approach
allows us to learn physical parameters that describe the
experimental outcomes significantly better than infer-
ring these same parameters, {�R, 
d, η} appearing in Eq.
(3), using traditional calibration experiments [45]. Part
of this discrepancy between the calibrated model and
the learned SDE model can be attributed to calibration
errors and experimental drifts, which are likely to occur
during the experiment. The better performance of the
SDE learning demonstrates the ability of this approach
to learn an accurate physical model of the quantum
device.

Figure 4(a) also compares the performance of three
SDE models (blue bars) that have an increasing number
of degrees of freedom from left to right. The leftmost
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FIG. 4. Performance of the ML models to predict experimental outcomes. (a) Cross-entropy measure on the test dataset for the
physical model of Eq. (3) using independently calibrated parameters (gray) or learning the parameters from the weak-measurement
data in a SDE model (light blue), additionally learning the Hamiltonian and Lindblad operators (blue) and qubit relaxation rates (dark
blue). The performance of a physics-inspired recurrent neural network (PINN) trained with the loss function of Eq. (9) is also shown
(red). (b) A quantum trajectory reconstructed from an input weak-measurement time series sampled from the test dataset for three
distinct models of (a). (c) More visual comparison of the model predictions with the observed tomography measurements for the same
three models. The three tomography axes are used and averaged over. Also presented is the root mean squared error ε of the model
predictions for all points extracted from the validation dataset (total of 0.68 M trajectories). The error bars are given by the standard
deviation of the binomial distribution of model predictions for each point.

blue bar is obtained by learning the parameters {�R, 
d}
of the Hamiltonian HR = �R/2σx and Lindblad operator
L = √


d/2σz, together with the quantum efficiency η. A
significant gain in accuracy can be obtained by leaving
unconstrained the form of the Hamiltonian and Lindblad
operators and learning these full operators {HR, L} (middle
blue bar) directly from the data. Finally, taking advantage
of the flexibility of the SDE-learning approach, we can
further enrich the model that is learned, for example, by
adding to Eq. (3) qubit excitation and relaxation described
by the additional dissipators γ↑D[σ+]ρtdt + γ↓D[σ−]ρtdt.
As can be seen from the rightmost blue bar, the gain
in predictive power is, however, marginal reflecting the
fact that this particular addition is not capturing a mean-
ingful contribution to the dynamics of our physical sys-
tem. As presented with these three models, the ability
to directly learn SDEs makes it straightforward to define
nested physical models with growing parameter sets and
use model selection to determine the best physical descrip-
tion that balances between predictive power and economy
in parameters [46].

The performances of the SDE models are further com-
pared in Fig. 4(a) with a physics-inspired RNN trained
on the same weak-measurement data (red bar). The
RNN has a greater expressivity and is able to achieve
a lower cross entropy since it is free from the con-
straints of the SDE-learning model. This result shows

that some qubit dynamics are captured by the RNN
but not by the presented SDE models. An advantage of
SDE learning remains, however, in that it is a physi-
cally interpretable approach in which accuracy can be
improved by adding dynamics to the physical model
describing the device. For example, it would be pos-
sible to include the readout cavity mode in the SDE
model in order to characterize the non-Markovian qubit
dynamics that are likely to be present in the experi-
ment [30].

Another advantage of SDE learning is that it requires
significantly less experimental training data. This is illus-
trated in Fig. 5, which shows the cross entropy as a
function of the size of the training dataset. We see that SDE
learning (blue line) requires more than an order of magni-
tude fewer training samples than RNNs (light blue and red
lines) to reach the same prediction accuracy. Of course, as
already pointed out, the finite expressive power of the SDE
model limits its maximal accuracy, which reaches a plateau
while the RNN performance’s continue to improve with
millions of training samples. Additionally, Fig. 5 shows
that the physics-inspired loss LPI allows the RNN to learn
more accurate quantum trajectories with fewer data than
using the physics-agnostic loss LCE. Given enough train-
ing data, the black-box RNN is however able to infer the
known quantum features imposed to the physics-inspired
model in order to perform equally well on the cross
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FIG. 5. Model performance as measured by the cross entropy
on the test set as a function of the number of experimental weak-
measurement training samples. The same RNN model is trained
on the generic loss function Eq. (5) in light blue and on the
physics-inspired loss function Eq. (9) in red. The SDE-learning
model in blue has the structure of Eq. (3) with the free parameters
identified in the braces.

entropy, albeit this BBNN outputs nonpositive quantum
trajectories.

