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Active qubit reset is a key operation in many quantum algorithms, and particularly in quantum error
correction. Here, we experimentally demonstrate a reset scheme for a three-level transmon artificial atom
coupled to a large bandwidth resonator. The reset protocol uses a microwave-induced interaction between
the jf; 0i and jg; 1i states of the coupled transmon-resonator system, with jgi and jfi denoting the ground
and second excited states of the transmon, and j0i and j1i the photon Fock states of the resonator. We
characterize the reset process and demonstrate reinitialization of the transmon-resonator system to its
ground state in less than 500 ns and with 0.2% residual excitation. Our protocol is of practical interest as it
has no additional architectural requirements beyond those needed for fast and efficient single-shot readout
of transmons, and does not require feedback.

DOI: 10.1103/PhysRevLett.121.060502

The efficient initialization of a set of qubits into their
ground state is one of the DiVincenzo criteria for quantum
information processing [1]. Initialization is also critical for
the implementation of error correction codes [2–4] to reset
ancilla qubits on demand to a fiducial state in short time and
with high fidelity. For this reason, qubit reset procedures
have been implemented for a wide range of physical
quantum computation platforms [5–9], including super-
conducting qubits for which we discuss the most common
approaches below [10–19].
Reset for superconducting qubits is commonly realized

using the outcome of a strong projective measurement to
either herald the ground state [13] or deterministically
prepare it using feedback [14–17]. Measurement-induced
state mixing limits the achievable single-shot readout
fidelity and the performance of this approach [16,20,21].
In addition, measurement-induced mixing constrains the
quantum-nondemolition nature of dispersive readout giving
rise to leakage out of the qubit subspace [16,22], which is
particularly detrimental to quantum error correction [23].
Alternatively, qubit reset can be achieved by coupling the

qubit excited state to a cold and rapidly decaying quantum
system. Such driven reset schemes [10,11,18,24,25] make
use of ideas related to dissipation engineering [26–29]. In
one variant of this approach [11], the qubit is quickly tuned
into resonance with a Purcell filtered, large-bandwidth,
resonator using magnetic flux. The qubit then quickly
thermalizes to its ground state due to Purcell decay, the rate
of which can be adjusted, on-demand, by 3 orders of
magnitude. The flux pulses employed in this scheme
require careful calibration, they may affect subsequent

gates by bleedthrough and neighboring qubits through
cross talk [30].
An all-microwave reset protocol utilizing the qubit-state-

dependent response of a resonator [18] avoids the use of
flux tuning and its potentially detrimental effects. This
protocol [18] has minimal hardware requirements, only a
single resonator, but requires a cavity linewidth κ smaller
than the dispersive interaction strength χ limiting both the
speed of the reset process and the readout if the same
resonator is used [31,32].
In this work, we demonstrate an alternative all-micro-

wave reset protocol of a three-level transmon coupled to a
resonator with no constraint on κ. Driving the transmon
simultaneously with two coherent tones forms a Λ system
in the Jaynes-Cumming ladder [33] and unconditionally
transfers any excitation in the two lowest excited states of
the transmon to a single photon emitted to the environment,
thus resetting the transmon qutrit on demand. This protocol
outperforms existing measurement-based and all-
microwave driven reset schemes in speed and fidelity
[34], populates the resonator with one photon at most,
and can be extended to other types of superconducting
qubits. In addition, this protocol is of practical interest as it
is optimized when the resonator is designed for rapid and
high-fidelity transmon readout [32].
The device used in our experiment and schematically

illustrated in Fig. 1(a), uses a transmon qubit [35,36]
(orange), with transition frequency ωge=2π ¼ 6.343 GHz,
anharmonicity α=2π ¼ −265 MHz and energy relaxation
time T1 ¼ 5.5 μs. We control the qubit state with micro-
wave pulses up-converted from an arbitrary waveform
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generator (AWG), applied to the transmon through a
dedicated drive line. To perform the reset, the transmon
is capacitively coupled with rate gr=2π ¼ 335 MHz to a
resonator of frequency ωr=2π ¼ 8.400 GHz, resulting in a
dispersive interaction with rate χr=2π ¼ −6.3 MHz (light
blue). The reset resonator is connected through a Purcell-
filter resonator to cold 50 Ω loads with an effective
coupling κ=2π ¼ 9MHz. This resonator can, in principle,
be used for transmon readout. However, in the present
work, to decouple the reset from its characterization
process, we read out the transmon with a dedicated,
Purcell-filtered resonator (light green). We present further
details about the sample in the Supplemental Material [34].
We read out the transmon state using a gated drive

applied to the input port of the readout resonator at a
frequency optimized for qutrit readout [37]. The signal
scattered off the readout resonator is amplified at TBT ¼
10 mK by a Josephson parametric amplifier [38,39].
The signal is then amplified at 4 K with high electron
mobility transistors, down-converted using an I-Q mixer,
digitized using an analog-to-digital converter, digitally
down-converted and processed using a field programmable
gate array.
The reset concept, illustrated in Fig. 1(b), is based on a

cavity-assisted Raman transition between jf; 0i and jg; 1i
[33,40,41]. Here, js; ni denotes the tensor product of the
transmon in state jsi, with its three lowest energy eigen-
states jgi, jei, and jfi, and the reset resonator in the n
photon Fock state jni. By simultaneously driving the
jf; 0i ↔ jg; 1i (f0-g1) transition and the je; 0i ↔ jf; 0i
(e-f) transition, the population is transferred from the qutrit
excited states, je; 0i and jf; 0i, to the state jg; 1i. The
system then rapidly decays to the target dark state jg; 0i by
photon emission at rate κ, effectively resetting the qutrit to
its ground state.
We model the dynamics of the reset by the non-

