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Squeezing and quantum state engineering with Josephson
travelling wave amplifiers
Arne L. Grimsmo1 and Alexandre Blais1,2

We develop a quantum theory describing the input–output properties of Josephson traveling wave parametric amplifiers. This
allows us to show how such a device can be used as a source of nonclassical radiation, and how dispersion engineering can be used
to tailor gain profiles and squeezing spectra with attractive properties, ranging from genuinely broadband spectra to “squeezing
combs” consisting of a number of discrete entangled quasimodes. The device’s output field can furthermore be used to generate a
multi-mode squeezed bath—a powerful resource for dissipative quantum state preparation. In particular, we show how it can be
used to generate continuous variable cluster states that are universal for measurement based quantum computing. The favorable
scaling properties of the preparation scheme makes this a promising path towards continuous variable quantum computing in the
microwave regime.
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INTRODUCTION
Microwave quantum optics is an emerging field where artificial
atoms, such as quantum dots,1 spin ensembles2 or superconduct-
ing quantum circuits3 are placed in engineered electromagnetic
environments. Strong light–matter interaction can be achieved by
confining the electromagnetic field in microwave resonators3, 4 or
one-dimensional waveguides.5, 6 The flexibility offered by micro-
wave engineering allows experimentalists to go beyond the limits
of conventional quantum optics in many ways. Examples include
reaching the so-called ultrastrong coupling regime of light–matter
interaction,7 and using nonlinear microwave resonators to
simulate relativistic quantum effects.8

A recent advancement in microwave quantum optics is the
bottom-up design of nonlinear, one-dimensional metamaterials
with strong photon–photon interactions and engineered disper-
sion relations.9–11 The nonlinearity in these metamaterials is
provided by Josephson junctions embedded in a transmission
line, with photon–photon interactions activated by a strong pump
tone through a parametric four-wave mixing process. These
devices have been dubbed Josephson travelling wave parametric
amplifiers (JTWPAs),10 and are analogous to one-dimensional χ(3)

nonlinear crystals.12

The development of JTWPAs is motivated by their potential use
as amplifiers for readout of solid-state qubits. The extremely high
measurement fidelity necessary for fault-tolerant quantum com-
puting requires amplifiers with added noise near the fundamental
quantum limit.13, 14 A key advantage to the JTWPA design is the
operational bandwidth, which is in the GHz range. This is in
contrast to other near-quantum-limited microwave amplifiers
based on resonant cavity interactions, which typically have
bandwidths of a few tens of MHz.15–17 An amplifier operating
near the quantum limit is, however, very different from a classical
amplifier. In particular, quantum-limited phase preserving ampli-
fication implies the presence of entanglement between the

amplified signal and an “idler” signal in a two-mode squeezed
state.13, 18 This motivates an alternative viewpoint on the JTWPA:
besides using the device to amplify a signal of interest, it can also
be viewed as a source of nonclassical radiation. The large
bandwidth and simple on-chip integration with coherent quan-
tum systems, such as superconducting qubits and microwave
resonators, makes the JTWPA an intriguing new resource for
generating quantum radiation with potential applications in
metrology and quantum information processing, amongst
others.19–26

In this paper, we show how the inherent flexibility in the
bottom-up JTWPA construction allows us to tailor the quantum
properties of the output field leaving the device. In particular, we
show how to shape the profile of the broadband squeezing
spectrum of the output field, and how to cut holes in this
spectrum such that some frequency ranges are unaffected by the
nonlinear interaction. This type of spectrum engineering is useful
for applications of squeezing to quantum informaton processing
tasks, for example to avoid unwanted quantum heating.27

We subsequently demonstrate how the JTWPA can be used as a
resource for dissipative quantum state preparation. Dissipative
quantum state preparation has over the last years emerged as an
alternative to preparation of entangled states using coherent
Hamiltonian28 or gate-based methods.29 It has been shown that
universal quantum computing can be achieved through dissipa-
tive processes alone30 and, in a similar vein, that highly correlated
states, such as stabilizer states and projected entangled pair states
can be created as stable steady states of dissipative processes.30, 31

In this paper, we show that broadband squeezed radiation, such
as the radiation emitted by a JTWPA, is a particularly potent
resource for dissipative quantum state preparation. The emitted
radiation generates a multimode squeezed vacuum, which can be
used to drive quantum systems placed at the source’s output into
entangled states through correlated photon absorption and
emission processes. We show that by engineering such a
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squeezed bath, one can produce pairs of entangled qubits as well
as continuous variable (CV) cluster states—the latter being
universal resource states for measurement-based quantum
computing. The preparation schemes are simple, requiring no
Hamiltonian interactions or complicated reservoir engineering. By
exploiting the large bandwidth of the JTWPA, the process can
furthermore be implemented in a very hardware-efficient manner.
The purely dissipative nature of the preparation process

distinguishes our proposal from similar approaches for generating
cluster states in the optical regime.32–37 A distinct advantage of a
dissipative scheme is that it relaxes constraints on locality, which
might allow for a more modular architecture that avoids spurious
interactions and increases scalability.38

Although we focus on JTPWAs as squeezing sources in this work,
due to their design flexibility and large bandwidth, we emphasize
that the dissipative quantum state preparation schemes we
develop are relevant for any type of broadband squeezing source
that can be integrated with coherent quantum systems, such as
other types of traveling wave amplifiers,39, 40 impedance
engineered Josephson parametric amplifiers,41 squeezing sources
based on reservoir engineering,42 or the nonclassical radiation
emitted by an ac-biased tunnel junction.43, 44