To illustrate the prediction accuracy of the SDE learn-
ing and physics-inspired RNN in a less rigorous but more
intuitive way than the cross entropy, Fig. 4(c) presents the
measure of self consistency used in Refs. [22,47]. This
measure consists in first binning the learned trajectories
predicting the same probability �α

n for the final measure-
ment outcome within a small δ = 0.04. We then compare
this approximate prediction to the average final projec-
tive measurement outcome (i.e., the tomography result) for
the same set of trajectories. Both the SDE learning and
RNN models are in excellent correspondence and follow
the expected unit slope. The overall agreement between
the model predictions and the tomographic measurements
is quantified by the root-mean-squared error ε weighted
by the number of trajectories in each bin. All the same,
this measure is not as sensitive as the cross entropy, which
compares every single learned quantum trajectory to its
associated projective measurement.

VIII. ANALYSIS OF DEVICE PARAMETERS

We now study the device parameters learned from
our two machine-learning approaches, namely the SDE-
learning and the physics-inspired RNN. The SDE model
can be trained directly on the weak-measurement data
to estimate its free and interpretable parameters. On the
other hand, the representation learned by the RNN is
not as straightforward to interpret. Here, we propose an
efficient way to extract the device parameters using the
SDE-learning approach on the RNN-learned quantum tra-
jectories.

An overview of the different parameter inference
approaches considered in this work is presented in Fig.

6(a), along with the parameters that are learned and the
cross-entropy loss achieved on experimental data. Figure
6(b) shows the parameters {�R, 
d, η} obtained from these
approaches on numerical data (left panel) and experimen-
tal data (right panel). By comparing the darkest blue bar
(true values used to generate the numerical data) to the
second blue bar (SDE learning) in the left panel, we see
that the SDE learning is able to infer the device parameters
with an accuracy limited only by numerical errors intro-
duced in the SDE integration. As presented in Appendix
C, this error is proportional to the time step �t, which we
take to be the same as for the experimental data, namely
�t = 0.04 μs. The impact of coarse graining the weak-
measurement data is analyzed in Appendix C. Figure 7
further confirms the excellent performance of SDE learn-
ing on numerical data by showing the full Hamiltonian (top
row) and Lindblad operators (bottom row) that are learned.
These Hinton diagrams directly show the learned 2 × 2
matrices. Comparing the first two columns of this figure,
we confirm that the characterization obtained on numerical
data matches very well with the true values.

On the other hand, the parameters obtained from SDE
learning on experimental data show larger deviation from
the values obtained from independent calibration of the
device, see the right panel of Fig. 6(b). The same is true
for the full Hamiltonian and Lindblad operators shown in
Fig. 7; compare the last two columns. The deviations of the
inferred parameters from their ideal values are indicative
of the need for a more sophisticated model [48]. Further
analyzing these discrepancies between the calibrated and
learned models could lead to a better understanding of the
qubit dynamics. This interpretability of the SDE-learning
approach constitutes one of its important advantage as
opposed to black-box learning approaches.

Motivated by interpreting the model achieving the low-
est cross entropy on the experimental data, we now analyze
how we can physically interpret a RNN trained on the
weak measurements. The approach to do so used in Refs.
[22,49] consists of two steps. First, the output trajectories
are binned within some small expectation value intervals δ

at every time point. Second, the mean and variance of these
distributions are fitted to a SME model using least-squares
fits, see Refs [22,49] for more details. Device parameters
resulting from this approach are shown in Fig. 6(b) with
the yellow bars. In the limit of vanishing bin size and
many trajectories in each bin this approach will recover
the true device parameters. Unfortunately, in the finite-
data regime the fits are sensitive to the particular choice
of bin size, with larger bin sizes discarding information
due to coarse graining and smaller bin sizes suffering from
reduced sampling statistics.