Hermitian Hamiltonian

H=ℏ ¼

2

64
−δef Ωef 0

Ω"
ef 0 g̃

0 g̃" −δf0g1 − iκ=2

3

75; ð1Þ

acting on the states je; 0i, jf; 0i, and jg; 1i. Here, the non-
Hermitian term −iκ=2 accounts for the photon emission
process, and Ωef and g̃ are the e-f and f0-g1 drive-induced
Rabi rates, respectively. Because the f0-g1 drive acts on a
second order transition, it requires a high amplitude Vf0g1

and induces significant ac Stark shifts Δ̄ef and Δ̄f0g1 of the
e-f and f0-g1 transitions [40]. In Hamiltonian (1), δef and
δf0g1 denote the detuning of the drives from their respective
ac Stark shifted transitions. Therefore, gaining experimen-
tal control over the reset drive parameters requires us to
characterize the dependence of Δ̄ef and Δ̄f0g1 on Vf0g1 as
well as the relation between the drive amplitudes and their
corresponding Rabi rates.

First, we determine the ac Stark shift Δ̄f0g1. We initialize
the transmon in jgi, then apply a sequence of two π pulses
(πge, πef) to prepare the system in jf; 0i [Fig. 1(c)]. We
apply a flattop f0-g1 pulse of carrier frequency νf0g1,
amplitude Vf0g1 and duration tr and read out the resulting
transmon state populations. Here and in all calibration
measurements, the populations Pg;e;f of the transmon qutrit
are extracted by comparing the averaged signal transmitted
through the readout resonator to reference traces [37]. We
repeat the process varying νf0g1 and Vf0g1, while keeping
Vf0g1tr fixed to obtain comparable Rabi angles for the
rotations induced by the f0-g1 drive. For a given value of
Vf0g1, we fit the dependence of Pg on νf0g1 to a Gaussian
whose center yields the ac Stark shifted frequency, at which
the population transfer from jf; 0i to jg; 1i is maximized
[Fig. 2(a)]. The ac Stark shift Δ̄f0g1 extracted in this way
shows a quadratic dependence on Vf0g1 [blue diamonds in
Fig. 2(b)].

FIG. 1. (a) Simplified schematic of the experimental setup. A
transmon (orange) is coupled to two Purcell-filtered resonators.
The readout resonator (green) is connected to room temperature
electronics (description in the main text), while the reset resonator
(blue) is connected to two 50 Ω loads thermalized at base
temperature. (b) Jaynes-Cummings ladder diagram of the trans-
mon-reset resonator energy levels. The purple and light blue
arrows represent the e-f and f0-g1 pulsed coherent drives,
respectively, and the black arrow labeled κ illustrates the
resonator decay process. (c) Illustration of the pulse schemes
used to test the reset protocol. We initialize the qutrit to its ground
state passively or optionally with an unconditional reset, then
prepare the desired state jgi, jei, or jfi with control pulses
(labeled πge and πef). We reset the qutrit by simultaneously
applying flattop e-f (purple) and f0-g1 (light blue) pulses for a
reset time tr. The resulting qutrit state is then measured by
applying a microwave tone to the readout resonator (green).
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To determine Δ̄ef, we prepare the system in je; 0i and
apply a short square e-f π pulse of frequency νef in the
presence of a continuous, resonant f0-g1 drive of amplitude
Vf0g1. For each Vf0g1, we extract the ac Stark shifted
frequency of the e-f transition by finding the minimum of
Pe vs νef with a fit to a Gaussian [Fig. 2(c)]. As before, we
observe a quadratic dependence of Δ̄ef on Vf0g1 [purple
triangles in Fig. 2(b)].
Finally, we perform resonant Rabi oscillation measure-

ments on the e-f and f0-g1 transitions to extract the linear

relation between the drive amplitudes Vef and Vf0g1, and
their corresponding Rabi rates [34] [Figs. 2(d)–2(f)]. The
Rabi oscillations between jf; 0i and jg; 1i are damped due
to the spontaneous decay from jg; 1i to jg; 0i [Fig. 2(f)].
In all the following experiments, we adjust the drive

frequencies such that δef ¼ δf0g1 ¼ 0 to reset the transmon,
leaving only g̃ andΩef as tunable parameters. From Eq. (1),
we derive the time dependence of the population

PH
sjs0ðtÞ ¼

!!!
X

k
hsjÂkjs0ie−iλkt

!!!
2 ð2Þ

of state jsi ∈ fje; 0i; jf; 0i; jg; 1ig during the reset. Here,
js0i is the initial state of the system, λk are the eigenvalues
of Hamiltonian (1) and Âk are operators that depend only
on Hamiltonian (1) [34]. These populations oscillate at
rates 2ReðλkÞ and decay exponentially at rates 2jImðλkÞj.
As the smallest decay rate dominates at long reset times, we
define the reset rate as Γ≡min½2jImðλkÞj&. The reset can be
operated in two regimes [34]. In the low drive-power region
hatched in Fig. 3(a), the eigenvalues λk are purely imagi-
nary: the reset is in an overdamped regime where the qutrit
excited populations decay with no oscillation. When
crossing the critical damping boundary, two eigenvalues
abruptly display a finite real part and the reset enters an
underdamped, oscillatory regime. The reset rate Γ is
bounded by its maximum value κ=3, which it reaches
on a line in parameter space, defining an optimal branch
(solid red line in Fig. 3). The optimal branch intersects the
critical-damping boundary at an exceptional point (black
cross in Fig. 3) where all three eigenvalues are identical
[42]. At this point, the reset has maximum rate and
displays no oscillations. For a given g̃, there is a unique
value of Ωef maximizing the reset rate to Γmaxðg̃Þ. The
parameter configuration then lies on the critical-damping
boundary if g̃ is below its value at the exceptional point

(a)

(b)

