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2Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia
3Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada

(Received 24 October 2017; published 16 May 2018)

The realization of a high-efficiency microwave single photon detector is a long-standing problem in the
field of microwave quantum optics. Here, we propose a quantum nondemolition, high-efficiency photon
detector that can readily be implemented in present state-of-the-art circuit quantum electrodynamics. This
scheme works in a continuous fashion, gaining information about the photon arrival time as well as about
its presence. The key insight that allows us to circumvent the usual limitations imposed by measurement
backaction is the use of long-lived dark states in a small ensemble of inhomogeneous artificial atoms to
increase the interaction time between the photon and the measurement device. Using realistic system
parameters, we show that large detection fidelities are possible.
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Introduction.—While the detection of localized micro-
wave photons has been realized experimentally [1–3], high-
efficiency detection of single itinerant microwave photons
remains an elusive task [4]. Such detectors are increasingly
sought after due to their applications in quantum informa-
tion processing [5–7], microwave quantum optics [8],
quantum radars [9–11], and even the detection of dark
matter axions [12].
In recent years, a large number of microwave photon

detector proposals have been put forward [13–21], and some
proof-of-principle experiments have been performed [7,22–
24]. For their operation, many of these proposals rely on
a priori information about the photon arrival time
[7,14,15,17,24,25], limiting their applicability. In this
Letter, we are rather interested in continuous detectors,
where the arrival time of a photon can be inferred a posteriori
[13,16,18–23]. Moreover, we also focus on nondestructive
detection of photons [4,13,19,25]. This property proves to be
useful in a number of applications, such as quantumnetworks
[5,6] and the study of quantum measurement [26]. A
challenge in designing continuous single photon detectors
is set by the quantum Zeno effect, which loosely states that
the more strongly a quantum system is measured the less
likely it is to change its state [27–29]. Any nonheralded
photon detection scheme based on absorbing the photon into
a medium thus faces the problem that strong continuous
measurement reduces the absorption efficiency and thus the
photon detection efficiency [13].
In this Letter, we introduce a nondestructive and continu-

ous microwave photon detector that circumvents this
measurement backaction problem with minimal device
complexity, without requiring any active control pulses,
and avoiding the use of nonreciprocal elements [19,20]. In

essence, our proposal relies on absorbing a signal photon in a
medium made of an ensemble of inhomogeneous artificial
atoms, where the presence of long-lived dark states allows us
to increase the effective lifetime of photons inside this
composite absorber without lowering its bandwidth. We
show that high detection efficiencies can be obtained by
weakly and continuouslymonitoring the ensemble excitation
number. We also present a simple circuit-QED design
implementing this idea [30,31], where an ensemble of
transmon qubits [32] are continuously measured through
standard dispersive measurement.
Single-absorber detector.—Before introducing our pro-

posal based on an ensemble of artificial atoms, we first study
a simple single-absorber model and motivate our solution by
explaining how the quantum efficiency of such a scheme is
fundamentally limited due to quantum mechanical back-
action effects. This simple model is illustrated in Fig. 1(a),
where a signal photon (red) traveling along an input wave-
guide is absorbed into a single “absorber”modeB (orange) at
a rate κB. This first mode is coupled to a second “measure-
ment” harmonic mode A (green) which decays at a rate κA
into an output port continuously measured using a standard
homodyne measurement chain (not shown). In this toy
model, we assume that the two modes are coupled by the
longitudinal interaction (ℏ ¼ 1),

ĤI ¼ gzb̂
†b̂ðâþ â†Þ; ð1Þ

where â and b̂ are the annihilation operators of modes A and
B, respectively. This interaction implements a textbook
photon number measurement: the measured observable
b̂†b̂ is coupled to the generator of displacement of a pointer
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state X̂A ¼ âþ â†. As schematically illustrated in Fig. 1(c),
the homodyne measurement of the orthogonal quadrature
ŶA ¼ −iðâ − â†Þ allows us to precisely measure the photon
number inside the absorber mode B without destroying the
photon.
In order to induce a displacement in mode A, a signal

photon however needs to first enter mode B, an unlikely
process at large coupling strengths gz. Indeed, as sche-
matically illustrated in Fig. 1(b), ĤI induces quantum
fluctuations of the absorber’s frequency which can prevent
it from absorbing the arriving photon. This quantum
fluctuation-induced spectral mismatch can be interpreted
as a quantum Zeno-like effect since the width of these
fluctuations directly relates to the measurement strength
through gz [29]. In order to minimize this unwanted
measurement backaction, the width of these fluctuations,
compared with the absorber’s linewidth gz=κB, should
ideally be minimized. On the other hand, the displacement
of the measurement mode A, which is given roughly by
gz=κB as well, should be maximized to improve the
detection efficiency [33]. The optimal quantum efficiency
of this toy model is obtained by balancing these two
conflicting requirements. Numerically, we find an optimal
operating point at gz=κB ¼ 1, the smallest coupling strength
for which the induced displacement is distinguishable from
vacuum noise hŶ2