To improve upon this method, we employ the SDE-
learning approach to interpret the learned representation of
the RNN. This is achieved by training the SDE model to
output quantum trajectories that maximize the likelihood
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FIG. 6. Characterizing quantum dynamics from weak-
measurement data. (a) Schematic of the different approaches to
infer qubit parameters. On the right-hand side, the cross-entropy
loss (CEL) of the different models on the experimental test
set are presented. A lower CEL implies a better prediction of
the actual measurement outcomes. The free parameters of the
models are shown in braces. For the last three approaches, a
RNN is first trained on the weak-measurement data using the
physics-inspired loss function Eq. (9), achieving a CEL of
0.6457, and the parameters are extracted from the RNN output
trajectories. (b) Device parameters extracted from the different
learning approaches on numerically generated data (left panel)
and on experimental transmon data (right panel). Note that
we consider the parameters �R/2 (

√

d/2) to be the σx (σz)

component of HR (L). The error bars for the SDE approaches
are extracted by comparing performance on numerical data, see
Appendix C for more details. The error bars of the calibration
and binning approaches are extracted directly from curve fits.

of matching the learned RNN trajectories. This training
task is much simpler than training on the projective mea-
surement outcomes, since we now have direct access to
the target quantum trajectories outputted by the RNN. To
minimize the distance between the SDE and the RNN tra-
jectories, we use a mean squared error loss, which provides
good numerical convergence and is expressed as

LMSE = 1
N (Nt + 1)

Nt∑
t=0

N∑
n=1

(
r̃SDE

t,n − rRNN
t,n

)2
, (12)

for N trajectories with Nt time steps.
As shown in Fig. 6(a) by comparing the cross entropy of

the lightest blue and yellow colors, using the SDE learn-
ing allows us to recover more accurate device parameters
from the trained RNN than using the existing binning
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FIG. 7. Hinton diagrams of the Hamiltonian HR (top row)
and Lindblad L operators (bottom row) learned by the SDE
model with free parameters {HR, L, η} trained directly on the
weak-measurement data. These 2 × 2 matrix operators are pre-
sented for the training on numerical data (left column) and on
experimental data (right column) in comparison to the true and
calibrated operators chosen to be the same (center column). The
size of the colored squares is proportional to the absolute value
of the complex number entry and the color is associated with its
phase. For clarity, values are rounded to the third decimal and
null values are not shown.

approach. As opposed to the binning approach, we show
in red how the SDE model can easily be extended to
include more free parameters, in this case the full quan-
tum operators {HR, L}, in order to achieve a better device
characterization. Moreover, the SDE-learning performs a
maximum-likelihood estimation of the physical parame-
ters [50], thus making our method ideally suited to the
task of interpreting a trained RNN and preferable to a bin-
ning approach. It is also worth mentioning that the problem
of characterizing the quantum dynamics can now be bro-
ken down into two independent tasks: while a single RNN
with high expressivity can be used to learn an accurate
yet opaque classical representation of the quantum dynam-
ics, a set of SDE models can then be used to associate a
physical meaning to the result and extract relevant device
parameters.

IX. CONCLUSION

We have demonstrated that leveraging quantum mechan-
ics in the design of a machine-learning approach makes
the characterization of quantum dynamics more efficient
and accurate when using limited experimentally available
data. We have analyzed both numerically generated and
experimental data obtained with a superconducting qubit,
showing the trade-offs between the accuracy of the learned
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description, its efficiency in the number of training sam-
ples required and its interpretability that allows such a
description to be useful for the characterization of the
quantum device. We have presented two main approaches
to acquire an accurate heuristic of the quantum dynamics
from weak-measurement data, namely (i) by designing the
loss function of a recurrent neural network to make use
of our understanding of the quantum formalism and (ii)
by tailoring the structure of the machine learning model to
respect the structure of the stochastic differential equation
describing the device dynamics.