(c) (f)

(e)

(d)

FIG. 2. (a) Population Pg vs the frequency νf0g1 of a flattop
f0-g1 pulse, of amplitude Vf0g1, applied to the qutrit initially
prepared in jf; 0i. (b) Measured ac Stark shifts Δ̄f0g1 and Δ̄ef of
the f0-g1 (blue diamonds) and e-f (purple triangles) transitions,
vs amplitude Vf0g1 of the f0-g1 drive. The solid lines are
quadratic fits to the data. (c) Population Pe vs frequency νef
of a flattop e-f π pulse applied on the qutrit, initially prepared in
state je; 0i, in the presence of a continuous f0-g1 drive of
amplitude Vf0g1. (d) Population Pf vs duration t of a resonant
flattop e-f pulse, of amplitude Vef ¼ 8mV. (e) Extracted Rabi
rates Ωef and g̃, of the e-f (purple triangles) and f0-g1 (blue
diamonds) drives versus their amplitude, Vef and Vf0g1. The solid
lines are linear fits. (f) Population Pf vs duration t of a resonant
square f0-g1 pulse, of amplitude Vf0g1 ¼ 444 mV. The pulse
schemes used to acquire the data shown in panels (a), (c), (d), and
(f) are shown as insets, with the f0-g1 and e-f pulse envelopes
represented in blue and purple, respectively. The solid lines in (a)
and (c) are fits to Gaussians. The solid lines in (c) and (f) are fits
to Rabi oscillation models described in Ref. [34].

FIG. 3. (a) Calculated reset rate Γ=κ, vs Rabi rates g̃=κ and
Ωef=κ. The overdamped parameter region is hatched. The red line
shows the values of Ωef maximizing Γ as a function of g̃, and
corresponds to the optimal branch where it is solid. (b)Maximized
reset rate Γmax=κ vs g̃=κ [we follow the red line from (a)]. In (a)
and (b), the parameter configurations A, B, and C at which the
reset dynamic was probed (see main text and Fig. 4) are indicated
with colored symbols and the exceptional point is represented by
a black cross.

PHYSICAL REVIEW LETTERS 121, 060502 (2018)

060502-3



g̃ep ¼
ffiffiffiffiffiffiffiffiffiffi
2=27

p
κ (red dashed line in Fig. 3), and on the

optimal branch otherwise. As g̃ goes below g̃ep, Γmaxðg̃Þ
abruptly drops [Fig. 3(b)]. Therefore, the ability to drive
the f0-g1 transition with g̃ > g̃ep is crucial to achieve
fast reset.
We probed the reset dynamics at the three parameter

configurations labeled A, B, and C in Fig. 3(a). We
initialize the transmon in je; 0i or jf; 0i, apply the reset
drive pulses for a time tr, and then readout the transmon
with single-shot measurements, as illustrated in Fig. 1(c).
Utilizing the single-shot statistics, we correct for the qutrit
state assignment errors, to determine the population of
the qutrit with systematic errors below 0.3% [34]. We first
probed the reset in configuration A (Ωef=2π ¼ 1.5 MHz,
g̃=2π ¼ 2.9MHz), which is on the optimal branch and is
the closest to the exceptional point. During the reset, the
transmon state oscillates between jgi, jei, and jfi while
rapidly decaying to jgi on a timescale of 300 ns, indepen-
dent of the initial state [Figs. 4(a) and 4(b)]. The excited
population Pexc ¼ Pe þ Pf drops to below 1% without
displaying any oscillations [Fig. 4(c)]. The reset dynamics
calculated from Eq. (2) is in excellent agreement with the
data, as shown by the solid lines in Figs. 4(a) and 4(b).
When increasing the e-f drive to Ωef=2π ¼ 3 MHz (B),

the decaying state jg; 1i is populated earlier. As a result, we
observe that Pexc drops faster initially but at a slower rate at
longer times since configuration B is not on the optimal
branch [Fig. 4(c)]. Because this parameter set realizes the
underdamped regime, Pexc displays oscillatory features.
Configuration C (Ωef=2π ¼ 3 MHz, g̃=2π ¼ 4.8MHz) is
on the optimal branch and has higher drive rates than
configuration A. Therefore, Pexc drops faster initially, and
with the same long-time rate, leading to a more efficient
reset. In this configuration, Pexc drops below 1% in only
280 ns, and below measurement errors (∼0.3%) in steady
state [Fig. 4(c)], outperforming all existing measurement-
based and microwave-driven reset schemes by an order of
magnitude [34].
At long reset times, Pexc saturates to a nonzero steady-

state value Psat
exc because of transmon rethermalization. To

fully capture the role of decoherence and rethermalization
during the reset, we perform master equation simulations
using only parameters extracted from independent mea-
surements [34]. The numerical simulations are in excellent
agreement with the data for all probed reset parameter
configurations [solid lines in Fig. 4(c)] and yield Psat

exc ¼
0.2% for configuration C, suggesting that the Psat

exc achiev-
able in our experiment is limited by transmon rethermal-
ization. In this case, the excited population saturates at
Psat
exc ¼ k↑τ, where k↑ ≃ nth=T1 is the rethermalization rate,

with nth the excited population at thermal equilibrium, and
τ ¼

R∞
0 ½PH

eje þ PH
fje&ðtÞdt [34]. Therefore, faster drops of

Pexc, obtained by increasing the drive rates along the
optimal branch, result in lower steady-state excited pop-
ulations [Fig. 4(c)]. Other limitations, such as residual
driving of the g-e transition by the e-f drive, and finite
temperature of the resonator, are negligible for the pre-
sented parameters [34].
High transmon anharmonicity α combined with large

transmon-resonator coupling g allows for reaching larger
Ωef and g̃ without driving unwanted transitions [40].
Driving the reset at higher Rabi rates, we can reach the
optimal branch, where Γ ¼ κ=3, for larger values of κ. As a
result, increasing g, α, and κ maximizes Γ and optimizes the
reset. Increasing these parameters also optimizes speed and
fidelity of qubit readout without degrading the coherence
and thermalization of the qubit, if Purcell filters are used
[32,34]. Therefore, our reset protocol performs best with a
resonator designed for optimal readout. As an illustration,
using the results of the present work, we calculate that
implementing this reset protocol with the readout resonator
of Ref. [32] would reset the qutrit below Pexc ¼ 0.1% in
83 ns, and to a steady-state value Psat

exc ¼ 1.6 × 10−4 in
200 ns, provided that the f0-g1 Rabi rate exceedsffiffiffiffiffiffiffiffiffiffi
2=27

p
κ ≃ 2π × 10 MHz.

