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Abstract
Kitaev’s 0–π qubit encodes quantum information in two protected, near-degenerate states of a
superconducting quantum circuit. In a recent work, we have shown that the coherence times of a
realistic 0–π device can surpass that of today’s best superconducting qubits (Groszkowski et al 2018
New J. Phys. 20 043053). Herewe address controllability of the 0–π qubit. Specifically, we investigate
the potential for dispersive control and readout, and introduce a new, fast and high-fidelity single-
qubit gate that can interpolate smoothly between logicalX andZ.We characterize the action of this
gate using amulti-level treatment of the device, and analyze the impact of circuit-element disorder
and deviations in control and circuit parameters from their optimal values. Furthermore, we propose
a cooling scheme to decrease the photon shot-noise dephasing rate, whichwe previously found to
limit the coherence times of 0–π devices within reach of current experiments. Using this approach, we
predict coherence time enhancements between one and three orders ofmagnitude, depending on
parameter regime.

1. Introduction

Fault-tolerant quantum computation is likely to require daunting hardware resources [1, 2]. This factmotivates
the search for strategies to reduce the qubit overhead needed for quantum error correction, and drives the
development of newquantum error correcting codes [3–7]. Furthermore, the reduction of gate errors for
physical qubits offers a direct and impactful way of reducing qubit overhead [2, 8]. The latter can be achieved
both through longer qubit coherence times and better quantum control for gates.

For superconducting circuits, coherence time improvements by asmuch as five orders ofmagnitude have
been demonstrated [9, 10]. This has been possible thanks to advances in several areas, includingmaterials [11],
microwave engineering [12], shielding [13, 14], and the use of 3D architectures [15–17]. Crucially, order-of-
magnitude leaps in coherence have also been the result of newqubit designs, such as the transmon and the
fluxoniumqubits [18, 19].

In this paper, we consider the superconducting circuit introduced in [20], commonly referred to as the 0–
π qubit, and closely related toKitaev’s currentmirror proposal [21].With a set of non-overlapping logical wave
functions and very lowflux and charge dispersion, the 0–π qubit displays exponential suppression of relaxation
and dephasing. It has been shown that the 0–π qubit can be used to encode quantum information in a protected
subspace [20–23], but in a regime of parameters that is challenging to realize with current superconducting
quantum circuits. In fact, the fully protected regime of this device exploits a degree of freedomwith large
quantumfluctuations, somethingwhich requires an effective impedance surpassing the quantumof resistance
by orders ofmagnitude. Achieving this regime requires the use of superinductors, which are circuit elements
with inductance greater than∼100 nH andwith very little stray or ground capacitances [19, 24–26].We have
recently shown that for circuit parameters attainable with current superconducting technology, the 0–π qubit
dephasing time is limited by photon shot noise arising from a parasitic circuitmode (whichwe referred to as the
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ζ-mode) [22]. Nevertheless, we found that the 0–π qubit still has the potential to outperform state-of-the-art
superconducting devices. Below, we propose amethod to further enhance the coherence time by orders of
magnitude by cooling the ζ-mode.

However, as can be expected, the price of intrinsic noise protection in the 0–π qubit is that it is difficult to
perform logical operations on this device. In particular, protection fromnoise comes in part from the
exponentially small overlap of its logical wave functions. As a result,matrix elements of local operators between
the two logical states will also be small, thus resulting in extremely slow gates. In [20], Brooks et al proposed a
universal set of protected logical operations based on coupling to an ultra-high impedance LCoscillator.
However, these operationswere based on an idealizedmodel of the qubit andwith parameters that are difficult
to realize in practice. Further work is required to determine the potential of this approach in amore realistic
setting.

Motivated by the prospect of realizing 0–π qubits in the near term,we investigate alternative approaches to
measurement and control with lower experimental complexity. The operationswe propose are not protected in
the same sense as those proposed in [20], because they rely either on operating the device in a regimewhere the
qubit is not fully isolated from the environment, or theymake use of excited states outside the qubitmanifold. In
particular, we develop a single-qubit gate based on amulti-level excursion through higher energy levels.
Nevertheless, we hope that these schemeswill be useful for both characterization and control of 0–π qubits in
near-to-medium-term experiments.

This work is organized as follows. In section 2, we introduce the 0–π qubit and provide a simplified effective
model for the 0–π circuit with only a single degree of freedom. In section 3, we discuss general coupling
strategies for qubit control and readout, and derive the 0–π circuitHamiltonian accounting for stray and
parasitic capacitances, disorder in circuit-element parameters, as well as coupling tomicrowave voltage sources
and a readout resonator. In section 4, we analyze dispersive coupling to a resonator, and find that there are
regimes of dispersive shift akin to the straddling regime of the transmon qubit [18]. In section 5, we introduce a
single-qubit gate that achieves population inversion of the 0–π qubit and can interpolate between logicalX andZ
by varying the qubit operation point. Furthermore, we characterize the gate operation as a function of circuit
design parameters and analyze its robustness. In section 6, we propose amethod tofight themain qubit
dephasingmechanism, analyze its performance as a function of circuit parameters, and discuss its
implementation.We conclude in section 7.

2. The 0–π qubit in a nutshell

In this sectionwe introduce the 0–π qubit in the ideal case of no circuit-element disorder and briefly discuss its
properties. In particular, we give an intuitive picture in terms of co-tunneling of Cooper pairs leading to an
approximatelyπ-periodic qubit potential, which is further verified by an effectivemodel accurately describing
the low-energy physics of the system.

2.1. The circuitHamiltonian
Wefirst consider the symmetric 0–π circuit, as illustrated infigure 1(a), consisting of two Josephson junctions
with energyEJ, capacitanceCJ and plasma frequency �w = E E8p CJ J , two superinductors with inductance L,
and two large capacitors with capacitanceC. The normalmodes of this circuit are

Figure 1.The 0–π qubit in a nutshell. (a)Circuit diagram for the symmetric 0–π qubit, with pairwise identical circuit elements. (b)
Pictorial illustration of co-tunneling of pairs of Cooper pairs across the two junctions, explaining the approximateπ-periodic
potential energy, and an equivalent circuit-elementwith only a single degree of freedom θ.
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whereji is the superconducting phase operator at node i of the circuit. Using these definitions, the symmetric 0–
π qubitHamiltonian reads [23]

q f j f= + - - +p
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- ( ) ( )H
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E E

2 2
2 cos cos 2 , 2L0
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where qf=2enf and qθ=2enθ are the conjugate charge operators associatedwithf and θ (i.e. [f, nf]=i and
[nθ, eiθ]=eiθ) respectively, andjext=Φext/j0 is the externalmagnetic flux in units of the reduced flux
quantumj0=ÿ/2e.Moreover, we have introduced capacitances for the two qubitmodesf and θ given by
Cf=2CJ andCθ=2(C+CJ), respectively, and the inductive energy j=E LL 0

2 .
In the 0–π qubit, quantum information is stored in the {f, θ} degrees of freedom,while ζ is a spurious low-

frequency harmonicmode andΣ is a cyclic coordinate. In absence of circuit-element disorder, the ζ andΣ
modes do not couple tof and θ, and are therefore excluded fromequation (2).

Introducing the effective impedances =f f( )Z L C2 and =q q( )Z L C2J , where j=L E ,J 0
2

J the 0–
π regime is defined by

q f� � ( )Z R Z , 3Q

whereRQ=h/(2e)2;6.5 kΩ is the superconducting quantumof resistance.We say that a device is in the
‘moderate,’ or ‘deep’ 0–π regime, depending on the degree towhich the impedance relations are satisfied. The
problemof fabricating a qubit in the deep 0–π regime, includes that of realizing a high-impedance superinductor
[27–29].

2.2. Exciton tunneling picture
Figure 1(b) shows an approximate equivalence between the 0–π circuit (to the left) and a circuit-element
describing tunneling of pairs of Cooper pairs (to the right). The co-tunneling of Cooper pairs or ‘exciton’ in the
0–π circuit can be understood as a consequence of a circuit layout combining branches of superinductors (high
impedance) and large capacitances (low impedance). Here, we schematically illustrate how tunneling of a
Cooper-pair across the left junction of the 0–π circuit is ‘mirrored’ by the simultaneous tunneling of a Cooper-
pair across the right junction: a Cooper-pair tunneling event across the left junction leads to a build up of−2e
negative charge on one side of one of the large capacitors, whichmust be compensated for by a positive charge on
the other side. This can happen through a simultaneous−2eCooper-pair tunneling event across the right
junction in the same direction. The co-tunneling of Cooper pairs through the left and right junctions form
together an effective exciton tunneling event [21].