Overall, our results demonstrate that useful insights
about the physics of quantum systems can be gained by
interpreting machine-learning models trained on experi-
mental data, thus going further than using black-box learn-
ing approaches. In particular, the SDE learning constitutes
a promising avenue to perform realistic qubit modeling and
characterization via a single weak-measurement experi-
ment. Notably, this approach allows us to characterize the
quantum efficiency of the measurement chain η, which
usually requires involved characterization [51]. Moreover,
the SDE-learning let us extract, in presence of experimen-
tal imperfections, the Hamiltonian and Lindblad operators
of the system. We emphasize that traditional black-box
approaches would, on the other hand, require additional
processing to approximately extract interpretable informa-
tion from a trained neural network. As such, the ideas
developed in this work can be naturally extended to other
quantum tasks involving, for example, noise character-
ization and optimal quantum control. Our characteriza-
tion method is also advantageous for continuous quantum
feedback control, where controls are applied based on
continuous monitoring of the system [52].

An objective of the machine-learning approaches intro-
duced in this work is to acquire an efficient representation
of complex quantum devices to improve their characteri-
zation, calibration, and control. Towards this end, it will
be interesting to extend the learning to more qubits and
to explore the characterization of additional quantum phe-
nomena occurring in these more complex devices, such as
non-Markovian dynamics and crosstalk. The higher train-
ing efficiency of our quantum-tailored machine-learning
approaches might become especially relevant when scaling
up these quantum tasks, where the limitations of available
experimental data are increasingly stringent.
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APPENDIX A: RECURRENT NEURAL
NETWORKS

A recurrent neural network (RNN) is formed of a unit
cell that is repeated at every new time step of the input data
�Mt, producing an output ht known as a hidden state. This
hidden state acts as a memory of the previous inputs and
is combined with the next input of the time series �Mt+�t
to allow information earlier in the sequence to influence
outputs further down in the sequence. As such, the RNN
implements a nonlinear function, defined in terms of the
network parameters W, that maps the previous hidden state
and current input to the next hidden state. Importantly, the
function implemented by the RNN is fully differentiable
with respect to these parameters such that they can be
updated at each training iteration. This process allows the
network output to be brought closer to the desired output. It
is done by taking the gradients of a chosen loss function L
with respect to the network parameters using backpropaga-
tion and then updating them to minimize the loss function
via gradient descent [34]

W → W − ζ
∂L
∂W

, (A1)

where ζ is the learning rate. In the main text, we are using
a specific RNN architecture named gated recurrent unit.
After exploration of different well-known recurrent archi-
tectures that avoid the vanishing and exploding gradients
problem, the GRU was found to be the most effective for
the task at hand.

The specific function implemented by the GRU can
be separated into three gates that are used to decide
what information should be passed to the output. They
are named reset rt, update zt, and new nt gates and are
expressed as [36]

rt = σ
(
WM ,r�Mt + bM ,r + Wh,rht−�t + bh,r) ,

zt = σ
(
WM ,z�Mt + bM ,z + Wh,zht−�t + bh,z) ,

nt = tanh
[
WM ,n�Mt + bM ,n + rt ∗ (

Wh,nht−�t + bh,n)],
(A2)

where W and b are the free weights and bias parameters
optimized during the training stage, σ(·) is the sigmoid
function and ∗ is the Hadamard product. The hidden state
is then computed by combining these three gates in the
following way:

ht = (1 − zt) ∗ nt + zt ∗ ht−�t. (A3)