In conclusion, we have demonstrated an unconditional all-
microwave protocol to reset the state of a three-level trans-
mon below 1% excitation in less than 280 ns. This reset
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FIG. 4. Qutrit populations Pg;e;f vs reset time tr with reset
parameters in configuration A (see main text), and (a) system
initialized in je; 0i or (b) in jf; 0i. The solid lines in (a) and (b) are
calculated from Eq. (2). (c) Excited population Pexc as a function
of reset time tr, when the qutrit is initialized in je; 0i, shown for
reset parameter configurations A, B, and C. The solid lines are
calculated from a master equation simulation.
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scheme does neither require feedback, nor qubit tunability,
not does it constrain device parameters or populate the
readout resonator with a large number of photons.
Furthermore, the protocol can conveniently be integrated
in an architecture where the qubits are coupled to high
bandwidth, Purcell-filtered resonators, in order to perform
rapid and high-fidelity quantum manipulations [43] and
readout [32,44]. However, in a multiqubit system, the
protocol’s need for high f0-g1 drive power increases the
sensitivity to cross talk and can cause spurious driving of
two-qubit transitions.Addressing these concerns in scaled up
circuits will require improved shielding of drive lines, and
careful selection of resonator and qubit frequencies. We did
not observe any degradation of qubit coherence and oper-
ation fidelity in thepresenceof the reset drive tones [43], but a
systematic study of these effects constitutes valuable future
work.
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Fast and Unconditional All-Microwave Reset of a Superconducting Qubit
Supplemental Material

S1. PERFORMANCE OF RESET PROTOCOLS
FOR SUPERCONDUCTING QUBITS.

We compare experimental implementations of super-
conducting qubit reset protocols by two performance
metrics, the reset rate � and the residual excited state
population P sat

exc
(Fig. S1). P sat

exc
is obtained at the

end of the reset procedure (measurement-based and ⇡-
pulse-based reset) or at steady-state (microwave and flux
driven reset), corresponding in all cases to the lowest
residual excitation reached. For driven reset protocols,
� is defined as the rate at which the qubit approaches
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FIG. S1. Experimentally achieved reset rates � (a)
and residual excited state populations P sat

exc (b) of selected
implementations of superconducting qubit reset protocols
based on: qubit measurement and feedback control (green
squares) [S1–S3], sequential ⇡-pulses to a dissipative state
(blue cross) [S4], qubit frequency tuning via flux pulses (yel-
low triangles) [S5, S6] and all-microwave drive induced dissi-
pation (red circles) [S7].

the ground state. For measurement and ⇡-pulse based
protocols, � satisfies P sat

exc
= e��tp , where tp is the total

protocol duration.
In a recent demonstration of a similar protocol, a trans-

mon coupled to a low-Q cavity is reset by applying a se-
quence of ⇡-pulses on the e-f and f0-g1 transitions [S4].
For a given sample, this alternative scheme leads to a
faster reset. As an example, with our sample it is pos-
sible to apply e-f and f0-g1 ⇡-pulses in 15 ns and 60 ns,
respectively. This would lead to a reset protocol of 75 ns
duration plus a photon leakage time 5/ = 90ns to empty
the cavity. However, unlike our unconditional driven pro-
tocol, the reset fidelity is limited by transmon coherence
and the ⇡-pulse fidelities. This leads to a reset level P sat

exc

an order of magnitude higher than in the present work.

S2. SAMPLE PARAMETERS

The sample design is similar to the one used in
Ref. [S8]. We etch the �/4 coplanar waveguide resonators
and feed-lines from a thin niobium film on a sapphire sub-
strate using standard photolithography techniques. The
transmon capacitor pads and Josephson junctions are
fabricated using electron-beam lithography and shadow
evaporation of aluminum. The parameters of the read-
out circuit (green elements in Fig.1a) and reset circuit
(blue elements in Fig.1a) are obtained from fits to the

!ge/2⇡ 6.343 GHz
↵/2⇡ -265 MHz
nth 17 %
Tge

1 5.5 µs Tef
1 2.1 µs

Tge
2 7.6 µs Tef

2 4.2 µs
T⇤ge

2 3.5 µs T⇤ef
2 2.0 µs

�m/2⇡ -5.8 MHz �r/2⇡ -6.3 MHz
gm/2⇡ 210 MHz gr/2⇡ 335 MHz
!m/2⇡ 4.787 GHz !r/2⇡ 8.400 GHz
!PFm/2⇡ 4.778 GHz !PFr/2⇡ 8.443 GHz
QPFm 91 QPFr 60
Jm/2⇡ 13.6 MHz Jr/2⇡ 20.9 MHz
m/2⇡ 12.6 MHz /2⇡ 9.0 MHz