Aivacuum ¼ 1.
Numerical Simulations.—To model the signal photon

arriving at the detector, a source mode C is introduced,
with a frequency matching the absorber mode B, ωC ¼ ωB.
To minimize reflection, we take the signal photon linewidth
to be much smaller than the absorber’s linewidth,
κC=κB¼0.1. Following the experiments of Refs. [34,35],
this mode is initialized with one excitation leading to a
signal photon emission with an exponentially decaying
waveform.
The quantum efficiency of this simple photon detector

is calculated by simulating multiple realizations of the
above scenario and computing the corresponding

homodyne current out of the measurement mode A. This
is realized by numerically integrating the stochastic master
equation [26],

dρ ¼ Lρdtþ ffiffiffiffiffiffiffiffiffi
ηhκA

p
H½−iâ�ρdW;

Ĥ ¼ ĤI −
i

ffiffiffiffiffiffiffiffiffiffi
κBκC

p
2

ðĉb̂† − ĉ†b̂Þ; ð2Þ

where ĉ is the annihilation operator of the source mode C
and L• is the Linbladian superoperator L• ¼ −i½Ĥ; •� þP

jD½L̂j�• with L̂1 ¼ ffiffiffiffiffi
κA

p
â, L̂2 ¼ ffiffiffiffiffi

κB
p

b̂þ ffiffiffiffiffi
κC

p
ĉ. The

combination of the term coupling ĉ and b̂ in Ĥ and of
the composite decay operator L̂2 assures that the output of
mode C is cascaded to the input of mode B [36,37].
Moreover, ηh is the homodyne measurement chain effi-
ciency, D½L̂�• ¼ L̂ • L̂† − 1

2
fL̂†L̂; •g is the dissipation

superoperator, and H½â�• ¼ â •þ • â† − hâþ â†i• is the
homodyne measurement backaction superoperator. The
Wiener process dW is a random variable with the statistical
properties E½dW� ¼ 0 and E½dW2� ¼ dt, where E½•�
denotes an ensemble average. For each trajectory, the
resulting homodyne current is given by JhomðtÞ ¼ffiffiffiffiffiffiffiffiffi
ηhκA

p hŶAi þ dW=dt [26]. Here and below, we use Ntraj ¼
2000 trajectories and, to focus solely on the characteristics
of the photodetector itself, assume a perfect homodyne
detection chain ηh ¼ 1.
For each homodyne current realization, we consider a

photon is detected if the convolution of the signal with a
filter, J̄homðtÞ ¼ JhomðtÞ∘fðtÞ, exceeds a threshold value
Y thr. To give more weight to times where the signal is, on
average, larger, we use fðtÞ ∝ hŶAðtÞiME computed by
solving the standard unconditional master equation [20].
The quantum efficiency η ¼ Nclick=Ntraj is then computed,
where Nclick is the number of trajectories where a photon is
detected [38]. Although with this model no prior informa-
tion about the photon arrival time is needed, if this
information is available, the measurement can be restricted
to a time window of length τm. In that case, a better metric
is the measurement fidelity F ¼ 1

2
ðηþ 1 − Γdark × τmÞ

[17,19], where Γdark is the dark count rate, i.e., the rate
at which the detector “clicks” without a signal photon. To
maximize the detector repetition rate, τm is set to the
smallest value that maximizes the fidelity.
For the single absorber model with gz=κB ¼ 1 and

κA=κB ¼ 0.2, we obtain an efficiency of 79% with
Γdark=κB ¼ 1.4 × 10−3 and a fidelity of F ¼ 82% for a
time window of κBτm ¼ 125. The detector dead time after a
detection event is given by the reset time of the measure-
ment mode A back to vacuum. This corresponds to several
decay times 1=κA or, alternatively, can be sped up by using
active reset approaches [39–41].
This scheme is similar to previously studied models

