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Coherent microwave-photon-mediated coupling
between a semiconductor and a superconducting
qubit
P. Scarlino1,5, D.J. van Woerkom1,5, U.C. Mendes2,4, J.V. Koski1, A.J. Landig1, C.K. Andersen 1, S. Gasparinetti1,

C. Reichl1, W. Wegscheider1, K. Ensslin 1, T. Ihn1, A. Blais2,3 & A. Wallraff 1

Semiconductor qubits rely on the control of charge and spin degrees of freedom of electrons

or holes confined in quantum dots. They constitute a promising approach to quantum

information processing, complementary to superconducting qubits. Here, we demonstrate

coherent coupling between a superconducting transmon qubit and a semiconductor double

quantum dot (DQD) charge qubit mediated by virtual microwave photon excitations in a

tunable high-impedance SQUID array resonator acting as a quantum bus. The transmon-

charge qubit coherent coupling rate (~21 MHz) exceeds the linewidth of both the transmon

(~0.8MHz) and the DQD charge qubit (~2.7 MHz). By tuning the qubits into resonance for a

controlled amount of time, we observe coherent oscillations between the constituents of this

hybrid quantum system. These results enable a new class of experiments exploring the use of

two-qubit interactions mediated by microwave photons to create entangled states between

semiconductor and superconducting qubits.
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S ingle electron spins confined in semiconductor quantum
dots (QDs) can preserve their coherence for hundreds of
microseconds in 28Si1,2, and have typical relaxation times of

seconds3,4. This property can be explored, for example, to build
memories for quantum information processors in hybrid archi-
tectures combining superconducting qubits and spin qubits.
Typically, semiconductor qubit–qubit coupling is short range,
effectively limiting the interqubit distance to the spatial extent of
the wavefunction of the confined particle, which is a significant
constraint toward scaling to reach dense 1D or 2D arrays of QD
qubits. Strategies to interconnect semiconductor qubits include
the control of short-range interactions through the direct overlap
of electronic wavefunctions5–7, the direct capacitive coupling
between QDs8, enhanced by floating metallic gates9, shuttling of
electrons between distant QDs by surface acoustic waves10,11, by
time-varying gate voltages12 and by fermionic cavities13. An
alternative approach which allows for long-range qubit–qubit
interaction, inspired by superconducting circuit quantum electro-
dynamics (QED)14, and recently explored also for semiconductor
QDs15–17, is to use microwave photons confined in super-
conducting resonators to mediate coupling between distant
qubits. In this approach, the microwave resonator not only acts as
a quantum bus, but also allows for quantum nondemolition qubit
readout18–20.

With the well established strong coupling of superconducting
qubits to microwave resonators14 and the recently achieved
strong coupling to charge states in semiconductor double dot
structures21,22, it is now possible to create a microwave photon-
based interface between superconducting and semiconducting
qubits mediated by a joint coupling resonator. A similar strategy
has been explored in hybrid structures interfacing a
transmon qubit with excitations of a spin-ensemble of NV centers
in diamonds23–25 and of collective spins (magnons) in
ferromagnets26–28. Furthermore, direct coupling between a
superconducting flux qubit and an electron spin ensemble in
diamond was investigated29. In these works the strong coupling
regime was achieved with ensembles, for which the coupling
strength scales with the square root of the number of two-level
systems interacting with the resonator mode.

Here, we explore the coupling of the charge degree of freedom
of a single electron confined in a double QD (DQD) to a
superconducting transmon qubit in the circuit QED archi-
tecture14. The coherent coupling between dissimilar qubits over a
distance of a few hundred micrometers is mediated by virtual
microwave photon excitations in a high impedance SQUID array
resonator, which acts as a quantum bus. We demonstrate reso-
nant and dispersive interaction between the two qubits mediated
by real and virtual photons, respectively. We extract a coupling
strength of ~36MHz (~128MHz) between the bus resonator and
the DQD (transmon) around the frequency of ~3.7 GHz. With a
frequency detuning of ~370MHz from the resonant frequency of
the bus resonator, we spectroscopically observe a qubit avoided
crossing of about ~21MHz. The strength of the virtual-photon
mediated interaction is extracted from measurements of coherent
qubit population oscillations. The methods and techniques pre-
sented here have the potential to be transferred to QD devices
based on a range of material systems and can be beneficial for
spin-based hybrid systems.