Note that no currentflows through the superinductors in the limit of l ¥L ( l ¥fZ RQ ).
Superinductors are, however, crucial in defining the non-trivial topology of the circuit, as in their presencewe
can identify two distinct circuit islands shown as blue (bottom) and pink (top) infigure 1(b). Due to the
simultaneous co-tunneling of Cooper pairs across the two junctions, we expect the potential energy to beπ-
periodic rather than 2π-periodic in the superconducting phase difference across the two islands, in the limit
l ¥L . This expectation can be verified by an effectivemodel for the θ degree of freedom alone, derived in

appendix B following a Born–Oppenheimer approach and resulting in the effectiveHamiltonian

j q j q= - - -p q
q

- q ( ) ( ) ( ) ( )H E n n E E4 cos 2 cos , 4C g0
eff 2

2 ext 1 ext

where = qqE e C2C
2 and qng are, respectively, the charging energy and the offset charge corresponding to the θ

coordinate. Theflux-dependence of the potential energy is given by the coefficients
j j= -a b( ) ( )E E E cos2 ext ext and j j= g( ) ( )E E cos 21 ext ext , where Eα,EβandEγ are constants dependent on

the qubit design parameters and studied below.
In themoderate-to-deep 0–π regime, the relations a q�E EC and a b g�E E E, are satisfied. The effective

one-dimensional potential in equation (4) is shown infigure 2(a) for a set of 0–π circuit parameters. As a
function offlux, the twonearly degenerateminima are detuned onewith respect to the other, except atjext=π,
where the potential becomes perfectlyπ-periodic.With q�E EC2 , tunneling between the twowells is highly
suppressed. In the presence of a small, positive E1 (−π<jext<π), the lowest-energy state is localized in θ=0
and a nearly degenerate first excited state is localized in θ=π. Atjext=π, the twominima at θ=0 and θ=π
are exactly degenerate and the logical wave functions become hybridized independently of the circuit design
parameters. For E1 smaller than or comparable to the tunneling rate between the potential wells, hybridization
can also occur atj ¹ 0ext .

Figure 2(b) shows the values of {Eα,Eβ, Eγ} obtained froma numerical calculation of the coefficients in
equation (4) as a function ofZf/RQ forfixedZθ (see appendix B for details).We observe an exponential
suppression of the qcos potential term relative to the qcos 2 term, justifying theπ-periodicity suggested by the
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intuitive picture of co-tunneling of Cooper pairs.We note that the effectiveHamiltonian equation (4) in the
limitE1=0 resembles that of a transmon qubit, with the crucial distinction that the twominima at θ=0 and
θ=π are physically distinct.We also note, as shown in the inset infigure 2(b), thatE2; Eα∼EJ. The condition

q�E EC2 thus translates to q�E EJ C , or equivalently q �Z RQ.
Based on this simple picture, the 0–π qubit approximately reduces to a device with one effective degree of

freedom, θ, whose conjugate charge operator, nθ, determines theCooper-pair number difference between the
two circuit islands identified infigure 1(b). Since nθ changes in units of two, Cooper-pair parity is a conserved
quantity and an approximate symmetry of the circuitHamiltonian.We emphasize that the symmetry is
approximate, since forfiniteZf, the qcos term inequation (4) breaks the symmetry.

2.3.Qualitative explanation of robustness to noise
Cooper-pair parity conservation partitions the qubit spectrum into doublets with exponentially small charge
sensitivity in the ‘transmon limit’ q�E EJ C [18, 30]. Theπ-periodicity of theHamiltonianmoreover allows us
to draw several qualitative conclusions about the qubit’s generic properties. Formally, we define a symmetry
operator p= - q( )U nexp i which displaces θ byπ, and note that

= +p p- - ( )†UH U H ..., 50
ideal

0
ideal

where the ellipses refer to exponentially small corrections in the deep 0–π regime, as we have verified above.
Denoting the ground state of theHamiltonian by ñ∣0 with energyE0, it follows that a second eigenstate with
energy exponentially close toE0 is given approximately by ñ∣U 0 . This follows from

ñ = ñ + = ñ +p p- -( ∣ ) ( )( ∣ ) ( ∣ )†H U UH U U E U0 0 ... 0 ...0
ideal

0
ideal

0 Wecan denote this eigenstate by ñ∣1 .Moreover, the
argument continues to hold in the presence of any perturbation to theHamiltonian that respects the
(approximate) symmetryequation (5), i.e.

á ñ = á ñ+∣ ∣ ∣ ∣ ( )V V0 0 1 1 ..., 6

whereV satisfies = +†UVU V ... It follows that dephasing noise is expected to be exponentially suppressed for
symmetry-preserving noise processes. In particular, equation (4) shows that external flux noise does not break the
π-periodicity [recall thatE1(jext) is exponentially suppressed in the deep 0–π regime].

The condition q�E ECJ (or equivalently q �Z RQ)moreover leads to exponential suppression of tunneling
between the two potential wells located at θ=0 and θ=π, as already discussed.When the two nearly
degenerate ground states are localized in the two different wells, this thus leads to an exponential suppression of
bit-flips6

á ñ = +∣ ∣ ( )V0 1 0 ..., 7

forV anyweak perturbation to theHamiltonian that is local in phase space, i.e. any low-degree polynomials in
{f, θ, qf, qθ}. Equations (6), (7) lead together to the remarkably long coherence times expected for the qubit in
the deep 0–π regime, as recently confirmed quantitatively in [22].

Figure 2. (a)Effective one-dimensional potential (black) andwave functions for the two lowest lying energy states (color), extracted
using a Born–Oppenheimer approach (see appendix B). To the right of the effective potential we show a schematic of the energy
diagram (not to scale). In themoderate-to-deep 0–π regime, the low-energy spectrum consists of nearly degenerate doublets in a
weakly anharmonic ladder, closely resembling a transmon qubit spectrumwith each transmon level replaced by a doublet. The two
lowest doublets are split by approximately aqE E32 C , corresponding to the plasma frequency of theπ-periodic Josephson element.
(b)Energy parameters of the one-dimensional Hamiltonian equation (4) as a function ofZf for fixedZθ.We observe an exponential
suppression of bothEβandEγ, indicating that the qubit becomes a flux-insensitive π-periodic Josephson element in the deep 0–
π regime. Eα remains almost unchanged in comparison. Circuit parameters: EL/ÿωp ä [1.25×10−4, 5×10−3] and

� � �w w w = ´ -
f q( ) ( )E E E, , 0.25, 0.5 10 , 0.25C p C p pJ

3 .

6
Depending on the circuit parameters and externalflux, the two ground states can be localized in the two different wells, or in some cases

symmetric and anti-symmetric superpositions of such localized states [23]. In the latter case, theZ andX basis are exchanged.
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3. Coupling to external circuitry

3.1. General remarks about coupling strategies
With the goal of controlling andmeasuring the 0–π qubit, we nowoutline different strategies to couple the qubit
to external degrees of freedom.Noise protection in the 0–π qubit is achieved at a high price: the protection from
bit-flips implies negligiblematrix elements for qubit transitionsmakingmany coupling schemes inefficient.
Moreover, great care has to be taken to not introduce coupling circuitry explicitly breaking theπ-periodicity,
opening the qubit to dephasing noise. Some general remarks about coupling strategies can bemade based on the
qualitative discussion of the 0–π qubit in the previous section.

3.1.1. Direct inductive coupling
Any galvanic linear inductive coupling to the four circuit nodes leads to contributions of the generic form

q~ qEL,
2 to theHamiltonian, explicitly breaking the 0–π periodicity and lifting the groundspace degeneracy. It

might be possible to approximately restore the 0–π periodicity by using superinductors such that EL,θ→0.
However, this in turn leads to negligible coupling to any external circuitry, rendering such an approach
ineffective.

3.1.2.Mutual inductive coupling
Asmentioned above, in the limit l ¥L , moderate variations of the external flux through the qubit loop do not
break the 0–π symmetry, such thatmutual inductive coupling can potentially be a symmetry-preserving
couplingmechanism.However, for precisely the same reason that the qubit is highly insensitive toflux noise
[22], control and readout strategies based onmutual inductive coupling are ineffective. Large external flux
excursions, in contrast, can be used tomove between regimeswhere the logical states are localized in different
potential wells, to a regimewhere they are in a superposition of bothwells.We discuss exploiting this in a control
strategy insection 5.

3.1.3. Capacitive coupling
Capacitive coupling to the circuit nodes has the advantage that it only couples directly to the charge degrees of
freedom, leaving the 0–π periodicity and the two-island topology infigure 1(b) intact.Moreover, as long as the
coupling capacitances are kept small, they should not compromise the inequalityequation (3). In general, the
extremely smallmatrix elements coupling the logical qubit statesmakemany conventional control and readout
strategies inefficient. Nevertheless, we showbelow that capacitive coupling can be used to performdevice
spectroscopy in amoderate-to-deep regime of parameters, enable single-qubit control bymeans of fast voltage
drives, and cool the parasitic ζ-mode to improve the qubit coherence times.

3.1.4. Nonlinear symmetry-preserving inductive coupling
Althoughwe have argued that any straightforward coupling strategy based on inductive elements is either
ineffective or breaks the qubit’s protection fromnoise, itmight still be possible to engineer nonlinear inductive
couplers that respects the 0–π symmetry. Thismeans that the inductive contribution to the energy has to satisfy
Ecoupler(θ)=Ecoupler(θ+π)+..., where the ellipses again refer to terms that vanish in the deep 0–π regime. In
[20], it was proposed that such a couplingmechanism can be achieved by using a tunable Josephson coupler
(SQUID loop) connecting the 0–π qubit to an LCoscillator. For the qubit to remain protected, the LC oscillator
with impedanceZr is required to satisfy �Z Rr Q, much like the internalfmode of the 0–π circuit.Moreover, it
was shown that such a coupling could be used to enact one- and two-qubit phase gates.We briefly return to this
scheme below, and point out some additional challenges which have previously been overlooked.