[13,20,42], and although it leads to relatively large

(a)

(b) (c)

FIG. 1. (a) Sketch of a single absorber model for photon
detection. A signal photon (red) is absorbed in a mode B and
induces a coherent state displacement in a harmonic mode A
which is measured using homodyne measurement. (b) Coupling
between A and B induces fluctuations in the absorption spectrum
of mode B, preventing the absorption of incoming photons.
(c) Illustration of phase space for mode A as a photon is absorbed
in B.
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detection fidelities, the resulting displacement of mode A is
small, hŶAi ∼ gz=κB ¼ 1. In this situation, adding an
imperfect homodyne measurement chain ηh < 1 leads to
a significant reduction of the quantum efficiency.
Absorption into an ensemble.—As already pointed out,

the key issue with using a single absorber is that both the
total displacement of the measurement mode A and the
measurement backaction on B scale with gz=κB. This stems
from the fact that the time spent in a simple resonant system
is given by the inverse of its bandwidth. In order to increase
the quantum efficiency, we thus present a scheme where the
interaction time with the photon is increased while keeping
the ratio gz=κB constant.
As schematically illustrated in Fig. 2(a), we first replace

the single absorber by a small ensemble of N ≲ 5 artificial
atoms, and second, we inhomogeneously detune each atom
with respect to the average ensemble frequency. By
connecting these absorbers approximately to the same
point of the input waveguide [43], symmetry imposes that
the absorbers state, after the absorption of a photon, should
be invariant under permutation. The only state satisfying
this condition is the all-symmetric superposition of exci-
tation in the absorbers b̂þ ¼ 1=

ffiffiffiffi
N

p P
ib̂i, which we refer to

as the bright state [44,45]. Other nonsymmetric states,
which we call dark states, completely decouple from the
waveguide and are long lived. We, furthermore, design the
coupling to the measurement mode A such that the
measured observable is N̂B ¼ P

ib̂
†
i b̂i, the total photon

number in the ensemble. In this case, the ideal interaction
picture Hamiltonian becomes

ĤE
I ¼ gzN̂BX̂A þ

XN

i¼1

Δib̂
†
i b̂i; ð3Þ

where Δi ¼ ωBi − ωB ≲ κB is the ith atom detuning with
respect to the average ensemble frequencyωB ¼ P

iωBi=N,
and the first term represents the direct generalization of
Eq. (1) for an ensemble of atoms.
In this model, a signal photon is absorbed in the

collective bright state b̂þ at a rate scaling linearly with
N. Without loss of generality and to fix the effective
collective absorption rate of the absorbers at κB, we choose
the bare linewidth of the atoms to be κBi ¼ κB=N. In the
case where the atoms are on resonance Δi ¼ 0 ∀ i, the
bright and dark subspaces are uncoupled, and the model
becomes equivalent to the single absorber model illustrated
in Fig. 1(a) [46].
On the other hand, nonhomogeneous detunings Δi ≠ Δj

lead to coupling of the bright and dark subspaces. If this
coupling is carefully adjusted, a signal photon can be
absorbed into the bright state, transferred to a long-lived
dark state, and after some time τtrap, return to the bright
state where it is re-emitted. Figure 2(b) illustrates this
process schematically with the bright state (yellow) being
coupled to N − 1 dark states (dark orange). In practice, this
process is optimized by having equally spaced detunings.
Crucially, changing the detunings affects neither the cou-
pling strength gz nor the effective linewidth κB, leaving the
measurement backaction unaffected. On the other hand, the
total displacement induced in the measurement mode A is
changed from gz=κB to roughly gz × ð1=κB þ τtrapÞ. As a
result, by increasing τtrap and reducing gz, we can thus, as
desired, significantly increase the quantum efficiency by
simultaneously increasing the induced displacement and
reducing the measurement backaction. In practice, τtrap can
be made longer by increasing the number of dark states
where the photon can get trapped (i.e., increasing N) and
optimizing the detunings Δ⃗ accordingly [47]. In the large N
limit, the mechanism leading to τtrap is reminiscent of
photon memories using inhomogeneous spin ensembles
[49–52].
We perform full stochastic master equation simulations