Results
Sample design and basic circuit characterization. To perform
our experiments, we integrate four different quantum systems
into a single device: a semiconductor DQD charge qubit, a
superconducting qubit, and two superconducting resonators (see
Fig. 1a). One resonator acts as a quantum bus between the

superconducting and the semiconductor qubits and the other one
as a readout resonator for the superconducting qubit. In this way,
the functionality for qubit readout and coupling is implemented
using two independent resonators at different frequencies,
allowing for more flexibility in the choice of coupling parameters
and reducing unwanted dephasing due to residual resonator
photon population30. A simplified circuit diagram of the device is
shown in Fig. 1f.

The superconducting qubit is of transmon type and consists of
a single superconducting aluminum (Al) island shunted to
ground via a SQUID (orange in Fig. 1). The transmon charging
and Josephson energies are Ec/h ~243.0 ± 0.2 MHz and
E0
J =h � 30:1 ± 0:1GHz, respectively (see Supplementary Note 2

for more information). The transition frequency ωtr between its
ground state |g〉 and excited state |e〉 is adjusted by using the
magnetic flux generated in the transmon SQUID loop by a flux
line (purple in Fig. 1). We read out the state of the transmon
qubit with a 50Ω coplanar waveguide resonator (dark blue in
Fig. 1) capacitively coupled to the qubit14,31.

The DQD charge qubit (Fig. 1d), schematically indicated by the
two light blue dots in Fig. 1f, is defined by standard depletion gate
technology using Al top gates on a GaAs/AlGaAs heterostructure
that hosts a two-dimensional electron gas (2DEG)15,21,32. The
DQD is tuned to the few-electron regime and its excitation energy

is given by ωDQD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2c þ δ2

q
, with the inter-dot tunnel rate tc

and the DQD energy detuning δ.
We use a superconducting high-impedance resonator for

mediating interactions between the transmon and the DQD21.
The resonator is composed of an array of 35 SQUIDs (Fig. 1b),
and is capacitively coupled to both transmon and DQD charge
qubits (see Fig. 1b, f). It is grounded at one end and terminated in
a small island at the other end to which a single coplanar drive
line is capacitively coupled (green in Fig. 1b, c). A gate line
extends from the island and forms one of the plunger gates of the
DQD (in red in Fig. 1d)21,32. The high impedance of the
resonator increases the strength of the vacuum fluctuations of
electric field, enhancing the coupling strength of the individual
qubits to the resonator (see Supplementary Note 2 for more
information).

We characterize the hybrid circuit by measuring the amplitude
and phase change of the reflection coefficient of a coherent tone
at frequency ωp reflected from the multiplexed resonators (the
microwave setup is presented in Supplementary Fig. 1). The
response changes with the potentials applied to the gate
electrodes forming the DQD and the magnetic flux applied to
the transmon. By varying the DQD detuning δ and the transmon
flux Φtr, each qubit is individually tuned into resonance with the
high-impedance resonator. The coupling strengths measured
between the SQUID array resonator and the DQD charge qubit
and the transmon qubit are 2gDQD,Sq/2π ~66.2 ± 0.4 MHz (at ωr,

Sq/2π= 4.089 GHz) and 2gtr,Sq/2π ~451.3 ± 0.3 MHz (at ωr,Sq/2π
= 5.180 GHz), respectively, for more details see Supplementary
Note 5 and Supplementary Fig. 3. For the same configuration, we
extract the linewidth of the qubits spectroscopically21,30 and find
δωDQD/2π ~2.7 ± 0.4 MHz and δωtr/2π ~0.78 ± 0.05MHz. Both
subsystems individually are in the strong coupling regime (2g > κ/
2+ γ2) with a SQUID array resonator linewidth of κ/2π= (κext+
κint)/2π ~(3+ 5) MHz.

Resonant interaction. To demonstrate the coherent coupling
between the transmon qubit and the DQD charge qubit, we first
characterize the configuration with the three systems interacting
resonantly with each other (see Fig. 2). We tune the SQUID array
into resonance with the transmon and observe the vacuum Rabi
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modes j�i ¼ sinθmâ
y
Sq ± cosθmâ

y
tr

� �
j0i, with the ground state of

the system |0〉= |0〉Sq ⊗ |g〉tr ⊗ |g〉DQD and the creation operators
for the excitations in the SQUID array (transmon) âySq (âytr). The
mixing angle θm is determined by tan2θm= 2gtr,Sq/|Δtr|, with
jΔtrj ¼ jω′

tr � ωr;Sqj and the transmon excitation frequency ω′
tr

dressed by the interaction with the 50Ω resonator. We then

configure the DQD electrostatic gate voltages to tune its transi-
tion frequency at the charge sweet spot [ωDQD(δ= 0)=+2tc]
into resonance with the lower transmon-SQUID array Rabi mode
|−〉. From the hybridization between the states |−〉 and the DQD
excited state σ̂þDQDj0i, we obtain the states |−−〉 and |−+〉,
leading to the avoided crossing enclosed by the green dashed box
in Fig. 2b. Similarly, when the DQD excitation energy is equal to
the energy of the higher transmon-SQUID array Rabi mode, |+〉,
the hybrid system develops two avoided crossings at the respec-
tive detunings δ in the spectrum (see blue dashed box in Fig. 2b).
The observed spectrum resulting from the hybridization of the
three quantum systems is in good agreement with our calculation
(see red dots in Fig. 2b and “System Hamiltonian” section in
Supplementary Note 2 for more information).