3.2. Addressing the 0–π qubit degree of freedom
Coupling to the qubitmode θ in the 0–π circuit has an additional challenge, beyond the general points already
made above. Because the coordinate θ is a combination of phase operators of all nodes of the circuit [see
equation (1)], addressing only this coordinate requires a coupling element acting symmetrically on both ports of
each superinductor. As illustrated schematically infigure 3(a), where the boxes represent unspecified coupling
elements and could be capacitive or inductive in general, this coupling circuitry necessarily shunts the 0–π qubit
superinductors. According to the discussion in section 2.2, if the impedance of the coupler is not greater than or
comparable to that of the qubit superinductors, this effect can potentially compromise regime of operation of
the device. Atfirst glance, a possible solution to this problem appears to be the use of additional superinductors
replacing each of the box-shaped couplers infigure 3(a). However, this would lead to an inductive shunt of the
0–π circuit islands identified infigure 1(b) through the readout or control circuit [represented by ameter in
figure 3(a)], breaking theCooper-pair parity symmetry.
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An alternative coupling scheme considered in [20] is illustrated infigure 3(b). In this scheme, the coupling
element (i.e. the box in the figure) is a SQUID loop giving a tunable Josephson element between the 0–π circuit
and the LCoscillator. This coupling layout overcomes the difficulty described at the beginning of this section by
relaxing the symmetry requirements of the coupling circuitry.However, this leads to an interactionHamiltonian
that involves both θ and the spurious ζ-mode

q z f= - + -( ) ( ) ( )U J t cos , 8J r

where J(t) is the tunable Josephson-energy of the coupling element, andfr the resonator phase operator.We
have previously shown that the ζ-mode frequency goes to zero in the deep 0–π regime leading to diverging
thermal occupation of thismode [22], somethingwhichwas not taken into account in [20]. The impact of
thermalfluctuations due to the 0–π circuit internalmodes thus requires further study andwe propose in
section 6 a cooling scheme that can help approximate the ideal behavior considered in [20].

Based on this discussion, themost viable option for near-term experiments appears to be the use of
capacitive coupling. Thismeans replacing the box-shaped couplers infigure 3(a) by capacitors. Formally, small
coupling capacitors operate as high-impedance links while preserving the circuit islands. The coupling
capacitancesmust be kept small to ensure f �Z R 1Q since these add toCf [see equation (A.1)]. Therefore, a
downside of this approach resides in the fact that the capacitive couplings cannot be very large. Nevertheless, we
find that capacitive coupling allows for significant dispersive shifts (section 4), and a fast, single-qubit gate
(section 5).

We emphasize that the control strategies we consider in the following are not fault-tolerant in the sense of
[20, 21]. They either rely on operating the qubit in a regime that is not fully protected, or involve populating
higher and less robust excited states. Nevertheless, these operations can be performedwith high-fidelity and are
thus suitable for implementation in realistic devices in the near future.

3.3. Capacitive coupling to voltage sources
Wenow consider the 0–π circuit in the presence of voltage sourcesVi connected to the nodes i=1,K, 4 of the
circuit, as shown infigure 4(a). Sincewe have found that circuit-element disorder is a limiting factor for the
qubit coherence for parameters within reach of current experiments [22], we include such effects here. In
particular, we account for any superinductance and Josephson-energy asymmetries, denoted by dEL and dEJ,
respectively, as well as capacitance asymmetries, denoted by dCJ and dC. Additionally, there can be disorder in
the gate capacitances ( Cd gi

), as well as in the parasitic capacitances to ground ( Cd 0i
), such that the node gate and

ground capacitances for node i are = +( )C C C1 dg g gi i
and = +( )C C C1 d ,0 0 0i i

respectively.We note that, in
practice, the stray capacitancesmay arise from the superinductances and the large capacitors of the 0–π circuit
[28]. Following the standard approach to circuit quantization [31, 32]we find theHamiltonian

= + +p- ( )H H H H , 90 drive
symm

drive
asymm

where = +p p p- - -H H H0 0
symm

0
asymm describes the un-driven qubit. Thefirst contribution

å q f j f z= - - + +p
m

m

m
- ( ) ( ) ( )H

q

C
E E

2
2 cos cos 2 , 10L0

symm
2

J ext
2 2

with qμ/2e=−i∂μ forμ=(f, θ, ζ,Σ) is the ideal 0–πHamiltonian, wherewe now explicitly include the ζ and
Σ degrees of freedomand themode capacitancesCμ defined explicitly inappendix A.On the other hand,

Figure 3. (a)Addressing the qubitmain degree of freedom θ. The small box-shaped couplers are used to represent arbitrary coupling
circuit elements, and themeter represents a readout or control circuit. As illustrated by a dashed frame, the required coupling circuitry
(in red)necessarily shunts the device superinductors, leading to a combined link impedanceZ(ω) that can compromise the qubit
operation. (b)Coupling layout originally considered in [20]. The interaction strength J(t) stands for the potential energy of a flux-
tunable device.
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q f j fz= - - + - + +p
z q

q z
f q

f q- ( ) ( )H
C C

C C
q q

C C

C C
q q E E E E H

d d
d sin sin 2 d , 11L L C C0

asymm J J
J J ext d ,dg 0

describe unwanted spurious couplings between the circuitmodes to leading order in circuit-element disorder.
The last term H C Cd ,dg 0 is a purely capacitive term accounting for disorder of the gate and ground capacitances,
and its full expression can be found in appendix A. Since these capacitances are expected to bemuch smaller than
the internal circuit capacitancesC, we however neglect H C Cd ,dg 0 in the remainder of this work. Finally, the drive
term

å=
m m

m m ( )H
C

C
V q , 12

g
drive
symm

describe voltage drives of the four normalmodeswhereVμ is defined in terms of the node voltagesViwith i=1,
K, 4 according to the transformation rule inequation (1). Circuit-element disorder furthermore introduces
additional drive terms. This is accounted for by theHamiltonian Hdrive

asymm, given explicitly inappendix A.
As can be seen fromequation (11) the coupling between the qubit degrees of freedom {f, θ} and the

spurious ζ-mode appears when the large circuit capacitors or the superinductors are not symmetrical: ¹Cd 0
or ¹Ed 0,L respectively. Aswe have shown recently [22], this leads to the limiting contribution to the qubit’s
coherence time for realistic parameters due to photon shot noise for the ζ-mode.We return to how to alleviate
this issue insection 6.

3.4. Capacitive coupling the 0–π qubit to amicrowave resonator
With the goal of controlling and reading out the 0–π qubit, we consider its capacitive coupling to amicrowave
resonator as illustrated infigure 4(b). TheHamiltonian of the combined qubit-resonator system can be
obtained from equation (9), by adding the free resonatorHamiltonian, �w= †H a ar r r r , and lettingVμ

correspond to the resonator voltage7. Table 1 specifies the replacement rules for the voltagesVμ in equation (9)
that produce the qubit-resonator interactionHamiltonian. Three possible coupling layouts addressing the 0–

Figure 4. (a) Lumped-elementmodel for the 0–π circuit coupled tomicrowave voltage sources, including gate and ground
capacitances for each circuit node. (b) 0–π circuit connected to a resonatorwith nodes p1 and p2. The shown coupling layout couples
the resonator charge operator to qθ, and corresponds to the second row in table 1.

Table 1.Capacitively coupling the 0–π qubit to an external resonator. The
second and third columns specify which 0–π nodes are connected to the
resonator nodes p1 and p2, respectively, thus determining the replacement
rule forVμ in equation (9), as indicated in the fourth column (δμ, ν is here
the Kronecker delta). The resonator voltage is given by

= = -( )†V q C V a ai 2r r r r rrms , whereVrms is the resonator root-mean-
squared voltage fluctuations in the ground state, and ar the resonator
annihilation operator.

0–π mode

0–π nodes
connected to

p1

0–π nodes
connected to

p2

Replacement rule
in equation (9)

f 1, 3 2, 4 dlm m fV Vr,

θ 1, 4 2, 3 dlm m qV Vr,

ζ 3, 4 1, 2 dlm m zV Vr,

7
Although applicable inmost circuit QED setups, a cautionary remark is that this procedure is only valid in theweak capacitive coupling

regime, where the capacitances of coupled qubit and resonatormodes are large compared to the coupling capacitance.
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π degrees of freedom θ [shown infigure 4(b)],f and ζ are considered. These capacitive coupling schemes are
employed insection 4 for dispersive readout strategies, in section 5 to drive qubit transitions viamultiple excited
levels, and in section 6 to cool the low-frequency ζ-mode as a strategy to enhance the qubit coherence times.

4.Dispersive readout

The transmon-like structure of the 0–π energy spectrum illustrated infigure 1(d) suggests that wemight exploit
known techniques for dispersive readout and control for transmon qubits [18]. The strong symmetry between
the two potential wells at θ=0 and θ=π, however,means that each ‘transmon level’ is split into a doublet,
leading to important differences in dispersive coupling for a 0–π qubit as compared to a conventional transmon.