using Eq. (2) with the replacements b̂ → b̂þ, ĤI → ĤE
I and

show the increase in measurement fidelity F as a function
of ensemble size in Fig. 3(a). As shown in Fig. 4(b), for
N ¼ 4, a quantum efficiency of η ¼ 92% is obtained at a
low estimated dark count rate Γdark=κB ¼ 7 × 10−6. For a
time window of κBτm ¼ 126, this translates to the meas-
urement fidelity of F ¼ 96% observed in Fig. 4(a). As
illustrated in Fig. 4(b), the threshold Y thr can be varied to
trade a higher dark count rate for a higher efficiency or the
converse. Here, Γdark is computed from trajectories with no
signal photon (full lines) and, where it is too small to be
precisely calculated from trajectories, estimated from time
correlations in the filtered signal from vacuum (colored
dashed lines) [47].
Importantly, due to the increased interaction time, the

measured homodyne signal increases with N and, for
N ¼ 4, is already much larger than vacuum noise. As a

(a)

(b)

(c)

FIG. 2. (a) Absorber B is replaced by an ensemble of inho-
mogeneous modes coupled at the same point of the input
waveguide. (b) Redrawing of (a) in the bright and dark states
basis for N ¼ 3. (c) Possible circuit-QED implementation for
N ¼ 3. Tunable transmon qubits acting as absorbers are coupled
capacitively on one side to an input transmission line and on the
other side to a measurement resonator.
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result, the detector becomes increasingly robust to potential
imperfections in the homodyne detection chain (ηh < 1).
We, moreover, expect the quantum efficiency to continue
increasing as the number of absorbers is raised above 4.
For N ≥ 5, the required Hilbert space size for numerical
simulations is impractically large. Nevertheless, at N ¼ 4,
the performance is already close to an expected maximum
of ηmax ∼ 96% indicated by the black dashed line in
Figs. 3(a) and 3(b). This upper bound is due to high
frequency components of the signal photon that are directly
reflected from the absorber and thus do not lead to a
detectable signal in mode A [47]. This upper bound
value is linked to the choice of both detector and signal
photon parameters and could be improved upon further
optimization.
Since our proposal is continuous, the time τc at which the

homodyne signal crosses the threshold reveals information
about the photon arrival time. Figure 4 shows histograms of
the normalized number of counts for τc, as recorded from
trajectories where a photon is detected. In Fig. 4(a), the
number of absorbers is varied, and the signal threshold Y thr
is set to optimize the fidelity (see Fig. 3). On the other hand,
in Fig. 4(b), we set N ¼ 4 and vary the threshold. In both
Figs. 4(a) and 4(b), the input photon shape (red) is shown
for comparison. As the threshold increases, the distribution
of crossing times narrows and the precision on the photon
arrival time therefore increases. As mentioned above,
increasing N leads to larger homodyne signals. Hence,
adding more absorbers allows us to increase the threshold
which, in turn, improves the arrival time precision.
Moreover, since 1=κC is the longest timescale in these
simulations, at N ¼ 4 the photon shape can be resolved

from the histogram. The mismatch between the distribution
and the red line near κBt ¼ 0 is due to the sharp, high
frequency feature of the input photon that is reflected from
the absorbers without detection.
Physical implementation.—A possible implementation

of this model, based on dispersive coupling of transmon
qubits, is illustrated in Fig. 2(c). Here, an ensemble of
superconducting transmon qubits is capacitively coupled
on one side to a transmission line and on the other side to a
measurement resonator (mode A) with coupling strength g.
We take a large detuning between the qubits center
frequency ωB and the resonator frequency ωr − ωB ≫
κA; κB; g and use the standard dispersive approximation
[47]. The absorption of a signal photon by the qubits
induces a shift in the resonator frequency which is detected
by continuously probing the resonator with a coherent drive
corresponding to a field amplitude α [30]. In this situation,
we find that the system of Fig. 2(c) is well described by the
displaced dispersive Hamiltonian [47],

ĤD
χ ¼ gzN̂BX̂Aþ

XN

i¼1

Δib̂
†
i b̂iþ2χN̂Bâ†âþΔþb̂

†
þb̂þ; ð4Þ

where χ is the usual transmon dispersive shift [32,47],
gz ¼ 2χα, and Δþ results from a combination of the
resonator-induced Lamb shift and spurious qubit-qubit
coupling [47]. The first two terms correspond exactly to
the ideal model Hamiltonian Eq. (3), while the two addi-
tional last terms are small and imposed by this specific
implementation.
As the diamonds in Fig. 3 show, at α ¼ 5, the two

additional terms in Eq. (4) have a minimal impact on the
quantum efficiency. Moreover, it is possible to mitigate the
detrimental effect of a small Δþ by adjusting the detun-
ings Δ⃗.
As an example, choosing realistic parameters N ¼ 4,