TABLE I. Sample parameters: From time resolved Ram-
sey measurements we extract the ge transition frequency
!ge/2⇡, and the anharmonicity ↵/2⇡. From resonator trans-
mission spectroscopy we obtain the frequencies, quality fac-
tors and couplings of the measurement (m) and reset (r)
resonators: Purcell filter frequency !PFm,r/2⇡, resonator fre-
quency !m,r/2⇡, quality factor of the Purcell filter QPFm,r and
the coupling rate of the resonator to Purcell filter Jm,r/2⇡. We
obtain the dispersive shifts �m,r/2⇡ by performing resonator
spectroscopy with the qutrit initially prepared in |gi, |ei and
|fi. The coherence times of the qutrit are extracted from time
resolved measurements.
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transmission spectrum of the respective Purcell filter us-
ing the technique and model discussed in Ref. [S8] and
are listed in Table I. We extract the coupling strength
of the transmon to both circuits using the same fitting
procedure while preparing the transmon in its ground
or excited state. The transition frequency !ge/2⇡, the
anharmonicity ↵ and the coherence times TR

2ge
, TR

2ef
are

measured using Ramsey-type measurements. The energy
decay time Tge

1
(Tef

1
) is extracted from an exponential

fit to the measured time dependence of the populations
when preparing the qubit in ether |ei or |fi. The popu-
lation nth of state |ei in thermal equilibrium is extracted
with the Rabi population measurement (RPM) method
introduced in Ref. [S7]. We used a miniature supercon-
ducting coil to thread flux through the SQUID of the
transmon to tune !ge/2⇡.

S3. RABI RATE EXTRACTION

In the fourth calibration step discussed in the main
text, to measure the linear relation between the drive
rate g̃ and drive amplitude Vf0g1, we perform Rabi oscil-
lation measurements (Fig. 2d and f). To analyze these
oscillations, we use a two-level model with loss described
by the non-Hermitian Hamiltonian

Hf0g1 =


i�/2 g̃
g̃⇤ i/2

�
, (S1)

which acts on states |f, 0i and |g, 1i, analyzed in a rotat-
ing frame. The non-Hermitian terms i/2 and i�/2 ac-
count for photon emission and transmon decay from |fi
to |ei, which bring the system to the dark states |g, 0i
and |e, 0i, respectively. Based on this model we derive
an analytical expression for the |fi state population as a
function of time

Pf(t) = e�
(+�)

2 t

����cosh
✓
⌦t

2

◆
+

� �

2⌦
sinh

✓
⌦t

2

◆����
2

,

(S2)
where ⌦ =

p
�(2g̃)2 + (� �)2/4 is real positive or

imaginary depending on the drive rate g̃. Using Pf(t)
we obtain the fit function

fg̃(t) = �Pf(t� t0) + µ, (S3)

where the parameters � and µ account for potential state
preparation and measurement (SPAM) errors and the pa-
rameter t0 accounts for the fact that the gaussian rising
and falling edges of the flat top f0-g1 pulse drive the f0-
g1 transition for a finite time. For each drive amplitude
Vf0g1, we obtain Rabi oscillation data which we fit with
Eq. (S3). To reduce the number of free parameters, we
fit all data sets simultaneously and constrain �, µ, t0 and
 to be the the same for all sets as these parameters are
expected to be independent of Vf0g1.

In the second calibration step discussed in the main
text, we measure the linear dependence of the drive rate

⌦ef on the drive amplitude Vef , by performing Rabi os-
cillation measurements (Fig. 2b and d). We fit the time-
dependence of the population Pe with the function

f⌦ef (t) =
1

2
e��at

⇤
✓
1� e��bt

⇤
cos

✓
⌦eft⇤

2

◆◆
, (S4)

where t⇤ = t � t0 o↵sets the time t by t0 to account
for the fact that the rising and falling edges of the e-f
pulse drive the e-f transition for a finite time. The fit
parameters �a and �b account for transmon relaxation to
|gi and decoherence in the {|ei , |fi} subspace, respec-
tively. We verified numerically that Eq. (S4) is a good
approximation of the time dependence of Pe during e-f
Rabi oscillations and that it yields an unbiased estimate
of ⌦ef , by comparing it to the result of a master equation
simulation. Similarly to the f0-g1 Rabi rate calibration,
we simultaneously fit the Rabi oscillation data sets ob-
tained for all probed Vef , constraining the fit parameter
t0, �a and �b to be the the same for all sets.

S4. RESET OPERATING REGIMES

The discussion about the reset operating regimes is
based on Eq. (2) in the main text. To derive this equa-
tion, we start with the expression for the population

PH

s|s0(t) =
��hs| e�iHt |s0i

��2 ,

of state |si 2 {|e, 0i , |f, 0i , |g, 1i}, where s0 is the initial
state. We introduce the diagonalization matrix

T =
X

k

|�ki hk| ,

where |�ki are the eigenvectors of H and the vectors |ki
form an orthonormal basis in which D = T�1 · H · T
is diagonal. Note that, since H is non-Hermitian, its
eigenvectors |�ki are not orthogonal and T is not unitary.
We then obtain

PH

s|s0(t) =
��hs|Te�iDtT�1 |s0i

��2

=

������

X

jklm

hs|Tjk |ji hk| e�iDtT�1

lm
|li hm|s0i

������

2

=

������

X

k

hs|

0

@
X

jm

TjkT
�1

km
|ji hm|

1

A |s0i e�i�kt

������

2

.

We recover Eq. (2) by defining

Âk =
X

jm

TjkT
�1

km
|ji hm| .