Dispersive interaction. Next, we discuss the virtual photon-
mediated coherent interaction between the DQD and the trans-
mon qubit. This is realized in the dispersive regime, where both
qubit frequencies are detuned from the high-impedance reso-
nator. In this regime, no energy is exchanged between the qubits
and the resonator, and the strength of the effective coherent
interaction between the two qubits is given by 2J ~gtr,SqgDQD,Sq/
(1/|Δtr|+ 1/|ΔDQD|)19,20. We spectroscopically explore this
qubit–qubit coupling by applying a probe tone at frequency ωp/
2π= 6.5064 GHz to the transmon readout resonator. The
reflectance of the probe tone from the 50Ω resonator is measured
while a microwave spectroscopy tone of frequency ωs is swept
across the transmon transition frequency to probe its excitation
spectrum30.

To observe the coherent DQD-transmon coupling, we either
tune δ to bring the DQD into resonance with the transmon (see
Fig. 3b) or tune Φtr to bring the transmon into resonance with the
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Fig. 1 Sample and simplified circuit diagram. a False color optical micrograph of the device showing the substrate (dark gray), the Al superconducting
structures forming the groud plane (light gray), the DQD Au gate leads (yellow), the SQUID array resonator (red), its microwave feedline (green), the
single island transmon (orange), its readout 50Ω coplanar waveguide resonator (blue), and the flux line (purple). b Enlarged view of the sample area
enclosed by the blue dashed line in panel (a). c Enlarged view of the coupling side of the SQUID array. d Electron micrograph of the DQD showing its
electrostatic top gates (Al-light gray) and the plunger gate coupled to the SQUID array (red). e Electron micrograph of the transmon SQUID. f Circuit
diagram schematically displaying the DQD [with its source (S) and drain (D) contact], capacitively coupled to the SQUID array resonator, which in turn is
coupled to the transmon. The transmon and the SQUID array are respectively capacitively coupled to a 50Ω CPW resonator and microwave feedline. Their
resonance frequencies can be tuned by using a flux line and a coil schematically shown in the circuit diagram. The color code is consistent with the optical
micrographs
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Fig. 2 Resonant interaction between the DQD charge qubit, the SQUID
array resonator and the transmon. a Energy level diagram of the DQD-
SQUID array-transmon system for the bias point considered in panel (b).
The energy levels are colored in accordance with the code used in Fig. 1.
b Reflectance jSSq11 j of the SQUID array resonator hybridized with the
transmon and DQD as a function of the DQD detuning δ at the bias point
discussed in the main text. Red dots are obtained by numerical
diagonalization of the system Hamiltonian [see Eq. (1) in Supplementary
Note 2], using parameters extracted from independent spectroscopy
measurements
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DQD (see Fig. 3c). In either case, when the qubit frequencies are
in resonance, as depicted in Fig. 3a, a clear avoided crossing of
magnitude 2J/2π ~21.1 ± 0.2MHz (Fig. 3c), larger than the
combined linewidth of the coupled system (γDQD+ γtr)/2π ~4.6
± 0.5 MHz, is observed. The observed resonance frequencies are in
good agreement with our simulation (red dots in Fig. 3b, c) for the
explored configuration characterized by |ΔDQD| ~10gDQD,Sq and
|Δtr| ~3gtr,Sq. The well-resolved DQD-transmon avoided crossing
demonstrates that the high-impedance resonator mediates the
coupling between the semiconductor and the superconducting
qubit.