κB=2π ¼ 10 MHz, κA=2π ¼ 2 MHz, χ=2π ¼ 0.4 MHz,
α ¼ 5, and Δ⃗=2π ¼ ð6.6;−7.4; 2.3;−2.3Þ MHz and using
current transmon decoherence times T1, T2 ¼ 30 μs [53],

(a) (b)

FIG. 3. (a) Fidelity as a function of the number of absorbers. The
circles are calculated using the ideal model with κA=κB ¼ 0.2,

gð1Þz =κB ¼ 1, gð2Þz =κB ¼ 0.6, gð3Þz =κB ¼ 0.5, and gð4Þz =κB¼0.4 with

the detunings Δ⃗ð2Þ=κB¼ð0.55;−0.55Þ, Δ⃗ð3Þ=κB¼ð0.7;−0.7;0Þ,
and Δ⃗ð4Þ=κB ¼ ð0.7;−0.7; 0.23;−0.23Þ. The diamonds are calcu-
lated using realistic parameters for a transmon ensemble disper-
sively coupled to a resonator with κB=2π ¼ 10 MHz, gz=χ ¼ 10,
and T1, T2 ¼ 30 μs. (b) Detector efficiency as a function of the
dark count rate. Solid lines correspond to statistics extracted from
trajectories, while for the dashed lines Γdark was estimated using an
analytical formula. The lines were calculated for the ideal model,
and the points indicate where the fidelity is maximized. The black
dashed line in (a) and (b) correspond the upper bound ηmax imposed
by the photon shape used here.

(a) (b)

FIG. 4. (a) Normalized number of detection events as a function
of time for (a) different number of absorbers in the ideal model
Eq. (3) and for (b) different thresholds for N ¼ 4. In both (a) and
(b), the input photon shape (red) is shown for comparison and an
arbitrary time offset has been substracted from the homodyne
signal.
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we obtain η ¼ 92% with Γdark ¼ 4.2 × 10−3 μs−1. Given a
time window of τm ¼ 2 μs, this corresponds to a large
measurement fidelity of F ¼ 96%.
Conclusion.—We have presented a high-efficiency, non-

destructive scheme for itinerant microwave photon detec-
tion where no prior information about the photon arrival
time is needed. This scheme is based on the continuous
measurement of the photon number in an ensemble of
inhomogeneous artificial atoms where the photon can be
stored for long times due to the existence of long-lived dark
states. We also presented a realistic physical implementa-
tion of this idea using an ensemble of transmon qubits
dispersively coupled to a single resonator. Using only four
transmons, we estimate that fidelities as high as 96% are
attainable for the photon shape considered, and we expect
that adding more transmons will improve this fidelity even
further. Since the output signal is proportional to the total
number of photons, the same model could be used as a
photon-number resolving detector. Future work will inves-
tigate this possibility.
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suggesting this project, Stéphane Virally for useful dis-
cussions, and Jean-Claude Besse for comments on the
manuscript. Part of this work was supported by the Army
Research Office under Grant No. W911NF-14-1-0078 and
the Natural Sciences and Engineering Research Council of
Canada (NSERC). This research was undertaken thanks in
part to funding from the Canada First Research Excellence
Fund and the Vanier Canada Graduate Scholarships.

*baptiste.royer@usherbrooke.ca
[1] S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Deleglise, U.

Busk Hoff, M. Brune, J.-M. Raimond, and S. Haroche,
Nature (London) 446, 297 (2007).

[2] B. R. Johnson, M. D. Reed, A. A. Houck, D. I. Schuster, L.
S. Bishop, E. Ginossar, J. M. Gambetta, L. DiCarlo, L.
Frunzio, S. M. Girvin, and R. J. Schoelkopf, Nat. Phys. 6,
663 (2010).

[3] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J.
M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.
H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 445, 515 (2007).

[4] S. R. Sathyamoorthy, T. M. Stace, and G. Johansson, C.R.
Phys. 17, 756 (2016).