As discussed in the main text, we can define operating
regimes of the reset by studying the eigenvalues �k of
Hamiltonian (1). We set �ef = �f0g1 = 0, both to simplify
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the analysis and to ensure that the full three-level trans-
mon is reset. To reduce the notations, we tackle an equiv-
alent problem and solve for the eigenvalues ⇤k = i2�k/
of the renormalized Hamiltonian

H̃ =

2

4
0

p
⌦ 0

�
p
⌦ 0

p
G

0 �
p
G �1

3

5 , (S5)

where the dimensionless drive powers ⌦ = (2⌦ef/)2 and
G = (2g̃/)2 are real and positive. Hamiltonian (S5) has
the characteristic polynomial

P
H̃
(X) = X3 +X2 + (G + ⌦)X + ⌦, (S6)

whose roots are the eigenvalues ⇤k. The discriminants of
this cubic equation are

�0 = 1� 3(G+ ⌦), (S7)

�1 = 2� 9(G� 2⌦). (S8)

Note that �0 is a linear function of G + ⌦, so (��0)
indicates the amount of total drive power. Conversely,
�1 indicates the level of asymmetry between the power
of the two drives. Defining the sub-roots

C± =
3

s
�1 ±

p
�2

1
� 4�3

0

2
, (S9)

we find the expression for the eigenvalues

⇤k = �1

3

�
1 + ⇠kC+ + ⇠�kC�� , (S10)

where k 2 {�1, 0, 1}, and ⇠k = exp [i2⇡k/3] are the cubic
roots of unity. A consequence of Eq. (S10) is that the
reset rate is bounded by �/ ⌘ min |Re(⇤k)|  1/3. We
can distinguish three cases based on the sign of �2

1
�4�3

0
.

Under-damped regime: �2

1
> 4�3

0
. In this case, the

sub-roots C+ and C� are real and distinct from each
other. Therefore, the eigenvalues ⇤k are complex, with a
non-zero imaginary part: the populations display oscilla-
tions during the reset. Depending on the sign of �1, we
have

�/ =

8
><

>:

1

3

⇥
1� 1

2
(C+ + C�)

⇤
< 1

3
, if �1 > 0

1

3
[1 + (C+ + C�)] < 1

3
, if �1 < 0

1

3
, if �1 = 0.

(S11)

The reset rate is thus maximized (� = /3) only when
the drives are strong enough (�0  0) and well balanced
(�1 = 0). The conditions �0  0 and �1 = 0 define the
optimal branch (solid red line in Fig. 3a).

Over-damped regime: �2

1
< 4�3

0
. In this low power

regime (�0 has to be positive), C+ and C� are complex
conjugates of each other. As a result, all eigenvalues
⇤k are purely real and the qutrit populations show no
oscillatory features during the reset. In this regime, the
reset rate can be expressed as

�/ =
1

3


1�

p
�0

✓
cos

✓

3
+
p
3 sin

✓

3

◆�
,

where ✓ = arccos(�1/2�
3/2

0
) is the argument of (C+)3,

and ranges from 0 to ⇡. Because �0 > 0, we have the
strict inequality � < /3, which means that the optimal
branch does not cross the over-damped region.

Critical-damping: �2

1
= 4�3

0
. When this equality

holds, we have C+ = C� = 3
p
�1/2 =

p
�0, and the

eigenvalues are real. We parametrize the critical damp-
ing equality by introducing the variable � = 3

p
�1/2. We

then have �0 = �2 and C± = �, which leads to

�/ =

(
1

3
(1� �) , if � � 0

1

3
(1 + 2�) , otherwise.

(S12)

Inverting Eqs. (S7) and (S8) we obtain a parametrization
of the critical damping boundary region

G(�) =
8

27
(1� 3

4
�2 � 1

4
�3),

⌦(�) =
1

27
(1� 3�2 + 2�3),

where � ranges from �1/2 to 1, to keep �, G and ⌦
positive.

For � = 0, we have � = /3. This point is an excep-
tional point, where all eigenvalues are identical (Eq. (S10)
with C± = 0) and the eigenvectors coalesce [S9]. This
point (G = 8/27 and ⌦ = 1/27, or equivalently, g̃ =
g̃ep =

p
2/27 and ⌦ef = ⌦ef,ep =

p
1/108) is the only

one that maximizes � without displaying oscillatory fea-
tures of the populations.

For a given value of G, there is a unique ⌦opt that
maximizes the reset rate to �max(G). For G � 8/27,
according to Eq. (S11), the reset rate is maximized by
chosing ⌦ such that �1 = 0. Using Eq. (S8), we find that
⌦opt(G) = G/2 � 1/9. The parameters are then on the
optimal branch and �max(G) = /3. For G < 8/27, the
reset rate is maximized by chosing ⌦ such that �2

1
= 4�3

0

(critical damping) and �1 > 0 (upper branch). This can
be proven by showing that @⌦� � 0 in the over-damped
region, and that @⌦� and �1 have opposite signs in the
under-damped region. Using these results, we obtain

�max(G) =
2

3


1� cos

✓
1

3
arccos

✓
1� 27G

4

◆◆�
.

The derivative of �max diverges as G ! 8/27 from the
left side (Fig. 3b). If one cannot drive the f0-g1 tran-
sition with enough power to get G > 8/27, or equiva-
lently g̃ >

p
2/27, �max is abruptly reduced. To ob-

tain a fast reset, one should therefore target a value
of  that is as high as possible within the limit that
 < g̃max

p
27/2 ' 3.67g̃max, where g̃max is the maxi-

mum f0-g1 drive rate experimentally achievable, without
driving unwanted transitions [S10]. This ensures that the
maximum reset rate � = /3 is high and always attain-
able.
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FIG. S2. (a) Schematic of the pulse scheme used to test
the unconditional reset protocol. (b) Schematic of the pulse
scheme used to record reference single-shot counts. (c) Subset
of 500 reference traces displayed in the u-v plane, when the
qutrit is prepared in state |gi (blue dots), |ei (red dots) or |fi
(green dots). The assignment regions labeled g, e and f are
shaded in blue, red and green, respectively, and are separated
by a gray line at their boundaries. (d) Sub-sample of 1000
traces acquired during the pre-selection pulse, projected in
the principal component plane c1-c2. Here c1 and c2 are the
two first principal components of the set of traces. The red
dashed line indicates the threshold for selection/rejection of
traces. The plots on the top or right axes of (c) and (d)
show histogram counts of the traces. The solid lines in these
plots correspond to the density of the marginal probability
distributions of the traces, scaled to match the histograms.