Further information about the origin, possible perfor-
mances and limitations of this architecture can be found
in Refs. [34–36].
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FIG. 8. Training of our machine-learning models on numerically generated data. (a) CEL error of a GRU with 16 hidden dimensions.
The model overfits the training data containing 1.2 million weak-measurement time series after more than about 120 epochs. (b)
Stochastic differential equation (SDE-learning) model in the form of Eq. (3) with free parameters {HR, L, η} trained on the same inputs
as in (a). This model has the same form as the equation used to generate the data and does not tend to significantly overfit the training
data, but rather reaches a plateau for the CEL and the associated model parameters. We note that unlike the validation loss error,
the training loss error is extracted directly from the training process where the model is updated at every mini batch. The dotted line
represents the validation cross-entropy loss error of a naive prediction given by the master equation (ME) using the true HR and L
operators. Both models rapidly learn to beat this prediction by making use of the weak measurements. We note that these ML trainings
are qualitatively similar when using experimental data acquired from our superconducting qubit setup.

APPENDIX B: MACHINE-LEARNING TRAININGS

In Fig. 8, we present a typical training of a GRU
and a SDE-learning model on numerically generated
data. The quantum trajectories and their associated weak-
measurement data �M t were obtained numerically by
integrating the stochastic master equation of Eq. (3) for a
total time T = 8 μs for different noise realizations.

Figure 8(a) presents the training of the neural network
illustrated in Fig. 1 with a GRU containing 16 hidden
dimensions and implemented in PyTorch [53]. We use the
loss function of Eq. (9) with weights wposit = 0.36, wprep =
1.7, w�M = 2.1. The training is done using the Adam opti-
mizer [54] with a learning rate ζ = 0.001 and in batches
of 1024 trajectories. We observed that the training quality
does not strongly depend on the specific values of these
hyperparameters. We see that, within the first few epochs,
the GRU learns to do better than the average quantum tra-
jectory prediction, which is given by integrating the master
equation (ME) with the true parameters. The ME is given
by the first line of the SME Eq. (3), i.e., by dropping the
stochastic part. The high expressive power of the GRU
allows it to overfit the training data after enough training
epochs, which is seen in Fig. 8(a) by the increase of the
validation loss.

Figure 8(b) presents the training of a stochastic differ-
ential equation integrator (SDE-learning) model that we
implemented in PyTorch using the Milstein scheme pre-
sented in Ref. [43]. The specific SDE used for our model
is Eq. (3), which is the same as the equation integrated to
generate our weak-measurement data, thus allowing the

SDE learning to learn the quantum dynamics with high
accuracy. The small number of parameters of the SDE
model allows us to train an ensemble of these models in
parallel that each have their own, randomly initialized,
free parameters. For example here, 100 models are trained
simultaneously on a single Nvidia GeForce 2080Ti with
11 GB of memory. Figure 8(b) shows the best model
out of this ensemble. The SDE model is also optimized
using Adam and the same values for the learning rate and
batch size. Since the SDE model automatically satisfies the
quantum-mechanical properties we were trying to encour-
age with additional loss-function terms, the SDE-learning
is trained solely on the cross-entropy loss Eq. (5). We high-
light the fact that the SDE-learning model is given the
same inputs, which are realistically available in an experi-
ment, as the GRU. These inputs are the weak-measurement
time series �Mt, together with their associated prepara-
tion �p and final projective measurement �m in the form of
one-hot encoded vectors, as illustrated in Fig. 1.

APPENDIX C: LIMITATIONS OF THE FINITE
SAMPLING TIME

The finite step size �t of the time series,
experimentally limited by the sampling time of the weak
measurements, intrinsically limits our ability to reconstruct
quantum trajectories by integrating a stochastic master
equation. Indeed, some information is lost by integrating
the weak-measurement signal in time steps �t. Through-
out this work, we use �t = 0.04 μs for the experimental
and numerical data. This coarse graining of the gathered
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FIG. 9. Characterizing quantum dynamics with coarse-grained
trajectories. (a) The error of the learned parameters grows with
the size of the weak-measurement time step �t. This implies
that �t imposes a limitation on the accuracy at which the SDE
model can learn true device parameters. (b) The CEL error on
the validation grows proportionally to �t, as caused by numeri-
cal integration errors of the Milstein scheme. All the curves with
circles represent the 25% quantile of the distribution of trained
SDE models on the data, with the shaded regions limited by the
0% and 50% quantiles. The true parameters are chosen to be the
ones obtained from the calibration of the superconducting qubit
of the main text, namely �R = 1.395 μs−1, 
d = 1.176 μs−1,
and η = 0.1469.