RESULTS
To describe the JTWPA’s squeezing properties, we first need a
quantized theory of its dynamics. Classical treatments of a JTWPA
are presented in refs 9, 11, 45. In the following, we give a
Hamiltonian treatment of the nonlinear dynamics, taking into
account dispersion and the continuum nature of the electro-
magnetic field in the waveguide.
The device we consider in this paper is depicted in Fig. 1. It

consists of a series of identical coupled Josephson junctions with
Josephson energies EJ and junction plasma frequencies ωp. Each
junction is coupled to ground by a passive, dissipationless
element with impedance Z(ω), which is left arbitrary for now. By
engineering Z(ω) one can modify the dispersion relation of waves
propagating through the device as shown in ref. 9. We show
below how this can be used to tailor the squeezing properties of
the output field leaving the device. Note that other variants of the
JTWPA device where the Josephson junctions are replaced by
SQUIDs have recently been discussed.46, 47 We do not consider
such modifications here, but the general approach we develop
below can be used to formulate a quantum theory also in these
cases.
In experimental realizations, JTWPAs have several thousand

junctions with a unit cell distance much smaller than the relevant
wavelengths.10, 11 One can therefore approximate the device with
a continuum description (formally taking the unit cell distance, a,
to zero). We furthermore assume that the JTWPA is coupled to
identical, semi-infinite and impedance matched transmission lines
to the left and the right, and we neglect any reflection of the field
at the interfaces between the different sections.
As shown in detail in Supplemental Methods 1, a continuum

limit Hamiltonian for the system can be written Ĥ ¼ Ĥ0 þ Ĥ1,
where Ĥ0 is a linear contribution containing all terms up to second
order in the fields, and Ĥ1 is a nonlinear contribution due to the
Josephson junction potential. The linear Hamiltonian can be
diagonalized in terms of a set of frequency modes, following an
approach introduced by Santos and Loudon in ref. 48, leading to
the form

Ĥ0 ¼
X
ν¼L;R

Z1

0

dω�hωâ†νωâνω; ð1Þ

where ½âνω; â†μω0 � ¼ δνμδ ω� ω0ð Þ, and we have omitted the zero-

point energy. The label v ∈ {L,R} labels left- and right-moving
modes, respectively.
For the nonlinear Hamiltonian, we systematically perform a

series of approximations that are ultimately analogous to those
used in the classical treatment given in refs 9, 11, 45. A quantized
analog of the classical equation of motion found in previous work
is shown to be a limiting case of a more general theory. As
detailed in Methods, for a classical right-moving monochromatic
pump at a frequency ΩP, and neglecting terms that are smaller
than second order in the pump, we can write the non-linear
Hamiltonian in terms of three distinct contributions

Ĥ1 ¼ ĤCPM þ ĤSQ þ HSPM; ð2Þ
where ĤCPM describes cross-phase modulation due to the pump,
ĤSQ describes broadband squeezing, and HSPM is a classical
Hamiltonian describing self-phase modulation of the pump.
Explicit expressions for these three Hamiltonians in terms of the
frequency modes âνω are given in Methods.
As shown in Methods, we find in a scattering limit where the

initial and final times of the problem are taken to minus and plus
infinity, respectively; the following is the expression for the
asymptotic Heisenberg picture output field

âoutRω ¼ ei 2 βj j2kωþΔk ωð Þ=2½ �z u ω; zð ÞâRω þ iv ω; zð Þâ†
R 2Ωp�ωð Þ

� �
; ð3Þ

where the functions u(ω, z) and v(ω, z), defined in Eqs. (28) and
(29), satisfy u ω; zð Þj j2 � v ω; zð Þj j2 ¼ 1, and

Δk ωð Þ ¼ 2kp � kω � k2Ωp�ω þ 2 βj j2 kp � k2Ωp�ω � kω
� �

; ð4Þ
is the phase mismatch, including a nonlinear correction due to to
the cross- and self-phase modulation of the pump. Here, kω is the
wave-vector, which due to dispersion inside the JTWPA section
has a non-linear dependence on ω:

kω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iωz�1 ωð Þl
1� ω2=ω2

P

s
; ð5Þ

where l is the inductance per unit length of the JTWPA section,
ωP is the junction plasma frequency and z−1(ω) = Z −1(ω)/a is the
admittance to ground per unit cell. The parameter β = IP/4Ic in Eq.
(4) is the dimensionless amplitude of the classical pump,

Fig. 1 Josephson traveling wave parametric amplifier. A chain of
identical coupled Josephson junctions, with Josephson energy EJ
and plasma frequency ωp, are coupled in series. Each junction is
furthermore coupled to ground by a passive, dissipationless
element described by an impedance Z(ω). By designing this
impedance one can engineer the dispersion relation for waves
traveling through the device. A strong right-moving pump actives a
four-wave mixing process through the Josephson potential, which
can be used to generate squeezed light
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expressed in units of the Josephson junction critical current
Ic (see Methods for further details). As Eq. (5) clearly shows, the
dispersion relation, and consequently the phase mismatch, can be
tuned by engineering the admittance to ground in the JTWPA unit
cells. In particular, if the impedance Z(ω) describes a resonant
mode, a bandgap will open close to the resonance frequency. The
behavior of the dispersion relation close to a bandgap is illustrated
in Fig. 2. Note that if dispersion is neglected, Δk(ω) = 0, Eq. (3)
reduces to the standard input–output relation for a lossless
parametric amplifier (see, e.g., ref. 49).