S5. SINGLE-SHOT READOUT

To study the reset dynamics (Fig. 4), we pre-reset the
transmon with an unconditional reset, and prepare it in
state |e, 0i or |f, 0i with a sequence of ⇡-pulses (Fig. S2a).
Next, we apply the reset pulses for a duration tr and ap-
ply a microwave tone at the readout resonator to readout
the transmon. We record the I and Q quadratures of the
readout signal for a duration of tm = 120 ns starting at
the rising edge of the readout tone. We refer to each
recorded readout signal as a single-shot trace S.

To define an assignment rule which discriminates the
transmon state based on a single-shot trace, we collect

|gi |ei |fi
g 98.2 2.5 2.4
e 0.9 95.7 4.6
f 0.9 1.8 93.0

TABLE II. Reference assignment probability matrix of identi-
fying prepared states (columns) as the measured states (rows).
The diagonal elements show correct identification, the o↵-
diagonal elements misidentifications.

reference sets of 40000 single-shot traces obtained with
the transmon initialized in states |gi, |ei or |fi. State
initialization is performed using a pre-selection readout
pulse that heralds the transmon in its ground state (de-
tails discussed later in this section) followed by control
⇡-pulses to prepare states |ei and |fi (Fig. S2b). We in-
tegrate each reference single-shot trace with weight func-
tions w1 and w2, to calculate the integrated quadra-
tures u =

R
tm

0
S(t)w1(t)dt and v =

R
tm

0
S(t)w2(t)dt, in

post-processing. We choose w1 and w2 such that they
maximize the distinguishability between the three qutrit
states. For each prepared state |pi, the set of integrated
traces ~x = (u, v) forms three clusters in the u-v plane
(Fig. S2c) following a trimodal Gaussian distribution of
mixture density

fp(~x) =
X

s

As,p

2⇡
p
|⌃|

e�
1
2 (~x�µs)

>·⌃�1·(~x�µs). (S13)

We extract the parameters As,p, ⌃ and µs with maxi-
mum likelihood estimation. Based on these parameters,
we define regions in the u-v plane used to assign the re-
sult of the readout trace: if an integrated trace ~xi is in
the region labeled m, we assign it state m (Fig. S2c).
By counting the number of traces assigned the value m
when the qutrit was prepared in state |si, we estimate
the elements Rm,s = p(m| |si) of the reference assign-
ment probability matrix R (see Table II).
To extract the qutrit state populations P =

(Pg, Pe, Pf) after a reset of duration tr, we also repeat
the scheme illustrated in Fig. S2a 40000 times, and record
single-shot traces for each run. As for the reference sets,
the assignment probability Mm is estimated by counting
the number of traces assigned the value m and follows

Mm = p(m|P ) =
X

s

Rm,s · Ps, (S14)

which can be expressed as M = R · P . A simple ap-
proach to estimate the population P of the qutrit is to
set P = M . This approach is, however, sensitive to as-
signment errors due to readout imperfections: P = M
holds true only if Rm,s = �m,s. To account for read-
out errors, we invert Eq. (S14) and set P = R�1 · M .
However, this procedure relies on the accurate charac-
terization of R, which is sensitive to errors in state-
preparation for the reference trace sets. The qutrit there-
fore needs to be initialized in |gi before applying the refer-
ence readout tone, with a residual excitation that can be
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bounded, and that is ideally smaller than that of the un-
conditional reset protocol presented in this manuscript.
As mentioned earlier in this section, to do so, we pre-
reset the transmon with our protocol, then herald the
ground state of the transmon with a pre-selection read-
out pulse (Fig. S2b). We record single-shot traces dur-
ing the last 72 ns of the pre-selection pulse ther. The
pre-selection traces form two clusters, corresponding to
ground and excited traces, that are maximally separated
along their first principal component axis (Fig. S2c). We
model the distribution of the first principal component
c1 of the traces with a bimodal Gaussian distribution
and extract its parameters with maximum-likelihood es-
timation. Based on this model, we calculate a threshold
value cthr such that p(c1 > cthr|exc) = 10�5. Selecting
only traces with c1 > cthr heralds the ground state of
the transmon. On the set of selected traces, the residual
excitation of the transmon at the rising edge of the ref-
erence readout tone is therefore dominated by transmon
thermalization, which occurs at rate k"/2⇡ = 5kHz in
our sample. We use the same waiting time tgap between
initialization and readout to characterize the uncondi-
tional reset dynamics (Fig. S2a) and the reference trace
set (Fig. S2b). As a result, thermalization occuring dur-
ing this time can be seen as a source of readout error,
which is compensated for. State preparation errors are
then mostly explained by transmon thermalization oc-
curing during the pre-selection, which we can bound by
k"ther ' 0.25%.

In conclusion, the corrected single-shot readout
method we developed su↵ers from state preparation er-
ror resulting in a systematic under-estimation of the ex-
tracted populations, bounded by 0.25%. This residual
error is small compared to the populations extracted
during the unconditional reset for most measured points
(Fig. 4c); this readout method is therefore suitable for
the analysis presented here.

S6. LIMITATIONS OF THE RESET PROTOCOL

The steady-state excited population P sat

exc
which can

be reached with the unconditional reset is constrained
by three e↵ects: transmon rethermalization, finite tem-
perature of the reset resonator, and o↵-resonant driving
of the g-e transition with the e-f drive. These constraints
are quantitatively modelled in our master equation sim-
ulation, but they can also be discussed qualitatively to
understand their e↵ects on the performance.