�t = 0.001 μs time series is motivated by two practi-
cal considerations. First, the computing time and memory
requirements associated with having a small time step are
important for long sequences. Using this time step allows
us to train all of our machine-learning models using less
than a couple hours and 11 GB of GPU RAM. Second, we
want to avoid the correlations in the time series that are
due to the finite memory time of the readout cavity (1/κ ≈
0.10 μs), since our SDE models assume uncorrelated weak
measurements.

In order to explore the effect of this coarse graining on
the ability of the SDE-learning model to learn accurate
device parameters, we train this model on synthetic data
coarse grained to different �t. The training data contains
75 000 trajectories obtained by integrating the following
SME:

dρt = −i
�R

2
[σx, ρt] dt + 
d

2
D[σz]ρtdt

+
√

η
d

4

(
H[σz]ρtdWI

t + H[−iσz]ρtdWQ
t

)
, (C1)

for variable durations T between 0 μs and 8 μs and with
a resolution �t = 0.001 μs. From these trajectories, the
other training datasets are generated by combining weak
measurements in order to coarse grain the data to larger
time steps, up to �t = 0.2 μs. We do the same for the val-
idation set with half as many trajectories as the training
set. We note that we generate all of these trajectories with
a Milstein integration scheme, which corresponds to the
scheme used by our SDE-learning model.

In Fig. 9, we quantify the effect of the integration
errors on the SDE-learning achievable accuracy for differ-
ent coarse graining of the weak-measurement time series.
We present both the relative error of the learned parameters
{�R, 
d, η} and the associated prediction accuracy of the
SDE model, as given by the validation CEL error. Figure
9(a) shows that we can learn the true physical rates and
quantum measurement efficiency within a relative error

TABLE I. Different approaches to learning device parameters from weak measurements in the cases of synthetic and experimental
data. The RNN of the last three columns is a single model trained on the weak-measurement data and the parameters are extracted from
its output quantum trajectories. The cross entropy is a measure of the accuracy of the model and associated parameters to describe the
observed measurement outcomes. Note that the binning approach assumes the same physical model as the RNN + SDE {�R, 
d, η}
model, i.e., it assumes that HR = �R/2σx and L = √


d/2σz in Eq. (3).

True or Calib. SDE {HR, L, η}
RNN + SDE
{HR, L, η}

RNN + SDE
{�R, 
d, η} RNN + Bin.

Numerical data �R/2π (MHz) 0.222 0.220 0.221 0.221 0.215

d/2π (MHz) 0.187 0.194 0.195 0.193 0.200

η (%) 14.7 13.4 13.5 13.7 12.4
Cross entropy (10−2) 64.510 64.512 64.513 64.511 64.527

Experimental data �R/2π (MHz) 0.222 0.228 0.228 0.232 0.213

d/2π (MHz) 0.187 0.182 0.176 0.184 0.173

η (%) 14.7 14.5 13.8 13.3 20.2
Cross entropy (10−2) – 64.78 64.89 65.04 65.17

040355-13



ÉLIE GENOIS et al. PRX QUANTUM 2, 040355 (2021)

TABLE II. Relevant experimental parameters. Note that T1 and
T2,Ramsey were measured without a weak measurement tone. The
error bars on T1 and T2,Ramsey reflect the standard deviation of 100
repeated measurements during a 3-hour window.