Time-resolved population transfer oscillations. We demon-
strate virtual-photon mediated coherent population transfer
between the transmon and DQD charge qubits in time-resolved
measurements. We induce the exchange coupling by keeping the
DQD and SQUID array cavity frequencies fixed at ωDQD(δ= 0)/
2π= 3.66 GHz and ωr,Sq/2π= 4.06 GHz, respectively, and varying
the transmon frequency nonadiabatically18,19 using the pulse
protocol illustrated in Fig. 3d. Initially, both qubits are in their
ground state and the effective coupling between them is negli-
gible, due to the large difference between their excitation fre-
quencies. Next, we apply a π-pulse to the transmon qubit to
prepare it in its excited state aytrj0i. Then, a nonadiabatic current

pulse, applied to the flux line, changes the flux Φtr and tunes the
transmon into resonance with the DQD charge qubit for a time
Δτ, which we vary between 0 and 250 ns. After the completion of
the flux pulse controlling the interaction, the state of the trans-
mon is measured (for a time tmeas) through its dispersive inter-
action with the 50Ω CPW resonator. We observe coherent
oscillations of the transmon excited state population as a function
of the interaction time Δτ (see Fig. 3e, f).

The population oscillations during the time Δτ are caused by
the exchange interaction with coupling strength J(|Δtr|, |ΔDQD|).
Oscillations in both the transmon population and in the DQD
occur as the excitation is transferred between the two, Fig. 3e. Due
to energy relaxation and dephasing of both systems, the
population oscillations are damped and the mean population
decays over time. In the current experiment, we were able to only
extract the transmon population. Future experiments may allow to
also measure the DQD population and to explore the correlations
between the two qubits to explicitly verify the entanglement of the
two systems. As a result, we observe the characteristic chevron
pattern in the transmon qubit population in dependence on the
flux pulse amplitude and length (see Fig. 3e)18.

A trace of the population oscillation pattern at fixed pulse
amplitude A=A0 � 0:55, approximately realizing the DQD-
transmon resonance condition (ω′

tr=2π ¼ ωDQD=2π ¼ 3:66GHz),
is in excellent agreement with the Markovian master equation
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of A/A0= 0.55, for which the transmon is approximately in resonance with the DQD (ωtr/2π ~ωDQD/2π=3.660 GHz). ωr,Sq/2π= 4.060GHz and
ωr,50Ω/2π= 6.5048 GHz. The red line is a fit to a Markovian master equation model (see Supplementary Note 6 for more details)
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simulation (see the red line in Fig. 3f and Supplementary Note 6 for
more information). The simulations are performed within
the dispersive approximation in which the qubits interact with rate
2J/2π= 21.8 ± 0.1MHz, via an exchange interaction consistent with
the spectroscopically measured energy splitting 2J/2π ~21.1 ± 0.2
MHz (Fig. 3c).

Discussion
Further improvements in device design and sample parameters
could allow to increase the visibility and fidelity of the coherent
population transfer protocol between the two different quantum
computing platforms. By increasing the bus resonator impedance
even further, e.g., by making use of a Josephson junction array
(instead of a SQUID array), it will be possible to increase the
coupling strength of the artificial atoms with the radiation field by
about a factor of two. This will allow also to increase the fre-
quency detuning between the qubits and the quantum bus, which
will result in a reduction of the relaxation rate of the transmon,
limited by Purcell decay in the current experiment. This can be
also achieved by reducing the ktot of the bus resonator or realizing
a Purcell filter33. Furthermore, the realization of the super-
conducting elements on a more suitable substrate, such as sap-
phire or silicon, could allow to further reduce the intrinsic loss of
the transmon and of the high impedance resonator while main-
taining the possibility to capacitively couple to the DQD struc-
ture, making use of flip-chip technology34. From the
semiconductor qubit side, moving to silicon as host material
could allow to reach a longer coherence time for both the charge
and the spin degrees of freedom of the confined electron.

In this work, we realized an interface between semiconductor-
and superconductor-based qubits by exchanging virtual photons
between two distinct physical systems in a hybrid circuit QED
architecture35,36. The coherent interaction between the qubits is
witnessed both by measurements of well-resolved spectroscopic
level splitting and by time-resolved population oscillations. The
interaction can be enabled both electrically via the QD and
magnetically via the transmon qubit. The resonator mediated
coupling also provides for nonlocal coupling to the semi-
conductor qubit, demonstrated here over distances of more than
50 μm. We expect the approach demonstrated here for the charge
degree of freedom of a semiconductor qubit to be transferable to
the spin degree of freedom and also to other material systems
such as Si or SiGe37–39. In this way, the coupling to electron spin
or even nuclear spin qubits may provide an avenue for realizing a
spin based quantum memory, which can be interfaced to other
solid state qubits, including superconducting ones. In addition,
the combination of short distance coupling and control in
semiconductor qubits with long-distance coupling through
microwave resonators provided by circuit QED may indicate a
viable solution to the wiring and coupling challenge in semi-
conductor qubits40 and may be essential for realizing error cor-
rection in these systems, for example by using the surface code41.
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