The e↵ective temperatures of superconducting qubits
are typically higher than the base temperature of the di-
lution refrigerator TBT, which implies that the thermal
excitation rate k" of the qubit is higher than expected
from TBT [S11]. At equilibrium, thermalization competes
against decay and the qubit has an equilibrium excited
population nth ' k"T1 (in the limit where nth ⌧ 1).
Similarly, for the unconditional reset protocol, the com-
petition between thermalization and reset rate yields the

steady-state excitation population P sat

ecx
⇠ k"/�. We

model thermal excitations as quantum jumps to derive
an analytical expression for P sat

ecx
. In steady state, the

probability of a transmon rethermalization event (jump
from |gi to |ei) occurring between times �t and �t+ dt
is (1 � P sat

ecx
)k"dt ' k"d⌧ . If such an event happens at

time �t, the excited population a time 0 is [PH

e|e+PH

f|e](t)

as defined from Eq. (2) (main text). Integrating over
all possible time windows for a rethermalization jump to
occur, we obtain P sat

ecx
=

R
+1
0

[PH

e|e + PH

f|e](t)k"dt = k"⌧ ,

which tends towards k"/� for large drive rates. Using this
method, we calculate P sat

ecx
= 0.26%, 0.46% and 0.34%

for configuration A, B and C, respectively. The close
agreement of the calculated P sat

ecx
with its measured and

simulated values for all parameter configurations further
supports our interpretation that transmon rethermaliza-
tion is the dominant factor limiting the final population
after reset.
In the level diagram of Fig. 1b, the black arrow labelled

, connecting |g, 1i to |g, 0i represents the decay of the
reset resonator. A finite temperature Trr of the reset
resonator can be accounted for by a transition in the
opposite direction with rate  · exp[�~!r/kbTrr]. If the
unconditional reset is dominated by this rate, the entropy
of the transmon and of the resonator equalize and the
temperature of the transmon reaches Trr!ge/!r in steady-
state.
Driving the e-f transition during unconditional reset

broadens also the g-e transition. The e-f drive, being de-
tuned from the g-e transition by approximately the an-
harmonicity ↵ of the transmon, also drives the g-e tran-
sition which leads to e-f drive induced thermalization. A
trade-o↵ between speed and reset fidelity has to be made
when this e↵ect is limiting.
The parameters we chose to optimize the reset are not

the cause for the relatively large rethermalization rate
k"/2⇡ ' 5 kHz measured in our sample (nth = 17% and
T1 = 5.5µs). Indeed, Purcell decay through both res-
onators would allow for relaxation times up to TPurcell

1
=

370µs [S12]. In addition, we observed thermal excitation
levels as low as nth = 0.3% in a sample with similar
design and parameters in previous work [S8]. There-
fore, with improved fabrication processes we expect to
be able to decrease the rethermalization rate down to
k"/2⇡ ' 0.2 kHz (nth < 5% and T1 ⇠ 30µs). With such
a rate, transmon rethermalization would not limit the
reset any more and we expect to reach saturation lev-
els as low as P sat

ecx
= 2 ⇥ 10�4 with the current sample

parameters.

S7. MASTER EQUATION SIMULATION

To model the transmon qutrit reset process numeri-
cally, we start with the Hamiltonian of a transmon dis-
persively coupled to a high bandwidth resonator. We add
the two drive-induced couplings required for the uncondi-
tional reset protocol, i.e. a Rabi drive between the |ei , |fi
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states of the transmon combined with an e↵ective cou-
pling g̃ between the |f, 0i , |g, 1i states of the transmon-
resonator system [S10, S13]. We represent the transmon
as an anharmonic oscillator with annihilation and cre-
ation operators b̂, b̂† [S14] which we truncate at the sec-
ond excited state |fi and denote the annihilation and
creation operators of the reset resonator â and â†, re-
spectively. In a frame rotating at !r for the resonator
and !ge +↵/2 for the transmon, the transmon-resonator
system is described by the Hamiltonian

Ĥ = � ↵

2
b̂†b̂+

↵

2
b̂†b̂†b̂b̂+ 2�râ

†âb̂†b̂

+
g̃p
2
(b̂†b̂†â+ â†b̂b̂) +

⌦efp
2
(b̂ ei↵t/2 + b̂†e�i↵t/2),

(S15)
where ↵ is the transmon anharmonicity, �r the disper-
sive coupling strength between the transmon and the
resonator, and ⌦ef is the Rabi rate between the |ei , |fi
states of the transmon. The readout resonator is omit-
ted from the Hamiltonian since it does not a↵ect the reset

process and the induced static Lamb shifts are implicitly
included in the parameters.
Numerical results are obtained by initializing the

sytem in the |e, 0i state and integrating the master equa-
tion

⇢̇ =� i[Ĥ, ⇢]

+ D[â]⇢+ intD[â]⇢

+ �1ge(1 + nth)D [|gi he|] ⇢+ �1genthD [|ei hg|] ⇢
+ �1ef (1 + nth)D [|ei hf |] ⇢+ �1efnthD [|fi he|] ⇢

+
��ge
2

D [|ei he|� |gi hg|] ⇢

+
��ef
2

D [|fi hf |� |ei he|] ⇢,
(S16)

where D[Ô]• = Ô • Ô† � {Ô†Ô, •}/2 denotes the dis-
sipation super-operator, int the internal decay rate of
the resonator, �1nm = 1/T1nm the decay rates of the
transmon between the |ni , |mi states, ��nm = 1/2T nm

1
�

1/T nm

2
the dephasing rates between the |ni , |mi states

of the transmon and nth the thermal population of the
transmon qubit in steady state.
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