Dispersive coupling to a resonator relies on having unequal qubit-dependent dispersive shifts of the
resonator frequency for the two logical states ñ∣0 and ñ∣1 .We compute the dispersive shifts numerically,
assuming capacitive coupling between either of the two 0–πmodes {θ,f} and a readout resonator of frequency
ωr/2π (see table 1). Denoting by ar the annihilation operator of the readout resonator and includingM qubit
levels, the qubit-resonatorHamiltonian can bewritten as

� �å åw s w s= + + +m

= =

( ) ( )† †H a a g a a , 13
i

M

i ii r r r
i j

M

ij ij r r
0 , 0

where s = ñá∣ ∣i jij , = á ñm
m

m
( ) ∣ ∣g eV i n jij

C

C rms
g andμ={θ,f}. Note that the resonator drive has not been explicitly

included in equation (13). In the dispersive regime defined by D +�∣ ∣ ∣ ∣ ¯g n 1ij ij , whereΔij=(ωi−ωj)−ωr

and n̄ is themean number of photons in the resonator, the aboveHamiltonian takes the form [33]

� � �
�

� �å åw s w c s
w

s w c s= + L + + + +m m m�( ) ˜ ˜ ( )† † † †H a a a a a a a a
2

, 14
i

M

i i ii r r r
i

M

i ii r r
q

z r r r z r r

where the dispersive shift of the ith qubit level is given by c c c= å -m m m( )i j
M

ij ji , with c = Dm m∣ ∣gij ij ij
2 , and

cL = åm m
i j

M
ij is the corresponding Lamb-shift. The second line inequation (14) is a two-level truncationwhere

we have defined s = ñá - ñá∣ ∣ ∣ ∣1 1 0 0z , w w w= + L - - Lm m˜q 1 1 0 0 , w w c c= + +m m˜ 2 2r r 0 1
and c c c= -m m m( ) 21 0 .

We investigate the dispersive couplingχμ as a function of the 0–π design parameters.We choose the
resonator frequency such thatχμ ismaximizedwhile ensuring the validity of the dispersive approximation. For
the case of coupling to θ, we observe thatχθ is heavily attenuated in the parameter space corresponding to a
moderate-to-deep 0–π qubit regime. This is due to the fact that, in contrast to a transmon qubit, the strong
symmetry between the left and right potential wells of the 0–π qubit leads to vanishing dispersive coupling to the
resonator formost parameters.Moreover, since the external flux does not break this symmetry [see
equation (4)],χθ can only slightly change by flux excursions.

Quite surprisingly, however, we find a significant dispersive shift for the coupling operator nf, as shown in
figure 5. This behavior is qualitatively reminiscent towhat is known as the straddling regime for the transmon
qubit, inwhich the dispersive shift can increase by orders ofmagnitude [18]. Note, however, that the narrow
straddling-like regime indicated infigure 5 is related to the splitting of doublets rather than the plasma-
frequency separation between two sets of doublets, and the large number of qubit levels involvedmakes the
situationmore complex than in a transmon. Interestingly, the value ofχf adds a significant contribution from
qubit levels generated by excitations of thef degree of freedom,which are not captured by the effectivemodel in
section 2.2.

In practice, wefind that the absolute value ofχf/2π does not increase beyond a fewhundred kHz in a
moderate-to-deep 0–π parameter regime. This would lead to rather slow readout and resonator-mediated gates
as compared to those for the transmon qubit [34, 35]. However, an appreciableχf could be useful to resolve the
qubit nearly degenerate doublet bymeans of spectroscopy, and thus play an important role for device
characterization.Moreover, we emphasize that the example parameter set infigure 5 is rather deep in the 0–
π regime, where qubit lifetimes are predicted to be extremely long [22]. Reduced gate and and readout times
might therefore be an acceptable compromise.

5. Single-qubit control throughmultilevel excursions

5.1.Qualitative picture
In this section, we study a process achieving population inversion between the logical qubit states. Such an
operation seems challenging atfirst, given that, by design, the off-diagonalmatrix elements of charge and phase
operators in the qubit subspace are exponentially small in the deep 0–π regime [22, 23]. In particular, transition
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matrix elements for the charge operator can easily be 10−8 times smaller than those for the transmon qubit.We
overcome this situation by exploiting themultilevel structure of the device for gate operations.

Afirst possible approach to circumvent the small overlap between logical states relies onRaman transitions,
with the advantage of only virtually populating states outside of the protected subspace. However, in appendix C,
we show that due to destructive interference the amplitudes of Raman processes in general vanish as the system
approaches the deep 0–π limit. For this reason, we consider instead a gate scheme that temporarily populates
excited states during the gate [36]. The gate lifts some of the qubit’s protection fromnoise, as it populates higher
energy levels. Nevertheless, the proposed strategy requires leaving the qubit subspace only for very short times,
andwe consequently find highfidelities for a broad range of parameters.

An intuitive understanding of the proposed gate can be gained by returning to the effective one-dimensional
model for the 0–π qubit presented insection 2.2. In this simplified scenario, we have already suggested that
logical ñ∣1 can approximately be obtained from ñ∣0 using a displacement byπ along θ. Such an operation
corresponds to the unitary p- q( )nexp i , which can be generated by voltage driving the qubit. The precise logical
action of such a displacement, however, depends on circuit and external parameters, as this determines the
structure of the logical wave functions in the twowells. Figure 6 shows the logical wave functions corresponding
to three different points in parameter space that will be studied in detail below. Thefigure shows the logical wave
functions before and after a shift of θ→θ+π that represents the gate operation.When ground and excited
states are respectively localized in the θ=0 and θ=πwells of the 0–π qubit potential (figure 6(a)), aπ-shift

Figure 5.Dispersive shift for the ground state doublet of the 0–π qubit as a function of the readout resonator frequencyωr/2π. The
qubit spectrum is shown in black dashed lines. Note thatmany of such lines are superimposed due to the doublet structure of the qubit
spectrum, and in particular for the ground state doublet around 0 GHz. Forf coupling, we observe a remarkable increase of the
dispersive shift in the highlighted region, reminiscent of the straddling regime of a transmon qubit. Here the qubit design parameters
correspond to amoderate-to-deep 0–π regime atjext=0, with ( � �w wfE E,L p C p, �wqEC p, �wE pJ )= ( ´ -1.25 10 , 0.3743 ,

´ -1.25 10 , 0.1674 ). Furthermore, we assumeCg/Cμ=0.2.

Figure 6. Single-qubit gate operationwithin the effective 0–π model for three chosen configurations: (a)–(c) correspond (respectively
from top to bottom) to the qubit parameters highlightedwith light-blue dots in figure 7(b). Ground (in blue) and excited (in orange)
wave functions are displayed on the top- and bottom-left corner of each panel, respectively. To the right of the panels, we show the
effect of aπ-shift on suchwave functions, demonstrating the gate operation. Note that because of the 2π-periodicity of the 0–
π potential (in black), aπ-shift to the left is equivalent to a aπ-shift to the right. The gate implements a PauliX operation for the case
(a), aHadamard for (b), and a PauliZ for (c).
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corresponds to a PauliX operation. If qE ECJ is lowered, the hybridization of the qubit logical states increases. In
the situation illustrated infigure 6(b), the logical wave functions are no longer perfectly localized and the gate
implements aHadamard operation. If, instead, the logical wave functions are completely hybridized
(figure 6(c)), aπ-shift corresponds to a PauliZ gate.We can alternatively achieve the samewave function control
by varying the externalfluxwherejext=0 corresponds to localizedwave functions (for large qE ECJ ) and
jext=π to completely hybridizedwave functions. In the following sections we study this qualitative picture in
detail.

5.2. Gatefidelity with respect to circuit parameters
When the full 0–πHamiltonian is considered, the asymmetry of the two-dimensional logical wave functions
along thef-direction (see figure B1(c))make clear that ñ∣1 and ñ∣0 cannot be simply exchanged bymeans of a θ-
translation alone. Taking this into consideration, this section studies the gate employing the full circuit
Hamiltonian equation (9).We characterize the gatefidelity as a function of the 0–π design parameters, and
analyze the effect of circuit-element disorder and pulse shaping in the following sections.

Wefirst consider a squaremicrowave voltage pulse applied to the qubit and driving the θ coordinate, in
absence of circuit-element disorder. In equation (9), this situation corresponds to setting allVμ to zerowith the
exception ofVθ, such that the circuit Hamiltonian reads

= +p
q

q q- ( ) ( )H H
C

C
V t q . 15

g
0
symm

In this section, we assume that themicrowave drive is turned on at t=0, reaching an amplitudeVsq for a period
of time tg. The effect of pulse shaping is analyzed below. To determine the optimal drive strength given the 0–
π design parameters, we compute themultilevel evolution operator as a function of the pulse parameters (Vsq,
tg), andminimize its distance to a unitary acting only on the qubit subspace8. This procedure ensures that leakage
errors are kept as small as possible at the end of the gate. For the optimal drive configuration, we determine the
closest qubit unitary to themultilevel propagator, and compute the average gatefidelity of the latter with respect
to the former, including leakage errors [39].

Figure 7. Single-qubit gate infidelity and logical action on the Bloch sphere. (a)Gate infidelity for a device with no disorder, computed
from the unitary (non-dissipative) dynamics of the system. As �wqEC p andEJ/ÿωp increase, we observe a decrease in gatefidelity.
This is qualitatively understood as the effect of increasingly longermultilevel excursions during the gate time. (b) Induced rotation on
the Bloch sphere. Herewe show the polar anglejXZ for theXZ plane, while the azimuthal anglejXY remains bounded below 10−5.We
note that asEJ/ÿωp is reduced, the qubit rotation smoothly interpolates between a PauliX and PauliZ. The light-blue dots are used as a
reference for figure 6. Panels (c) and (d) show the relative change in the gatefidelity for the configurations A–C in panel (a), when
dissipation and disorder in EL andC are included. The gate fidelity proves to be robust to parasitic coupling to the ζ-mode for
moderate amounts of circuit-element disorder, and it is not significantly affected by dissipation. The latter is a consequence of the fast
gate time compared to the expected decoherence rates. For numerical reasons, simulations in panel (c) and (d) assume a cooled ζ-
mode (see section 6). For themost demandingmaster equation simulations in (c) and (d)wehave includedM=40 qubit levels,
prudently exceeding the number required for convergence.