[5] N. Gisin and R. Thew, Nat. Photonics 1, 165 (2007).
[6] H. J. Kimble, Nature (London) 453, 1023 (2008).
[7] A. Narla, S. Shankar, M. Hatridge, Z. Leghtas, K. M. Sliwa,

E. Zalys-Geller, S. O. Mundhada, W. Pfaff, L. Frunzio, R. J.
Schoelkopf, and M. H. Devoret, Phys. Rev. X 6, 031036
(2016).

[8] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Meth-
ods with Applications to Quantum Optics, Springer Series in
Synergetics (Springer, New York, 2004).

[9] S. Lloyd, Science 321, 1463 (2008).

[10] S.-H. Tan, B. I. Erkmen, V. Giovannetti, S. Guha, S. Lloyd,
L. Maccone, S. Pirandola, and J. H. Shapiro, Phys. Rev.
Lett. 101, 253601 (2008).

[11] S. Guha and B. I. Erkmen, Phys. Rev. A 80, 052310 (2009).
[12] S. K. Lamoreaux, K. A. van Bibber, K. W. Lehnert, and G.

Carosi, Phys. Rev. D 88, 035020 (2013).
[13] F. Helmer, M. Mariantoni, E. Solano, and F. Marquardt,

Phys. Rev. A 79, 052115 (2009).
[14] G. Romero, J. J. García-Ripoll, and E. Solano, Phys. Rev.

Lett. 102, 173602 (2009).
[15] C. H. Wong and M. G. Vavilov, Phys. Rev. A 95, 012325

(2017).
[16] O. Kyriienko and A. S. Sørensen, Phys. Rev. Lett. 117,

140503 (2016).
[17] K. Koshino, K. Inomata, T. Yamamoto, and Y. Nakamura,

Phys. Rev. Lett. 111, 153601 (2013).
[18] K. Koshino, Z. Lin, K. Inomata, T. Yamamoto, and Y.

Nakamura, Phys. Rev. A 93, 023824 (2016).
[19] S. R. Sathyamoorthy, L. Tornberg, A. F. Kockum, B. Q.

Baragiola, J. Combes, C. M. Wilson, T. M. Stace, and G.
Johansson, Phys. Rev. Lett. 112, 093601 (2014).

[20] B. Fan, G. Johansson, J. Combes, G. J. Milburn, and T. M.
Stace, Phys. Rev. B 90, 035132 (2014).

[21] J. Leppäkangas, M. Marthaler, D. Hazra, S. Jebari, G.
Johansson, andM.Hofheinz, Phys.Rev.A97, 013855 (2018).

[22] Y.-F. Chen, D. Hover, S. Sendelbach, L. Maurer, S. T.
Merkel, E. J. Pritchett, F. K. Wilhelm, and R. McDermott,
Phys. Rev. Lett. 107, 217401 (2011).

[23] G. Oelsner, C. K. Andersen, M. Rehák, M. Schmelz, S.
Anders, M. Grajcar, U. Hübner, K. Mølmer, and E. Il’ichev,
Phys. Rev. Applied 7, 014012 (2017).

[24] K. Inomata, Z. Lin, K. Koshino, W. D. Oliver, J.-S. Tsai, T.
Yamamoto, andY.Nakamura,Nat.Commun.7, 12303 (2016).

[25] A. Reiserer, S. Ritter, and G. Rempe, Science 342, 1349
(2013).

[26] H. Wiseman and G. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, England,
2010).

[27] B. Misra and E. C. G. Sudarshan, J. Math. Phys. (N.Y.) 18,
756 (1977).

[28] K. Kraus, Found. Phys. 11, 547 (1981).
[29] P. Facchi and S. Pascazio, Phys. Rev. Lett. 89, 080401

(2002).
[30] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J.

Schoelkopf, Phys. Rev. A 69, 062320 (2004).
[31] A.Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf,
Nature (London) 431, 162 (2004).

[32] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[33] The displacement ∼gz=κB corresponds to the interaction
strength multiplied by the typical photon lifetime inside B.

[34] A. A. Houck, D. I. Schuster, J. M. Gambetta, J. A. Schreier,
B. R. Johnson, J. M. Chow, L. Frunzio, J. Majer, M. H.
Devoret, S. M.Girvin, andR. J. Schoelkopf, Nature (London)
449, 328 (2007).

[35] D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, C. Eichler, M.
Baur, R. Bianchetti, P. J. Leek, S. Filipp, M. P. da Silva, A.
Blais, and A. Wallraff, Nat. Phys. 7, 154 (2011).