Engineering nonclassical radiation
The quantum input–output theory developed above allows us
predict features of the JTPWA’s output field, such as the device’s
gain profile and output field squeezing spectrum. In this section,
we show how output spectra can be tailored through dispersion
engineering. We focus first on an ideal, quantum-limited device
and discuss the effect of loss below.
From Eq. (3), the JTWPA’s amplitude gain is given by u(ω, z), and

we define the power gain as G ω; zð Þ ¼ u ω; zð Þj j2 refs 9, 13, 45. This
function grows exponentially with z for small phase mismatch,
Δk ωð Þ ’ 0, but is only of order one if the phase mismatch is large
(see ref. 9 and Methods). The squeezing of the JTWPA’s output
field is manifested in correlations between frequencies ω and
2ΩP −ω, symmetric around the pump frequency. We define the
squeezing spectrum of the device as50

SR ω; zð Þ ¼
R1
0
dω0 ΔŶθ

RωΔŶ
θ
Rω0

� �

¼ 2NR ω; zð Þ þ 1� 2 MR ω; zð Þj j;

ð6Þ

where we have defined quadratures Ŷθ
Rω ¼ i eiθ=2âout†Rω � e�iθ=2âoutRω

	 

,

with fluctuations ΔŶRω ¼ ŶRω � ŶRω
� �

and θ the squeezing angle.
The parameters NR(ω, z) and MR(ω, z) introduced on the right hand
side of Eq. (6), are defined in Eqs. (31) and (32) and can be
interpreted as the thermal photon number and a squeezing
parameter for the right-moving field, respectively.
The gain and the squeezing at the output depends strongly on

the phase mismatch Δk(ω). The phase mismatch can, however, be
compensated for by tuning Z(Ωp), as this allows for tuning the
pump wavevector kp ¼ kΩp according to Eq. (5). As was proposed
theoretically in ref. 9 and demonstrated experimentally in refs. 10,
11, it is possible to tune the phase mismatch to zero at the pump
frequency, Δk Ωp

� �
’ 0, and greatly reduce it across the whole

JTWPA bandwidth. This is done by placing LC (or transmission
line) resonators with resonance frequency ωr0 ’ Ωp regularly

along the JTWPA transmission line, a technique referred to as
resonant phase matching (RPM).9

The effect of RPM on the gain and squeezing spectra is
illustrated in Fig. 3 for a simulated device similar to what has been
realized experimentally in refs 10, 11: The device length was
chosen to be 2000 unit cells with characteristic impedance Z0 =
50Ω, critical current Ic = (2π/Φ0)EJ = 2.75 μA, dimensionless pump
strength β = 0.125 and pump frequency Ωp/2π = 5.97 GHz. The
ratio of the pump frequency to the junction plasma frequency was
Ωp/ωp = 8.2 × 10−2. The green lines in Fig. 3a show the gain profile
and squeezing spectrum of the output field for the device without
RPM, while the blue lines show results for an identical device
where RPM has been used to tune Δk(Ωp) = 0. The circuit
parameters for the LC resonator are Cc = 10 fF, Cr = 7.0 pF, Lr =
100 pH, giving a resonance frequency of ωr0/2π = 6.0 GHz.
Two-mode squeezing has applications for entanglement gen-

eration,19, 20 quantum teleportation,21 interferometry,22 creation
of quantum mechanics free subsystems,23 high-fidelity qubit
readout24, 25 and logical operations,26 amongst others. A broad-
band squeezing source such as the JTWPA has a great advantage
for scalability, as tasks can be parallelized with many pairs of far-
separated two-mode squeezed frequencies using a single device.
It is, however, not necessarily desirable to have squeezing at all
frequencies over the operational bandwidth as this might lead,
e.g., to unwanted quantum heating.25, 27

Fig. 2 Engineered bandgaps. Illustration of the disperion relation
when Z(ω) (illustrated in the inset) describes a single resonant mode
at a frequency ωr linearly coupled to the flux field in every unit cell.
A bandgap opens up around the resonance frequency, close to
6 GHz in this example. The width of the bandgap is set by the
coupling capacitance Cc shown in the inset

Fig. 3 Gain profile and squeezing spectra. Output field properties of
a JTWPA with 2000 unit cells and parameters given in the text. a The
green lines are for a device without RPM. The blue lines are for a
device with identical parameters, but where RPM has been used to
tune Δk Ωp

� �
’ 0. The orange lines show a device where in addition

to RPM, a second resonance has been placed at 9 GHz punching two
symmetric holes in the gain and squeezing spectra. b A JTWPA with
19 additional resonances used to generate a “squeezing comb.” The
choice of impedance to ground for each simulated device is
illustrated below with color codes corresponding to the plots
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Building on the RPM technique, we consider placing additional
resonances in each unit cell with resonance frequencies ωrk away
from ΩP. This leads to a bandgap and a divergence in k(ω) close to
each resonance ωrk, as illustrated in Fig. 2. The huge phase
mismatch close to these resonances prohibits any parametric
interaction at ω ’ ωrk and ω ’ 2Ωp � ωrk , effectively punching
two symmetric holes in the gain and squeezing spectra. This is
illustrated by the orange lines in Fig. 3a, where a single additional
resonace has been placed at ωr1 = 9.0 × 2π GHz. The parameters
are otherwise as before, except that the second LC resonator is
chosen to have twice the coupling capacitance, 2Cc. This choice
serves to illustrate how the width of the hole in the spectrum is
determined by the coupling capacitance to the resonator, as is
clearly seen when comparing the holes at ωr0 and ωr1.
In Fig. 3b, we demonstrate how this technique can be used to

engineer a “squeezing comb” where there is considerable gain
and squeezing only for a discrete set of narrow quasimodes. With
a larger number of closely spaced resonance frequencies—either
using individual lumped LC circuits or the resonances of a multi-
mode transmission line resonator—it is possible to have phase
matching only over narrow frequency bandwiths. In Fig. 3b, we
show the gain profile and squeezing spectrum where 19
additional resonances at ωrk =ωr0 + k ×ωr0/20, k = 1, 2,…,19 has
been used to create a squeezing comb with 38 quasimodes.
Slightly different parameters were chosen for this device, to get
similar gain and squeezing profiles as before: Z0 = 14Ω, I0 = 2.75 μA,
β = 0.069, while the additional coupling capacitances were chosen
to be 3.0Cc. Note that it is not necessary to place the LC resonators
in every unit cell in an experiment. In practice, RPM has been
realized by repeatedly placing identical LCs every few unit cells.10