8
Denoting ured as the reduced propagator, we define its distance to a unitary as = -( ) ∣ ∣d u smax 1 ,sred where {s} are the singular values

obtained from the singular value decomposition = †u W SW .red pre post The closest unitary is defined as = †u W W ,closest pre post and identifies the
qubit rotation that the voltage drive implements on the logical subspace [37, 38].
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Setting �w = -E 10L p
3, we compute the gate infidelity as a function ofEJ and = qqE e C2C

2 , see figure 7(a).
Note that the chosen range of parameters and the value ofEL corresponds to amoderate-to-deep 0–π regime.
With these choices, wefind gatefidelities between 99.99% and 99.9% for a broad range of systemparameters,
with decreasing values for increasing EJ and qEC . This effect can be understood by contrasting the results of
figure 7(a)with the qubit energy level structure. In fact, wefind that the gate performs better for circuit design
parameters leading to increased ground state degeneracy andmoderate effective potential barriers.We give an
explanation for this in section 5.4, wherewe show that these conditions results inmultilevel excursions limited
to very few excited doublets.

The logical action of theπ translation is shown infigure 7(b), where the anglejXZ characterizes the qubit
rotation performed on the Bloch sphere in theXZ plane. Note that the azimuthal anglejXY is not shown, as it
remains approximately zerowith deviations smaller than 10−5.We observe that, as a function of the qubit design
parameters, the gate interpolates continuously fromPauliX for large qE ECJ to PauliZ for smaller qE ECJ . This
feature is the result of hybridization between the ground statewave functions, as discussed above and illustrated
infigure 6.

5.3. Gatefidelity with respect to circuit-element disorder in C and EL

Wenext study the gate behavior in presence of realistic circuit-element disorder leading to coupling of the 0–
π qubit to the ζ-mode. Circuit disorder also prevents independent control of the circuit degrees of freedom, and
implies a parasitic drive acting on ζwhen θ is driven for ¹Cd 0. Given that the ζ-mode is themain qubit-
decoherence channel, in this sectionwe compute the gate fidelity including dissipation. Recall that Purcell
relaxation and dephasing by photon shot noise arise as a consequence of the parasitic coupling of {f, θ} to ζ [22].

To treat this case, relaxation and dephasing are included into a Lindblad-formmaster equation

�
�

� � �

å

å

r r g s r

g s r k w r k w r

=- +

+ + + + G + + G

j
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which is integrated in superoperator form for the configurations identified as A–C infigure 7(a). Here,H is the
0–π circuitHamiltonian in equation (9), a ( †a ) corresponds to the ζ-mode annihilation (creation) operator, and
� r r r r= - -[ ] † † †x x x x x x x1

2

1

2
is the usual dissipative superoperator. The results of themaster equation

integration are shown infigure 7(c) for disorder inEL and infigure 7(d) for disorder inC. In these simulations,
qubit dephasing gj({ })i and transition g({ })ij rates are computed numerically, using the theory developed in
[22].We consider aworst-case scenario by using themaximumof the dephasing, relaxation and excitation rates
obtained in fulljextä[0, 2π] and Î -q [ ]n 1 2, 1 2g excursions. The photon-loss rate,κζ, of the ζ-mode is
evaluated as a function of themode’s frequency, assuming a quality factor ofQζ=30 000 [12].Moreover, we
assume a temperature of 15 mK.Wenote that taking into account the ζ-mode thermal population nth(ωζ) at
dilution refrigerator temperatures would lead to photon numbers prohibitively large for numerical simulations.
Therefore, we assume thismode being cooled using the strategy proposed in section 6. As discussed below, the
coolingmechanism leads to the rates Gm and G³ in equation (16), reducing the effective temperature of the ζ-
mode. The gatefidelity in (c) and (d) is computedwith respect to the closest qubit unitary determined in
section 5.2 in absence of circuit-element disorder and dissipation.We have verified that the result does not
changewhen the cooling power is continuously varied, and thus with the ζ-mode effective thermal population
up to an average offive photons.

Wefind that, as a consequence of a fastHamiltonian dynamics, the gatefidelity is almost unaffected by the
relatively slow dephasing and relaxation rates and that circuit-element disorder is the limiting factor.We note
that, despite a small-to-moderate degradation of the gate fidelity for disorder below 10%, leakage errors are
appreciable for higher disorder values.Moreover, the fast unitary dynamics of the gate poses a control challenge.
As the gate operates at a frequency which is roughly one order ofmagnitude smaller than the plasma frequency,
the necessary time-resolutionmustmatch such a time-scale within the capability of commercially available
arbitrary-waveform generators [40, 41]. Optimal control techniques such asGRAPE could be useful to further
improve the gatefidelity, but thismay require even finer time-resolution and thus be rather challenging [42–44].

The single-qubit gatefidelity is also found to be remarkably robust to the detailed formof the voltage pulse,
moderate deviations in the externalflux, and disorder inEJ andCJ. A study of these effects is provided
inappendixD.

5.4.Multilevel excursion during gate time
As stated above, the proposed gate exploits themultilevel structure of the 0–π qubit. In this section, we
qualitatively discuss how thismultilevel excursion takes place and the effect of leakage errors on the gate fidelity.
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Considering the initial state ñ∣0 ,figure 8(a) shows the eigenstates population as a function of time as obtained by
numerical integration under theHamiltonian equation (15). There, we observe how the initial ñ∣0 population is
transferred bymeans of the voltage drive to higher energy doublets that bridge the two 0–π potential wells.We
note that the qubit population is almost completely restored to the qubit subspace at time t=tg, leaving the
qubit in the state ñ∣1 .

Themultilevel excursion infigure 8(a) can be partially anticipated by considering thematrix elements of the
0–π charge operator qθ, as shown infigure 8(b). There, we observe a clear path leaving the ground state through
levels 2 and 4, and arriving to the excited state through levels 3 and 5 after going through higher excited states.
During the gate time, levels which are part of doublets with higherwave function hybridizationmake it possible
to transfer the population between the two potential wells. Numerical experiments have shown that the number
of doublets involved in the transition from ñ∣0 to ñ∣1 gives a qualitative estimate of the gate fidelity: because it
leads to reduced leakage, qubit design parameters leading to excursions involving fewer levels exhibit larger
fidelities. Since the number of occupied doublets growswith the height of the double-well energy barrier (∝EJ),
longermultilevel excursions also explain the decrease in gatefidelity observed infigure 7(b).

5.5. Tuning the gate from X to Z for greater qubit control
The continuity of the gate rotation angle as a function of the systemparameters could be used to obtain a larger
set of single-qubit gates. In principle, this could be achieved by adiabatically sweeping EJ (e.g., replacing single
junctions by tunable SQUID loops) or varyingjext from0 toπ. However, the adiabatic condition is difficult to
satisfy in the qubit subspace, requiring sweep times as large as a fewmilliseconds for a device in the deep 0–
π regime. Pulse shaping and optimal control techniques [45, 46]might offer an alternative to adiabatic sweeps
and need to be explored further.

6. Fighting photon shot noise by cooling the ζ-mode

For realistic circuit parameters in near-term experiments, a limiting factor for the qubit coherence times, and
thus also gate and readoutfidelities, is spurious coupling to the low-frequency ζ-mode [22].We nowdiscuss a
method to enhance the coherence times of the 0–π qubit by cooling thismode.

In [22], we have shown that thermal-photon population in the low-frequency ζ-mode limits the coherence
time of 0–π qubits with realistic circuit parameters. To reduce the impact of this type of noise, it is essential to
minimize the circuit-element disorder leading to parasitic coupling of the qubit degrees of freedom to the ζ-
mode.Moreover, if a device can be built in the deep 0–π regime, we have shown that there exists a threshold

Figure 8.Multilevel excursion during the gate time. (a) State population as a function ofωpt, with initial condition ñ∣0 . Level
transparency weighted by the state population has been introduced to facilitate viewing. The insets shows the correspondingwave
functions within the effective 1Dmodel. There, black arrows illustrate how the qubit population (initially in the ground state) is
transferred to higher energy doublets bridging the two potential wells, and finally transferred back to the excited state. (b)Matrix
elements proportional to the charge operator qθ. There exist two disjoint paths connecting the ground and excited states to the higher
energy doublets.We observe that the state population closely follows such paths for the fewfirst excited levels, both at the beginning
and at the end of the gate. Doublets with a higher degree of hybridization, such as (4, 5) and (6, 7), make it possible to transition
between these two paths and fromone potential well to the other. Qubit parameters ( � �w wfE E,L p C p, �wqEC p,
�wE pJ )= ( ´- -10 , 0.378, 1.75 10 , 0.1653 4 .).
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valueZf>Zthreshold, such that the qubit will be protected fromphoton shot noise, evenwith circuit disorder
[22]. Here, however, we consider an active approach tomitigate this problem.We engineer a protocol to boost
the coherence time by cooling the ζ-mode using an additional frequency-tunable resonator. Importantly, this
scheme should be applicable to near-term,more realistic parameter regimes.