PHYSICAL REVIEW LETTERS 120, 203602 (2018)

203602-5

https://doi.org/10.1038/nature05589
https://doi.org/10.1038/nphys1710
https://doi.org/10.1038/nphys1710
https://doi.org/10.1038/nature05461
https://doi.org/10.1038/nature05461
https://doi.org/10.1016/j.crhy.2016.07.010
https://doi.org/10.1016/j.crhy.2016.07.010
https://doi.org/10.1038/nphoton.2007.22
https://doi.org/10.1038/nature07127
https://doi.org/10.1103/PhysRevX.6.031036
https://doi.org/10.1103/PhysRevX.6.031036
https://doi.org/10.1126/science.1160627
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevLett.101.253601
https://doi.org/10.1103/PhysRevA.80.052310
https://doi.org/10.1103/PhysRevD.88.035020
https://doi.org/10.1103/PhysRevA.79.052115
https://doi.org/10.1103/PhysRevLett.102.173602
https://doi.org/10.1103/PhysRevLett.102.173602
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.1103/PhysRevLett.117.140503
https://doi.org/10.1103/PhysRevLett.117.140503
https://doi.org/10.1103/PhysRevLett.111.153601
https://doi.org/10.1103/PhysRevA.93.023824
https://doi.org/10.1103/PhysRevLett.112.093601
https://doi.org/10.1103/PhysRevB.90.035132
https://doi.org/10.1103/PhysRevA.97.013855
https://doi.org/10.1103/PhysRevLett.107.217401
https://doi.org/10.1103/PhysRevApplied.7.014012
https://doi.org/10.1038/ncomms12303
https://doi.org/10.1126/science.1246164
https://doi.org/10.1126/science.1246164
https://doi.org/10.1063/1.523304
https://doi.org/10.1063/1.523304
https://doi.org/10.1007/BF00726936
https://doi.org/10.1103/PhysRevLett.89.080401
https://doi.org/10.1103/PhysRevLett.89.080401
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1038/nature06126
https://doi.org/10.1038/nature06126
https://doi.org/10.1038/nphys1845


[36] C. W. Gardiner, Phys. Rev. Lett. 70, 2269 (1993).
[37] H. J. Carmichael, Phys. Rev. Lett. 70, 2273 (1993).
[38] R. H. Hadfield, Nat. Photonics 3, 696 (2009).
[39] D. T.McClure, H. Paik, L. S. Bishop,M. Steffen, J. M. Chow,

and J. M. Gambetta, Phys. Rev. Applied 5, 011001 (2016).
[40] C. C. Bultink, M. A. Rol, T. E. O’Brien, X. Fu, B. C. S.

Dikken, C. Dickel, R. F. L. Vermeulen, J. C. de Sterke, A.
Bruno, R. N. Schouten, and L. DiCarlo, Phys. Rev. Applied
6, 034008 (2016).

[41] S. Boutin, C. K. Andersen, J. Venkatraman, A. J. Ferris, and
A. Blais, Phys. Rev. A 96, 042315 (2017).

[42] G. J. Milburn and S. Basiri-Esfahani, Proc. R. Soc. A 471,
20150208 (2015).

[43] In practice, the distance d between the artificial atoms should
be much smaller than their wavelength d ≪ 2πv0=ωB, with
v0 the speed of light in the waveguide and ωB the atoms
frequency.

[44] K. Lalumière, B. C. Sanders, A. F. van Loo, A. Fedorov, A.
Wallraff, and A. Blais, Phys. Rev. A 88, 043806 (2013).

[45] A. F. van Loo, A. Fedorov, K. Lalumière, B. C. Sanders, A.
Blais, and A. Wallraff, Science 342, 1494 (2013).

[46] B. Fan, A. F. Kockum, J. Combes, G. Johansson, I.-c. Hoi,
C. M. Wilson, P. Delsing, G. J. Milburn, and T. M. Stace,
Phys. Rev. Lett. 110, 053601 (2013).

[47] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.203602 for more
details on the analytical expressions and the simulations,
which includes Ref. [48].

[48] U. Vool and M. Devoret, Int. J. Circuit Theory Appl. 45, 897
(2017).

[49] Z. Kurucz, J. H. Wesenberg, and K. Mølmer, Phys. Rev. A
83, 053852 (2011).

[50] I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and
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