For certain applications, it might also be of interest to have a
squeezing spectrum with a flatter profile than what is shown in
Fig. 3. This can be achieved by suitably engineering the phase
mismatch. In Fig. 4, we show a device where RPM has been used
to tune Δk(ω) = 0 for ω=2π ’ 1:8 GHz, with the pump frequency
close to the resonance frequency at ωr0/2π = 6 GHz. The simulated
device otherwise has parameters Z0 = 60Ω, I0 = 1.75 μA, β = 0.113.
This choice of dispersion engineering leads to larger phase
mismatch in the center region of the spectrum, close to the pump,
giving the flatter profile shown in the figure.

Reduction in squeezing due to loss
Internal loss in the JTWPA, as well as insertion loss, is likely to be a
source of reduction in squeezing from the ideal results shown in
Fig. 3. A simplified loss model is a beam splitter with transmittanceffiffiffiffiffiffiffiffiffiffi
η ωð Þ

p
placed after the JTPWA, with vacuum noise incident on the

beam splitter’s second input port.51 This leads to a reduction in

photon number, NR ω; zð Þ ! η ωð Þj jNR ω; zð Þ, and squeezing para-
meter, MR ω; zð Þ !

ffiffiffiffiffiffiffiffiffiffi
η ωð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηð2Ωp � ωÞ

p
MR ω; zð Þ. Taking η = η(ω)

frequency independent for simplicity, this gives a reduction in
squeezing, SR ω; zð Þ ! 2 ηj jNR ω; zð Þ þ 1� 2 ηj j MR ω; zð Þj j. Note that
distributed loss throughout the JTWPA can be taken into account
through a simple phenomenological model,49 but this is beyond
the scope of the present discussion.
Figure 5 shows the maximum squeezing level as a function of

gain as the pump strength is ramped up. The parameters are
otherwise identical to those used for the blue lines displayed in
Fig. 3a. The solid lines show the maximally squeezed quadrature,
while the dashed lines show the corresponding anti-squeezed
quadrature, for three different values η = 0.75 (yellow), 0.99 (dark
red) and 1.00 (blue). Note that the gain is also reduced by the loss,
G ω; zð Þ ¼ η u ω; zð Þj j2, such that we have attenuation at zero pump
power.
For a non-unity η, the squeezing level saturates with gain, while

the anti-squeezed quadrature keeps growing proportionally. The
maximal squeezing depends sensitively on η: while a quantum-
limited device with η = 1 would produce more than 25 dB of
squeezing at 20 dB of gain, a device with η = 0.75 only gives about
6.5 dB of squeezing for the same gain. For a realistic device, further
reductions in squeezing might arise due to disorder, the distributed
nature of loss throughout the device, and the frequency
dependence of the attenuation leading to asymmetry between
the signal and idler [Kamal, A. Private communication (2016)].

Probing the output
The examples discussed above demonstrate how the flexible
JTWPA design allows for generating nonclassical light with
interesting and useful squeezing spectra.
The squeezing spectrum can be found experimentally by

measuring the variance of filtered two-mode quadratures (see
Supplemental Methods 1 and, e.g., refs. 43, 52–54). However, this
necessarily includes insertion loss and noise from subsequent
parts of the amplification chain,10 which can make the detection
of two-mode squeezing challenging. For a more direct probing of
the JTWPA’s performance, we propose placing two superconduct-
ing qubits capacitively coupled directly to the transmission line at
the output port.
For two off-resonant qubits with respective frequencies ω1 ≠ω2,

and ω1 + ω2 ≄ 2Ωp, the qubits will be in uncorrelated thermally
populated states. If, however, ω1 +ω2 = 2Ωp, the qubits become
entangled and information about the JTWPA’s squeezing spec-
trum is encoded in the joint two-qubit density matrix. This
information can then be extracted by measuring qubit–qubit
correlation functions.
Assuming for simplicity a single right-moving pump and a left-

moving field in the vacuum state, we have that for ω1 +ω2 ≄ 2Ωp,

Fig. 4 Engineering flat spectra. A device similar to those in Fig. 3,
but where RPM has been used to tune Δk(ω)= 0 for ω= 2πð Þ ’ 1:8
GHz. The larger phase mismatch around ω ’ Ωp , shown in the right
panel, gives a flatter profile for both the gain and squeezing spectra

Fig. 5 Squeezing in the presence of loss. Squeezing as a function of
gain, G ω; zð Þ ¼ η u ω; zð Þj j2, in the presence of loss, modeled as a
beam splitter with transmittance η placed at the JTWPA output. The
solid lines show the maximally squeezed quadrature for three
different values of η, while the dashed lines show the corresponding
anti-squeezed quadrature
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the steady state of the two qubits is the product state ρ = ρ1⊗ρ2,
where ρm is a thermal state with thermal population NR(ωm)/2 and
inversion hσ̂ mð Þ

z i ¼ �1=ðNRðωmÞ þ 1Þ. On the other hand, for ω1 +
ω2 = 2Ωp the qubits become entangled. Under the simplifying
symmetric assumptions NR(ωm)≡ N and γm≡ γ we find that