6.1. 0–π qubit dephasing timewith a cooled ζ-mode
Cooling of an oscillator by periodicallymodulating its linear coupling to a second heavily dampedmode has
been studied in the context of nanomechanical resonators [47]. There, the periodicalmodulation of the coupling
leads to sideband transitions between the twomodes, allowing for excitation of thefirstmode to be damped by
the second. This approach is not directly applicable to our system since, as discussed in section 3.2, we restrict
ourselves to the use of capacitors as coupling elements.We therefore propose amodification of the protocol of
[47]which relies, instead, on frequencymodulation of the heavily dampedmode. In practice,modulating this
mode frequency also leads to amodulation of the coupling strength. Below,we develop a theory accounting for
bothmodulated quantities, andwe find that efficient cooling of the ζ-mode is possible with realistic circuit
parameters.

We consider an additional frequency-tunable resonator capacitively coupled to the 0–π circuit and
addressing the ζ-mode as specified in table 1. TheHamiltonian for the coupled oscillators is

� � �w w= + - - -z ( ) ( )( )( ) ( )† † † †H a a t b b g t a a b b , 17bcooling

where a and b are, respectively, the ζ- and external-mode annihilation operators. The omission of the qubit
degrees of freedom {f, θ} in equation (17) is justified below. The time-varying coupling constant,

=
z z
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takes into account the coupling capacitanceCg between the twomodes as well as the capacitancesCζ,Cb, and the
impedancesZζ,Zb, of the ζ- and b-modes. The time dependence of the resonator frequency and the coupling
strength in equations (17), (18) is assumed to arise from the fluxmodulation of a tunable inductance Lb[Φ(t)]
forming the b-mode. In particular, we assume w w e w= +( ) ¯ ( )t tcos ,b b m where w̄b, ε andωm are, respectively,
themean value,modulation amplitude andmodulation frequency of the b-mode frequency. Accordingly, the
time dependence of the coupling strength takes the form w= + e

w
( ) ¯ [ ( )]¯g t g t1 cos ,m2 b

up tofirst order in
deviations of Lb from itsmean value.

We derive an effectivemaster equation for the ζ-mode by imposing the constraint w wz�ḡ , b, which
allows to treat the twomodes as independently coupled to their respective baths. Themean frequency of the b-
mode is chosen such that thermal excitation can safely be ignored (�w �¯ k Tb B ).Moreover, the strength of the
coupling between the b-mode and its reservoir is assumed to be frequency-independent in the range covered by
the frequencymodulation. Under these assumptions, themaster equation of the system reads

�
� � �r r k w r k w r k r= - + + + +z z z z˙ [ ] [ ( ) ] [ ] ( ) [ ] [ ] ( )†H n a n a b

i
, 1 , 19bcooling th th

whereκζ andκb are the respective photon-loss rates of the ζ- and the b-mode, while �w = -z
wz( ) ( )n 1 e 1k T

th B

is the number of thermal photons in the ζ-mode. To activate sideband transitions between the two systems, we
choose themodulation frequency to be w w w= - z¯m b . This choice allows for the up-conversionmechanism
where photons, initially populating the ζ-mode, are transferred to the external resonator and then lost to the
environment at a rateκb. Because the external-mode remains approximately in the vacuum state at all times, the
inverse process is highly suppressed [47].

Assuming the b-mode to be low-Q, we employ the technique of adiabatic elimination to remove thismode
from the abovemaster equation. As discussed inmore details in appendix E, this leads to the reducedmaster
equation

� �r k w r k w r= + + G + + Gz
z z

z
z z

z
m ³˙ ( ) [ ( ( ) ) ] [ ] ( ) [ ( ) ] [ ] ( ) ( )†t n a t n a t1 , 20I I Ith th

in the interaction frame defined fromequation (17). In this expression, we have defined the effective rates
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, expressed in terms of the effective coupling strength
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where Jk(x) is a Bessel function of the first kind. In accordance with our assumptions, the validity of equation (20)
is subject to the condition k ¢� gb . Assuming the ζ-mode to be in a thermal state, the steady-state photon
population under equation (20) is given by
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where

g k= + G - Gz m ³ ( )23cooling

is the cooling rate of our scheme [48]. Thermal equilibrium is therefore reached in a time tcooling=1/γcooling.
In order to show the impact of this protocol on the coherence time of the 0–π qubit, we follow [15] to obtain

the photon-shot noise dephasing rate for themaster equation of equation (20). In the limit c gz �01 cooling, this
rate takes the form
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wherewe note that gG µj
-SN
cooling

2 for z �n̄ 1.ss Wedo notfind improvements on Gj
SN in the inverse limit

c gz �01 cooling. Consequently, we observe that our cooling scheme significantly enhances the device’s coherence
times as long as the dispersive coupling to the ζ-mode is not too large.

The cooling protocol is therefore applicable in amoderate-to-deep 0–π regime, wherewefind
improvements on the dephasing rate of the qubit by up to three orders ofmagnitude. The coherence time
improvement due to cooling is shown infigure 9 as function ofZf/RQ.We note that the circuit parameters are
the same as those infigure 2(b), and correspond to the set defined as PS2 (moderate 0–π regime) in [22], varying
the superinductance value between those in the sets PS1 (deep 0–π regime) and PS3 (near-term regime) of the
same paper. As anticipated, the relative gain becomes significant as onemoves towards the deep 0–π regime
(largeZf/RQ), before reaching saturation. The saturation value can be understood from equation (24) in the
limit of w l ¥z( )nth , where it is only a function of ḡ and e w̄b.

The interactionwith the b-mode further broadens the ζ-mode, resulting in larger 0–π-qubit Purcell
relaxation and excitation rates. Given that such rates have been found not to limit the qubit coherence, we do not
expect this effect to be a limiting factor in practice [22]. In fact, we predict the increase of the Purcell rates to be
one order ofmagnitude, which is still far from compromising the device.

6.2. Effect of parasitic coupling and implementation details
Circuit-element disorder responsible for the coupling between the qubit degrees of freedom and the ζ-mode also
introduces a parasitic coupling between {f, θ} and the b-mode. As a result, the fact thatωm is specially chosen to
activate a resonant interaction between the ζ-mode and the frequency-tunable device, implies that any qubit
transitionmatchingωζwill also be resonant. Given that, by design, the 0–π qubit transition should not be
resonant with the ζ-mode, accidental resonancesmight arise within themultilevel structure of the device. This
possibility, however, can beminimized by circuit design. Additionally, resonances between the 0–π circuit
transitions and themean frequency of the b-mode should be avoided by properly choosing w̄b.

Figure 9.Photon-shot noise coherence time ( = Gj jT 1SN SN)with andwithout cooling of the ζ-mode. The inset displays the respective
absolute values. Devices that can be fabricatedwith today’s superconducting technologywould be situated at the left side of this plot.
Next-generation devices are expected to range between the left and themiddle of the plot, where improvements on the coherence time
vary between one and two orders ofmagnitude. In the deep 0–π regime (to the right), major improvements will result in other noise
mechanism (potentially flux noise) to be dominant. The inset displays the coherence timewith andwithout cooling. The background
density plot shows the steady-state population of the ζ-mode, zn̄ s.We note that the increase in this quantity as onemoves to the deep
0–π regime is due to the decrease of the ζ-mode frequency and effective coupling to the b-mode, thus compromising ground state
cooling. The cooling power, however, is enough to considerably reduce the dephasing rate. Circuit parameters:
EL/ÿωp ä [1.25×10−4, 5×10−3] and � � �w w w = ´ -

f q( ) ( )E E E, , 0.25, 0.5 10 , 0.25C p C p pJ
3 , ε/2π=200 MHz (compatible

with a SQUID-array frequency-tunable resonator [49, 50]),ωb/2π=5 GHz,Qζ=30 000, andT=15 mK.
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Finally, we discuss some of the implementation details leading to a correction of themodulation frequency.
Wefirst address the effect the dispersive interaction between the qubit degrees of freedom and the ζ-mode
[22, 23]. In the limit c gz � ,01 cooling the frequency of the ζ-mode is approximately independent of the qubit state.
Therefore, we account for themean ζ-mode frequency shift due to the dispersive interaction by redefining the b-
modemodulation frequency as

w w c cl - +z z( ) ( )2, 25m m 0 1

where cz
0 (c

z
1) is the dispersive shift for the qubit being in the ground (excited) state [22] [see also equation (14)].

A similar effect is expected to arise fromnonlinear terms in the b-modeHamiltonian. In fact, it is worthwhile to
note that current implementations of frequency-tunable resonators rely on Josephson junctions which
introduce a small Kerr nonlinearity,K, and comparable shift toωb [49–53]. Given that, by design, the b-mode is
kept in a nearly vacuum state at all times during the cooling protocol, the effect of the nonlinearity is limited to a
frequency shift. The latter can again be compensated by changing themodulation frequency according to
ωm→ωm−K/2.Wenote that the results of this section, including the reducedmaster equation equation (20)
and the effect of nonlinearities, were validated against the integration of the full time-dependentmaster equation
of equation (19).

7. Conclusion

The 0–π circuit is a promising candidate for the realization of a protected superconducting qubit.However, both
fabrication and control challenges need to be overcome. In this paper, we considered control strategies
exploiting themultilevel structure of this device, within a realistic circuitmodel.