Parameter Description Value

ωres/2π Bare cavity frequency 6679 MHz
κ/2π Cavity linewidth 1.56 MHz
ωge/2π Transmon frequency 5473 MHz
α/2π Transmon anharmonicity −270 MHz
T1 Transmon relaxation time 61 ± 7 μs
T2,Ramsey Ramsey dephasing time 70 ± 9 μs
χ/2π Half of the dispersive cavity shift 0.47 MHz

close to 1% or less. We attribute this finite precision to
the limited size of the training dataset and the use of mini
batches during training, which both introduce statistical
sampling errors. However, this precision gets worse with
increasing �t, thus confirming that the integration errors

introduced by the coarse graining is a limitation for the
SDE-learning model, and more generally to any physical
modeling of the data involving the numerical integration
of a differential equation.

In Fig. 9(b), we present the isolated effect of the inte-
gration errors on the cross-entropy loss achieved by a
SDE model. To do so, we integrate the validation trajec-
tories using the true values of the parameters {�R, 
d, η}
for the differently coarse-grained datasets and compare
these trajectories with the expected projective measure-
ment outcomes. We see that the CEL error grows pro-
portionally to the size of �t for the SDE model with
true parameters. When leaving these same parameters
{�R, 
d, η} free for the SDE model to learn during train-
ing, we observe that the SDE-learning model is able
to perform better at predicting the measurement out-
comes of the validation set. We attribute this effect to
the fact that the model has the freedom to find parame-
ters that account for part of the information loss due to

FIG. 10. Experimental setup.
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coarse graining the data. For example, learning a slightly
lower quantum-measurement efficiency η than the true
value, on coarse-grained data, allows the SDE model to
achieve a better CEL. Consequently, the finite size of
�t can bias the parameter estimation and thus limit the
ability of the SDE learning to extract accurate device
parameters. As such, we use this bias found in train-
ing on numerical data as a lower bound on the error
associated with learning the device parameters on exper-
imental data with �t = 0.04 μs. We use this error for
the error bars of the SDE learning in Fig. 6 of the
main text, since it is larger than the standard deviation
of the parameters learned in the ensemble of 100 SDE
models.

APPENDIX D: PARAMETER VALUES

For completeness, we present in Table I the numerical
values illustrated in Fig. 6 of the main text.

APPENDIX E: EXPERIMENTAL SETUP

The experiments in this work were performed with a
chip of eight superconducting transmon qubits, cooled
to 10 mK in a BlueFors XLD dilution refrigerator. The
parameters for the qubit used in this work are summarized
in Table II. Room-temperature and cryogenic electron-
ics for qubit control and measurement are shown in Fig.
10.

1. Preparation and tomography pulses

Qubit control pulses are generated by up-conversion of
pulses generated by a Keysight PXI AWG via IQ mod-
ulation of a continuous-wave local oscillator (LO) tone,
sourced by a Keysight MXG N5183B at 5.415 GHz. Both
I and Q components of the intermediate frequency pulses
are sourced by the AWG at 1 GS/s. The phase and dc offsets
between the I and Q waveforms are tuned to eliminate the
opposite sideband and LO leakage due to mixer nonideali-
ties, while band-pass filtering at room-temperature reduces
noise from the AWG. The up-conversion chain schematic
for both the qubit control and readout lines is detailed in
the inset of Fig. 10 labeled ctrl and RO.

2. Qubit readout pulses

The qubit readout pulses are generated with the same
AWG and are similarly up-converted with a 6.83 GHz LO
tone from a separate Keysight MXG N5183B. After the
readout signal reaches the on-chip readout resonator, the
reflected output signal is redirected by a circulator to a
measurement chain outfitted with superconducting coaxial
cable, and is subsequently amplified by a traveling-wave
parametric amplifier (TWPA) at 10 mK, a HEMT at 4 K,
and a low-noise room-temperature amplifier. This signal is
then down-converted to IQ components with the same 6.83

GHz LO tone used for RO up-conversion. The demod-
ulated signals are then amplified and filtered to reduce
high-frequency amplifier noise before being digitized at
1 GS/s by an Alazar ADC. The down-conversion chain
schematic is detailed in the inset of Fig. 10 labeled Demod.
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