σ̂ 1ð Þ
x σ̂ 2ð Þ

x

D E
¼ � σ̂ 1ð Þ

y σ̂ 2ð Þ
y

D E
¼ Re M½ �

N þ 1ð Þ N þ 1ð Þ2 � Mj j2
h i ; ð7Þ

and

σ̂ 1ð Þ
x σ̂ 2ð Þ

y

D E
¼ � Im M½ �

N þ 1ð Þ N þ 1ð Þ2 � Mj j2
h i ; ð8Þ

in steady state, where M(ωi)≡M. More general expressions are
given in Supplementary Method 2. Hence, by measuring
qubit–qubit correlation functions and single-qubit inversion using
standard qubit readout protocols,55–57 one can map out the
squeezing spectrum of the source.
We can also turn this around and, rather than view the two

qubits as a probe of the JTWPA’s performance, view the JTWPA as
a source of entanglement for the qubits. To achieve maximal
degree of entanglement between the qubits, it is desirable to
avoid the vacuum noise of the left-moving field. This can be
achieved by squeezing the left-moving field with a separate
JTWPA section, or more simply by operating the device in
reflection mode, as illustrated in Fig. 6c.
Assuming ideal conditions where the qubits couple symme-

trically to equally squeezed left-moving fields and right-moving
fields, NL(ωi) = NR(ωi)≡ N/2, ML(ωi) =MR(ωi)≡M/2, and an ideal
lossless squeezing source, the steady state of the two qubits is the
pure state (see Supplementary Method 2 for more information)

Ψθ
�� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N þ 1

p
ffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1

p
ggj i þ eiθ

ffiffiffiffi
N

p
eej i

� 
; ð9Þ

where θ is the squeezing angle. For large N, this pure
state approaches a maximally entangled state with

entanglement entropy E Ψθ
�� �� �

¼ � tr ρ1 log2 ρ1ð Þ½ � ’ 1� 1=4N2,
where ρ1¼ tr2 Ψθ

�� �
Ψθ
� ��	 


.
Of practical importance is the steady state entanglement’s

dependence on the degree of loss, and the behavior of the
spectral gap of the Lindbladian in Eq. 34. The latter is important
because it sets the time-scale for approaching the steady state. It
is defined as Δ Lð Þ¼ Reλ1j j, where λ1 is the non-zero right-
eigenvalue of L with real part closest to zero. In Fig. 7, we plot
the steady state entanglement, quantified by the concurrence,58

and the spectral gap as a function of gain for different values of η
(as defined above). These results show that the achievable
entanglement is very sensitive to loss, but an upshot is that
relatively modest gains are needed to achieve high degree of
entanglement.

CV cluster states
The two-qubit dynamics considered above demonstrates the
JTWPA’s potential for entanglement generation. To go beyond bi-

Fig. 6 Modes of operation for a JTPWA. a Amplification mode: quantum systems (here depicted as two-level systems to illustrate) are placed
at the device input. b Probing mode: quantum systems placed at the output absorbs correlated photons from the JTWPA’s output field and
become entangled. c Reflection mode: higher degrees of entanglement can be reached by avoiding the left-moving vacuum noise. A
circulator can be added to avoid back scattering into the JTWPA

Fig. 7 Generating entanglement with squeezing. Concurrence of
two qubits in a two-mode squeezed bath as a function of the gain of
the squeezing source, G ω; zð Þ ¼ η u ω; zð Þj j2 , for three different source
loss levels η= 0.75, 0.99, 1.00. No thermal noise at the squeezing
source input is assumed. The inset shows the behavior of the
spectral gap of the Lindbladian
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partite entanglement, one can add multiple pump tones, such
that a single frequency can become entangled with multiple other
“idler” frequencies in a multi-mode squeezed state, resulting in
potentially complex patterns of entanglement. Together with its
broadband nature and the potential for dispersion engineering,
this turns the JTWPA into a powerful resource for dissipative
quantum state preparation, as we demonstrate in the following.
To exemplify the potential of broadband squeezing as a

resource for quantum computing and state preparation, we show
below how CV cluster states can be generated through a
dissipative and deterministic process, using the output field of
multiple broadband squeezing sources. The cluster states are a
powerful class of entangled many-body quantum states that are
resource states for measurement-based quantum computing.
Given a cluster state, an algorithm is executed using only single-
site measurements and classical feed forward on the state.59–63

A CV cluster state is defined with respect to a (weighted) simple
graph G = (V,E), with V the set of vertices and E the set of edges. A
CV quantum systems with quadratures x̂v ¼ ðĉv þ ĉ†vÞ=

ffiffiffi
2

p
and

ŷv ¼ �iðĉv � ĉ†vÞ=
ffiffiffi
2

p
, where ĉv ðĉ†vÞ is a bosonic annihilation

(creation) operator, is associated to each vertex v. The ideal CV
cluster state (with respect to G) is defined as the unique state ϕGj i
satisfying61, 63, 64