We explored the possibility of dispersively coupling the 0–π qubit to a resonator, which can be used for
standard dispersive readout and resonator-mediated gates. In general, dispersive coupling is extremely small in
themoderate-to-deep 0–π regime due to the highly symmetric double-well structure of the qubit potential.
Nevertheless, we found a remarkably large dispersive shift by coupling to thefmode of the 0–π qubit, and
operating in a regime reminiscent of the straddling regime of a transmon qubit. Dispersive shifts around a
hundred kHz could be achievable, even rather deep in the 0–π regime. This is promising for qubit
characterization through spectroscopy, andmight also be promising for readout and gates due to the extremely
long qubit lifetimes that are possible in this regime.

Wemoreover proposed a new, fast and high-fidelity single-qubit gate that can smoothly interpolate between
logicalX andZ by varying the qubit operation point.We studied the gatefidelity as a function of the 0–π circuit
and control parameters, and the amount of circuit-element disorder.We found that the gatefidelity is not
significantly affected for small deviations fromoptimal parameters andmoderate disorder. Futureworkwill
concentrate on extending the gate operation to a universal set of single-qubit gates. Finally, we note that qubits
with a similar level structure to that of the 0–π qubitmight leverage related ideas [36, 54–59].

In addition, we have designed a protocol to enhance the qubit coherence time due to photon shot noise from
the ζ-mode. Our scheme couples thismode to a frequency-modulated and highly damped resonator, which is
used as a zero temperature-bath for the ζ-mode.We characterized the improvement in the qubit photon-shot-
noise dephasing time as a function of the circuit design parameters.While the coherence time enhancement for
near-termdevices is expected to provide a 2–10 times gain on coherence, we predict improvements of one and
two orders ofmagnitude for the future generations.We also envision that this active cooling protocol could be
useful in amore general context of superconducting devices with low-frequencymodes orwith residual thermal
population.

Several open questions remain about how to best use the ingredients presented in this paper for a universal
set of logical operations. A quantitative analysis is needed to determine the potential use of dispersive coupling
for readout and gates, taking into account any possible degradation of qubit coherence due to coupling to the
resonator, andwhether gate times can be sufficiently fast compared to the coherence times to achieve high-
fidelity gates. It would also be interesting to exploit the tunability of the gate introduced insection 5 to achieve a
larger set of single qubit gates. Finally, the original proposal for protected phase gates from [20] should be
investigated in amore realistic setting, to determine the potential use of this approach for near-to-medium term
experiments.
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AppendixA. CircuitHamiltonian in presence of gate- and ground-capacitance disorder

The effective capacitancesCμ of the 0–π circuitmodes (f, θ, ζ,Σ) introduced inequation (10) are given by
= + +
= + + +
= + +
= +
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Using definitions found in section 3.3, the full expression of the term H C Cd ,dg 0 in equation (11) is
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Disorder of the from ¹
m mC Cd , d 0,g 0 is assumed to be small compared to all other capacitances in the circuit,

and H C Cd ,dg 0 is therefore neglected in this work. The expression for Hdrive
asymm inequation (9) is
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In these two expressions,Vμ, m
Cd g and mCd 0 are given in terms ofV ,i Cd gi

and Cd 0i
, respectively, according to the

transformation rule specified inequation (1) (whereGreek indices denote the normal-mode variables and Latin
indices indicate node variables).

Appendix B.One-dimensional effectivemodel

The reduction from the 0–πHamiltonian to a 1D effectivemodel was firstmotivated in [20] and analytically
studied in [60] in the context of the Born–Oppenheimer approximation. In section 2.2,moreover, we have
provided an intuitive justification for such amodel. Here, we perform a numerical calculationwhich, in contrast
to analytical approaches, does not require additional approximations.

Starting with the 0–π circuit Hamiltonian in absence of disorder, i.e. equation (2), we define

q f j f= - - +f
f

f

˜ ( ) ( )H
q

C
E E

2
2 cos cos 2 , B.1L

2

J ext
2

where q p pÎ -˜ [ )2, 3 2 acts here as a parameter. This corresponds to the first step of the Born–Oppenheimer
approximation, where only the lessmassive degrees of freedom (f in our case) are considered.We thenfind the
ground state energy q(˜)E0 ofHf, as a function of θ. As a next step, we define a second 1Dproblemby the
Hamiltonian

q= +q
q

q
( ) ( )H

q

C
E

2
, B.2

2

0
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where q ql(˜ )E0 is used as an effective potential and θ is now the qubit phase operator. Note that, in contrast to
equation (B.1),Hθ governs themotion of themassive degrees of freedom (θ in our case).

Equation (B.2) represents the one-dimensional effectiveHamiltonian for the 0–π qubit. The corresponding
eigenvalues and eigenstates are shown in figure B1 as a function of the external flux. Remarkably, we find
excellent agreement with the complete two-dimensional circuitHamiltonian equation (2) for several excited
doublets. Byfitting the effective potential, wefind that equation (B.2) can very accurately bewritten as

j q j q= - - -q
q

q ( ) ( ) ( ) ( )H E n n E E4 cos 2 cos , B.3C g
eff 2

2 ext 1 ext

wherewe incorporate the offset charge qng . In the above expression, the potential energy coefficients read
j j= -a b( ) ( )E E E cos2 ext ext and j j= g( ) ( )E E cos 21 ext ext regardless of the qubit design parameters. The

relations a g�E E and a q�E EC , satisfied in the deep 0–π limit, ensure exponential suppression of relaxation
and dephasing rates [30]. For the set of parameters infigure B1, wefind Eα/ÿωp=1.8608×10−2,
Eβ/ÿωp=1.0073×10−8,Eγ/ÿωp=2.6625×10−5. Finally, we note that an expression similar to
equation (B.3) has been theoretically proposed in [60].We have found, however, necessary to incorporate
additionalflux-dependence to the potential energy coefficients.

AppendixC. Ramanprocesses for qubit control

Wenow consider enabling a Raman-type gate operation by virtually populating the excited states of the qubit. In
particular, we study the effective dynamics in the ground statemanifold ñ ñ{∣ ∣ }0 , 1 by performing adiabatic
elimination of the first few qubit excited level. As only virtual transitions to high-energy levels are involved,
Raman-type gates could, in principle, preserve the device’s noise protection to some degree. However, as shown
below, the transition amplitude ñ « ñ∣ ∣0 1 vanishes in a large parameter range because of an approximate

Figure B1. 1D effectivemodel for the 0–π qubit. (a) 1D effective potential (black) and 1Dwave functions (color) offset by their
respective energy. Thewave functions corresponding to theHθ eigenstates are displayed in panel (a) forjext=0, alongwith the
resulting 1D effective potential. Panel (b) shows the respective eigenvalues (solid colored lines), alongwith the spectrumof the full 0–
π Hamiltonian equation (2) (black dashed lines). In (c), we show the two-dimensional eigenfunctions corresponding to equation (2)
(forjext=0), which should be contrastedwith those of the 1Dmodel in (a). The effective 1Dpotential has an exact 2π- and
approximatelyπ-periodic structure. Qubit parameters � � � �w w w w = ´- -

f q( ) ( )E E E E, , , 10 , 0.378, 1.75 10 , 0.165L p C p C p pJ
3 4

andωp/2π=40 GHz.
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selection rule. To arrive at this result, wemake use of the adiabatic elimination procedure developed in [61],
which applies toweakly and off-resonantly drivenmultilevel systems.

C.1. Single-tone driving
Weconsider the 0–π circuit capacitively coupled tomicrowave voltage sources addressing θ, as described in the
second rowof table 1. Including a total ofM qubit levels, the driven 0–π qubitHamiltonian can bewritten as

� å å åw s s= + W +w

= = =

-( ) ( )H e h.c. . C.1
i

M

i ii
i j

M

ij
t

ji
0 0,1 2

i

Here,ωi is the frequency of the ith eigenstate,ω the frequency of the drive and W = á ñb
q

-
q
( ) ∣ ∣eV j n ieij

C

C
ig is the

coupling strength between levels (i, j) for a voltage pulse of the from w b= +q ( ) ( )V t V tcos .We note that
rapidly rotating terms have been dropped in equation (C.1) under the assumption of a weak drive ( wW � 1ij ).
Moreover, we neglect the effect ofΩ01, which is exponentially small for typical qubit design parameters.

By numerically solving the Schrödinger equation, wefind that equation (C.1) hardly generates qubit
population inversion. In fact, we observe that states from the few excited doublets destructively interfere with
each other, thus leading to a negligible transition amplitude. This cancellation is preserved in a broad range of
qubit design parameters, includingflux excursions from the standard operating pointjext=0.

To understand this effect, we reduce themultilevel dynamics to the qubit subspace. Following [61] and
modeling dissipation by the set of collapse operators g s g s= = = ¼{ }L L j M, ; 2, ,j j j j j j0 0 0 1 1 1 , wefind
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where γj=γj0+γj1 is the total decay rate from the jth level to the ground statemanifold and
Δji(ω)=(ωj−ωi)−ω is the detuning of the drivewith respect to the transition frequencyωj−ωi. The validity
of this effectivemodel is subject to the off-resonant driving condition wW D �∣ ( )∣ 1ij ji . By taking into account
the phase of the drive, the effectiveHamiltonian can bewritten as

� w
s

w
s=

D
+

D( ) ( ) ( )H
2 2

, C.3z
z

x
x

eff

fromwhichwe expect to see Rabi oscillations for w wD D �( ) ( ) 1x z (Raman gate). Figure C1 shows this ratio
as a function of the 0–π-circuit design parameters and optimizedwith respect to the drive frequencyω under the
off-resonant-drive condition.We observe thatΔx(ω)/Δz(ω) remains small throughout the analyzed range of
parameters. Furthermore, this ratio is smaller than 10−4 when considering the 0–π parameters offigure C1with
vanishing overlap between logical wave functions. Additionally, we show the result of the optimization for a full
flux excursion (figure inset). Despite an appreciable increase ofΔx(ω)/Δz(ω)withΦext/Φ0, we find this
improvement not enough to allow for qubit control.