ŷv �
X

w2N vð Þ
avwx̂w

0
@

1
A ϕGj i ¼ 0 8v 2 V ; ð10Þ

where N (v) is the neighborhood of v, i.e., all the vertices
connected to v by an edge in E and avω = aωv∈[−1, 1] is the
weight of the edge {v, w}. Note that ϕGj i is an infinitely squeezed
state, and thus not physical. In practice, one has to work with
Gaussian states that approaches ϕGj i in a limit of infinite
squeezing. We can define an adjacency matrix [avw] for the graph,
where avw = 0 if there is no edge {v, w}∈ E. Since the adjacency
matrix uniquely defines the graph, and vice versa, we use the
symbol G to interchangeably refer to both the graph and its
adjacency matrix in the following.
We focus here on a class of graphs, first studied in refs 32, 33,

satisfying two simplifying criteria: (1) The graph is bicolorable. This
means that every vertex can be given one out of two colors, in
such a way that every edge connects vertices of different colors
(the square lattice is an example). (2) The graph’s adjacency matrix
is self-inverse, G = G−1. The latter constraint has a simple geometric
interpretation described in ref. 33. We show in Supplementary
Method 3 that for a graph G satisfying these critera, the Lindblad
equation _ρ ¼ LGρ, with Lindbladian

LG ¼
P
v2V

κ N þ 1ð ÞD ĉv½ � þ κND ĉ†v
	 
� �

�
P

v;wf g2E
κavwSiM ĉ†v ; ĉ

†
w

	 

;

ð11Þ

where M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N þ 1ð Þ

p
and SiM[A, B] is defined in Eq. (35), has a

unique steady state ϕG Mð Þj i that approaches ϕGj i as M ! 1. The
existence of graphs satisfying all the listed criteria, with associated
cluster states, ϕGj i, that are universal for quantum computing is
shown in refs 32, 33. Equation (11) is a remarkable result, because
it implies that CV cluster states can be prepared simply by placing
oscillators in a multi-mode squeezed bath, i.e., broadband
squeezing is the only necessary resource for the preparation. In
the following, we detail how multi-mode squeezed baths with an
entanglement structure giving rise to universal cluster states can
be engineered adapting a simple scheme from.35

In ref. 35, Wang and coworkers showed how cluster states with
graphs of the type considered here could be generated through
Hamiltonian interactions between the modes of optical parametric
oscillators (OPOs), followed by an interferometer combining

modes from distinct OPOs. We adopt this scheme in the following,
using JTWPAs (other types of broadband squeezing sources can
also be used) in place of OPOs. The main difference between our
proposal and that of ref 35 and previous proposals32, 33 is that our
scheme is purely dissipative: the CV modes of the cluster state
never interact directly, but rather become entangled through
absorption and stimulated emission of correlated photons from
their environment. We focus primarily on a situation where the
modes are embodied in multimode resonators, which is a
particularly hardware efficient implementation. We emphasize,
however, that due to the dissipative nature of the scheme, this is
not a necessary constraint. The modes could in principle all be
embodied in physically distinct and remote resonators, removing
any constraints on locality. This is an attractive advantage of such
a dissipative scheme.
Following ref. 35, the modes of the cluster states are resonator

modes with equally spaced frequencies ωm ¼ ω0 þmΔ, where m
is an integer, ω0 is some frequency offset and Δ the frequency
separation. We require a number of degenerate modes for each
frequency ωm: to create a D-dimensional cluster state requires a
2 × D-fold degeneracy per frequency. This can be achieved, e.g., by
using 2 × D identical multi-mode resonators, as illustrated for D = 1
in Fig. 8. Each resonator mode will be a vertex in the cluster state
graph, and as will become clear below, a set of degenerate modes
can be thought of as a graph “macronode”.35 It is convenient to
relabel the frequencies with a “macronode index” M ¼ �1ð Þmm.
We show in Supplementary Method 3 that a master equation

with Lindbladian of the form Eq. (11) is realized for a single
resonator interacting with a bath generated by the output field of
a JTWPA with a single pump frequency Ωp =ω0 + pΔ/2, where p =
m + n for some choice of frequencies ωm ≠ωn. The graph is in this
case a trivial graph consisting of a set of disjoint pairs of vertices
connected by an edge, i.e., a set of two-mode cluster states, which

can be represented as G0 =

… The edges have weight +1, under the assumption of a quantum

limited, flat squeezing spectrum M ωð Þ ¼ iM ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N N þ 1ð Þ

p
with N

(ω) = N over the relevant bandwidth.
More complex and useful graphs can be constructed using

these two-mode cluster states as basic building blocks.35 Taking
a number of JTWPAs, each labeled by i and acting as a
squeezing source independently generating a disjoint graph
Gi = … as above, universal
cluster states can be created by combining the output fields of the
different sources on an interferometer. The action of the
interferometer can be written as a graph transformation, where
G ¼ �i Gi transforms to G ! RGRT , where R ¼ �MRðMÞ

D represents
an interferometer acting independently on each macronode M,
i.e., each set of 2 × D-fold degenerate modes. R has to be
orthogonal for the transformed graph to be self-inverse (G = G−1),
which we recall is one of the criteria for Eq. (11) to generate the
corresponding cluster state. As shown in ref. 35 this is the case if
the 2D × 2D matrix RD is a Hadamard transformation RD ¼ H�D

built from 2 × 2 Hadamard matrices

H ¼ 1ffiffiffi
2

p
1 1

1 �1

0
B@

1
CA:

ð12Þ

Physically such a transformation can be realized by pairwise
interfering the output fields of the JTWPAs on 50-50 beam splitters
with beam splitter matrix as in Eq. (12). The network of beam
splitters needed for the case D = 1 is illustrated in Fig. 8, for D = 2
in Fig. 9, and for higher dimensions in ref. 35.
In ref. 35, it was shown that graphs G constructed in this way

can give rise to D-dimensional cluster states that are universal for
measurement-based quantum computing. Let us consider an
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example with D = 1 in some more detail to illustrate the basic
principles. First, take two JTWPAs pumped individually with
respective pump frequencies Ωi and Ωj, with i ¼ �j ¼ ΔM. On
the macronode level, this gives exactly one edge between
macronodes separated by ΔMj j, as illustrated by the horizontal
edges in Fig. 8 for ΔM ¼ 1. By interfering the output fields of the
two JTWPAs on a beam splitter defined by Eq. (12), every node in
each macronode becomes entangled with every node in the
neighboring macronode, as illustrated by the diagonal edges in
the figure. This gives a graph G with a linear structure,
corresponding to a one-dimensional cluster state that is universal
for single-mode quantum computation.33–35