Considering instead a drive addressingf, we perform the optimization ofΔx(ω)/Δz(ω) to again find, in the
majority of cases, only a negligible σ x component in the effectiveHamiltonian equation (C.3). Interestingly, we
have also identified some qubit design parameters for whichHeff∝ σ x. However, such configurations are
sparsely distributed over the range numerically explored, and the results are sensitive to small parameter
deviations. Therefore, drivingf does not appear to be a practical solution.

FigureC1.RatioΔx(ω)/Δz(ω) optimized over the drive frequencyω under the off-resonant drive condition, as a function of the 0–
π circuit design parameters. Inset: optimal w wD Dw[ ( ) ( )]max x z as a function of the external flux for the parameters

� � � �w w w w = ´- -
f q( ) ( )E E E E, , , 10 , 0.378, 1.75 10 , 0.165L p C p C p pJ

3 4 . The simulations included 30 qubit levels.
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C.2. Two-tone driving
Wenow investigate if the presence ofmultiple drives could help to overcome the off-diagonal component
cancellation found above, in particular by optimizing on the relative phase of these drives. In the presence of two
microwave voltage pulses (labeled as d1 and d2), the qubitHamiltonian reads

� å å å åw s s= + W +w

= = = =

-( ) ( )H e h.c. . C.4
i

M

i ii
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M
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ij
k t
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Following again the procedure in [61], we find
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where w w w= -d d dkl k l is the difference between twodrive frequencies.We note that, if the two drives have the
same frequency, their relative phase is factored out of the transition amplitude, thus reducing equation (C.5) to
equation (C.2). Themost general situation, however, was investigated by numerical simulation of equation (C.4)
and equation (C.5). None of the explored qubit design parameters and drive frequencies have shown a significant
changewith respect towhat was found in the single-drive case.

AppendixD.Gatefidelity as a function of control parameters and circuit-element
disorder in EJ andCJ

In this section, we study the gatefidelity accounting for the effect of pulse shaping andmoderate deviations in the
externalflux that sets the qubit operating point.Moreover, we investigate the gatefidelity in the presence of
circuit-element disorder introducing additional f q« coupling and a spurious drive onf, without involving
the ζ-mode.

D.1. Gatefidelity as a function of drive strength andduration
Tounderstand howpulse shaping affects the gate performance, we first analyze the effect of the drive strength
and duration. InfigureD1(a), we show the gate infidelity considering a square voltage pulse of amplitudeVsq and
duration tg. There, the diagonal features are high-fidelity regions.While thefirst of these (starting from the left)
corresponds to a σx gate operation, the second corresponds to an identity operation or sx

2 . This pattern repeats
itself for the subsequent pairs of features as tg increases, butwith decreasing gatefidelity due to leakage errors.
The nonregular spacing of the high-fidelity regions indicates that, in contrast tomore standard gate schemes, the
proposed single-qubit gate has a nonlinear dependence on the drive strength and the evolution time. In fact, the
first high-fidelity feature has a hyperbolic shape (visible on a larger scale) defined by the relation

� p´q �( )C C eV t2 ,g gsq which is derived from a short-time approximation of the gate propagator. The
fidelity along such hyperbola is not constant, and there exist an optimal drive strength and gate time aboutwhich
the gatefidelity ismaximal and, tofirst order, insensitive to deviations. Such an optimal point, computed as a
function of the qubit design parameters, has been used to produce the results infigure 7. Away from the optimal
point, however, the slow decrease of the gatefidelity along thementioned hyperbola could be leveraged to extend
the gate time if necessary for control purposes.

FigureD1.Variation in the gate fidelity for the 0–π qubit design parameters
� � � �w w w w = ´- -

f q( ) ( )E E E E, , , 10 , 0.378, 1.75 10 , 0.165 .L p C p C p pJ
3 4 (a)Gate infidelity in the (Vθ, tg) plane. Brighter regions

correspond to high-fidelity qubit operations fromwhere the optimal drive amplitude and duration is determined (see appendixD.1).
(b)Relative change in gatefidelity as a function of the voltage-drive turn-on and -off time σ (in red), and the phase associated to the
externalmagnetic fluxΦext (in violet). (c)Effect of disorder inEJ (in red) andCJ (in violet) on the gatefidelity.
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D.2. Variations in gatefidelity for a shaped pulse
Wenow consider the effect of a hyperbolic-tangent pulse shapewith a finite turn on and shutdown time σ . In
this section, the pulse area andmaximumdrive strength are kept constant and equal to those of the optimal
square pulse. The latter is also used as a standard to obtain the relative change of the gatefidelity shown in red in
figureD1(b). As can be seen, the gatefidelity remains almost unchanged in awide range of σ , including turn-on
and -off times that are comparable to the total optimal square-pulse length. The same conclusion applies to all
the qubit design parameters considered in this work.

D.3. Gatefidelity as a function offlux
Wehave so far discussed the gatefidelity for a qubit operating atΦext/Φ0=0 (jext=0). In this section,
however, we investigate the effect of externalflux variations. FigureD1(b) shows the relative change of the gate
fidelity as a function ofΦext/Φ0 (in violet). Here, the fidelity is computedwith respect to afixed gate unitary
determined atΦext/Φ0=0, while the voltage-drive parameters are kept to the optimal values determined for
such a configuration. These conditions ensure thatwe only observe the effect of varying the externalflux.We
note that gatefidelity remains essentially unchanged for small-to-moderate flux excursions from the qubit
operating point. This behavior, which is in part a consequence of the smallflux dispersion of the 0–π qubit,
shows that the proposed gate will tolerate the smallfluxfluctuations that could arise in practice.

Since the externalflux affects the hybridization of the 0–π logical wave functions, the former could be used to
tune the gate operation similarly towhat was shown infigure 7(b). Choosing the qubit design parameters such
that the gate implements a σ x operation atΦext/Φ0=0, a slowly varying externalfluxwould smoothly rotate the
gate operation implementing a σ z gate forΦext/Φ0=0.5 (jext=π). However and as discussed above, because
of the near degeneracy of the qubit states a device in the deep 0–π regime implies adiabatic sweep times in the
millisecond range, thus limiting the applicability of the gate flux tunability.

D.4. Gatefidelity in presence of EJ and CJ disorder
Having previously considered the effect of circuit-element disorder that leads to coupling of the qubit degrees of
freedom to the ζ-mode, we now consider disorder leading to additional parasitic coupling betweenf and θ.
FigureD1(c) shows the relative change of the gatefidelity due to disorder inEJ (in red) andCJ (in violet).We
observe that the gate performance is only slightly affected in a realistic range of asymmetries, expected to be
between 1%and 10%.Anon-zero dCJ results in a parasitic drive on thef coordinate which has also been
included in the simulations. For this same reason, we expect the gate fidelity to be robust to similar spurious-
drive terms that could arise from slight differences in the response functions of the control circuitry. Because EJ
disorder does not lead to such an unwanted drive, its effect on the gatefidelity is negligible in comparison.

Appendix E.Master equation for a cooled ζ-mode

In this section, we derive the effective ζ-modemaster equation of equation (20). This is done using an adiabatic
elimination of the external resonator under the assumption k¢ �g b. Recall that ¢g is the effective interaction
strength between the b and the ζmodes in the interaction frame. Following [48], we treat the heavily damped
external resonator as a bath for the ζ-mode. To this end, we specify the system and bathHamiltonians, as �wz

†a a
and �w ( ) †t b b,b respectively. Going to a frame rotating atωζ for the ζ-mode and at themodulated frequencyωb(t)
for the b-mode, the interactionHamiltonian reads

*= - - -( ) ¯ ( ( ) ( ))( ( ) ( )) ( )† †H t g a f t af t b t b t , E.1I I I
int
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the change of frame. Treating the bath in theMarkov approximation, we compute the evolution of the ζ-mode
densitymatrix as
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bath we expand the double commutator in equation (E.2) as a function of the b-

mode correlation functions, which are computed neglecting backaction from the ζ-mode.More precisely, we
employ the quantum regression formula [62] to obtain
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Assuming that the external resonator is in a state very close to vacuum at all times, we approximate
á ñ �( ) ( )†b t b t 1I I , while the other three possible correlation functions being taken equal to zero. The validity of
these various assumptionswas verifiedwith numerical simulations by plotting the corresponding expectation
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values obtained from the full time-dependentmaster equations. Next, we use the Jacobi–Anger expansion to
expand equation (E.3) as
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Inserting equation (E.4) in (E.2), and retaining only the non-rotating terms, we obtain the following dissipative
rates
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Maximizing each of the summands in equations (E.5) and (E.6), and discarding all butmost significant terms,

these expressions reduce to the forms G =
km
¢g4

b

2

and G = +
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quoted in themain text of the

article.We note that the interaction of the ζ-modewith the b-mode also leads to a frequency shift which can be
taken into account by a slight renormalization of themodulation frequencyωm. This effect is negligible for the
parameter regime considered here.
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