The scheme can straight-forwardly be scaled up to arbitrary D-
dimensional cluster states using 2 × D squeezing sources and the
same number of beam splitter transformations as shown in ref. 35.
D = 2 is sufficient for universal quantum computation; a possible
setup of JTWPAs and resonators is illustrated in Fig. 9. As
emphasized in ref. 35, the relative ease of creating even higher
dimensional cluster states is a very attractive property of the
scheme.

DISCUSSION
We have shown how the recently developed JTWPAs are powerful
sources of nonclassical radiation. The design flexibility and broad
bandwidth allows us to tailor the properties of the quantum
radiation emitted by the device through dispersion engineering.
In this way, the output field can be optimized for specific
applications where broadband squeezing is useful. Furthermore,
we have illustrated how the output field of one or multiple
JTWPAs can be used for reservoir engineering: By placing
quantum systems at the output of a broadband squeezing source,
the systems can be driven into non-trivial entangled states
through correlated photon absorption and emission processes.
We have shown both how to prepare pairs of entangled qubits, as
well as CV cluster states that are universal for quantum computing
in this manner.

Moreover, a JTWPA can be thought of as an artificial non-linear
crystal, introducing a new non-linear element to the field of
microwave quantum optics. The JTWPA is qualitatively different
from previous, essentially point-like, non-linear elements used in
microwave circuits and represents, in this respect, a major
departure from the conventional paradigm of “circuit quantum
electrodynamics” based on localized electromagnetic modes.55

The possibility of dispersion engineering together with control-
lable non-linear parametric interactions opens new possibilities for
quantum optics in the microwave regime, for example studying
the interplay between light and matter in structured non-linear
media.65, 66

METHODS
Asymptotic input–output theory
As shown in Supplementary Methods 1, the position-dependent flux, ϕ̂ xð Þ
(in the Schrödinger picture), along a transmission line with a JTWPA
section extending from x = 0 to x = z can in the continuum limit be

Fig. 9 Schematic setup for a universal microwave quantum
computer. Four JTWPAs are used as squeezing sources to
dissipatively prepare the modes of four identical multi-mode
resonators in a two-dimensional cluster state. The quantum
computation is subsequently performed through Gaussian and
non-Gaussian (e.g., photon-number resolving78) single-mode mea-
surements on the resonators.63

Fig. 8 Dissipative generation of a linear cluster state. a Two JTWPAs are used as squeezing sources. The output fields of the two devices are
combined on a 50-50 beam splitter enacting a Hadamard transformation, before impinging on two identical multi-mode resonators. b Each
JTWPA is pumped by a single pump tone, generating entanglement (curved arrows) between pairs of frequencies satisfying ωn þ ωm ¼ 2Ωi . We
focus here on center frequencies corresponding to the frequencies of the resonator modes, illustrated by the pink and blue arrows. The
numbers show the macronode index of each frequency. c Linear graph defining the steady state cluster state of the resonator modes. The
horizontal edges are generated by the two pumps, while the diagonal edges are generated by the Hadamard transformation (see
Supplementary Method 3 for details). The numbers show the macronode index, and the circle shows macronode M ¼ �2 in the graph
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expanded in terms of a set of left-moving modes and right-moving modes,

ϕ̂ xð Þ ¼
X
ν¼L;R

Z1

0

dω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h

2c xð Þω

s
gνω xð Þâνω þ H:c:; ð13Þ

where âνω; â†μω0

h i
¼ δνμδ ω� ω0ð Þ and the mode functions are given by

gνω xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2πηω xð Þv xð Þ

s
e± ikωðxÞx : ð14Þ

Here, + (−) corresponds to ν ¼ R (ν ¼ L), kω xð Þ ¼ ηω xð Þω=v xð Þ is the
wavevector, with ηω xð Þ the refractive index, and v xð Þ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c xð Þl xð Þ

p
. The

x-dependent parameters are defined such that they take one (constant)
value inside the JTWPA section, and another value outside this section. We
have defined c(x), the capacitance to ground per unit cell, and l(x), the
linear inductance of the transmission line. We emphasize that this simple
form of the mode functions assumes that we can neglect reflection at the
interfaces between the JTWPA and the linear transmission line sections.48

The only difference from the usual prescription for the quantized flux in
a linear, homogeneous and dispersion free transmission line67, 68 is the x-
dependent wavevector, which now takes a different form inside and
outside the nonlinear section. Explicitly, the dispersion relation is found to
be (see Supplementary Methods 1 and ref. 9)

kω xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�iωz�1 ωð Þl xð Þ

1�ω2=ω2
P

q
for 0<x<z

ω
v xð Þ otherwise;

8>>>><
>>>>:

ð15Þ

where z�1 ωð Þ ¼ Z�1 ωð Þ=a is the admittance to ground per unit cell in the
JTWPA section.
Implicit in the continuum description is that we are considering

sufficiently low frequencies, such that the wavelengths are large compared
to the unit cell distance, a. Furthermore, plane wave solutions only exists
when the right hand side of Eq. (15) is real. In practice, we are interested in
frequencies ω2 � ω2

P such that the dispersion due to the plasma
oscillations of the junctions is relatively small. If, however, the admittance
z�1 ωð Þ describes a linear element with a resonant mode, a bandgap opens
around the resonance frequency for which no plane wave solutions exists.
Physically, such a resonant mode behaves as a “matter field” in the
continuum limit, and the excitations of the systems resemble light-matter
polaritons.69–71 As long as we are away from any bandgap, however, these
“matter fields” slave the photonic field, ϕ̂ x; tð Þ, and only modifies the
dielectric properties of the medium, manifest in the dispersion relation Eq.
(15).
We assume the presence of a strong right-moving classical pump

centered at a frequency ΩP with corresponding wavevector kp, and replace
âRω ! âRω þ b ωð Þ, with b(ω) a complex valued function centered at ΩP.
The fields, âνω , are assumed to be sufficiently weak so that we can drop in
Ĥ1 terms that are smaller than second order in the pump. As shown in
Supplementary Methods 1, a Hamiltonian for the system can then be
found of the form Ĥ ¼ Ĥ0 þ Ĥ1 where Ĥ0 and Ĥ1 are given in Eqs. (1) and
(2), respectively, with

ĤCPM ¼ � �h
2π

R1
0
dωdω0dΩdΩ0 ffiffiffiffiffiffiffiffiffiffiffi

kωkω0
p

β� Ωð Þβ Ω0ð Þ

´Φ ω;ω0;Ω;Ω0ð Þâ†RωâRω0 þ H:c:;

ð16Þ

describing cross-phase modulation,

ĤSQ ¼ � �h
4π

R1
0
dωdω0dΩdΩ0 ffiffiffiffiffiffiffiffiffiffiffi

kωkω0
p

β Ωð Þβ Ω0ð Þ

´Φ ω;Ω;ω0;Ω0ð Þâ†Rωâ†Rω0 þ H:c:;

ð17Þ

describing broadband squeezing, and

HSPM ¼ � �h
4π

R1
0
dωdω0dΩdΩ0 ffiffiffiffiffiffiffiffiffiffiffi

kωkω0
p

β� Ωð Þβ Ω0ð Þ

´Φ ω;ω0;Ω;Ω0ð Þb� ωð Þb ω0ð Þ þ H:c:;

ð18Þ

describing self-phase modulation of the pump. Here we have furthermore

dropped fast rotating terms and the highly phase mismatched left moving
field.
For notational convenience, we have defined the phase matching

function72, 73

Φ ω1;ω2;ω3;ω4ð Þ ¼
Zz

0

dxe�i kω1 xð Þ�kω2 xð Þþkω3 xð Þ�kω4 xð Þ½ �x ; ð19Þ

and a dimensionless pump amplitude, β Ωð Þ, which as shown in
Supplementary Methods 1, can be written in terms of the ratio of the
pump current to the Josephson junction critical current,

β Ωð Þ ¼ Ip Ωð Þ
4Ic

; ð20Þ

where Ic ¼ 2π=Φ0ð ÞEJ .
It should be noted that Ĥ1 can also in principle include frequency

conversion processes where a photon with frequency close to 2Ωp þ ω is
created by absorbing a single photon at frequency ω and two pump
photons at Ωp. We have left out such contributions in Eq. (2) under the
assumption that appropriate steps have been taken to ensure that these
frequency conversion processes are heavily phase mismatched. In
particular, current experiments use low-pass filters before and after entry
to the JTWPA section of the transmission line, which ensures that no plane-
wave solutions exist above 2Ωp [Gustavsson, S. & Krantz, P. Private
communication (2016)].
The dynamics according to the non-linear Hamiltonian Ĥ1 is in general

difficult to treat analytically to all orders,72, 73 and we therefore take a
perturbative approach treating the non-linearity to first order. An
input–output relation linking the field entering the JTWPA to the emitted
output field can then be derived in the usual asymptotic scattering limit.71–75

Equations of motion similar to those we derive here have been used
previously by Caves and Crouch in a study of wideband traveling wave
amplifier,49 where they were taken as operator versions of macroscopic
Maxwell’s equations for a nonlinear, homogeneous and dispersionless
medium.76 We here justify similar input–output relations by deriving them
from a microscopic theory, taking into account the finite extent of the
nonlinearity as well as dispersion. For the JTWPA the latter stems from
both junction plasma oscillations, non-linear phase-modulation and
engineered bandgaps in the medium.
Treating Ĥ1 as a perturbation, it is natural to go to an interaction picture

with respect to Ĥ0. The time-evolution operator for the problem in this
picture is

Û t0; t1ð Þ¼T e
� i

�h

Rt1
t0

dtĤ1 tð Þ
;

ð21Þ

where Ĥ1 tð Þ¼ exp i=�hð ÞĤ0t
	 


Ĥ1 exp � i=�hð ÞĤ0t
	 


and T is the time-ordering
operator.
Solving the time-dynamics according to Eq. (21) is difficult in general.

However, if we neglect any backaction from the fields onto the pump, i.e.,
take the undepleted pump approximation and disregard any quantum
fluctuations around the pump frequency, we can solve for the pump
separately according to the classical Hamiltonian HSPM and substitute this
back into the remaining parts of Ĥ1. The remainder is then effectively a
quadratic Hamiltonian for the quantum fields. We will in the following also
make several further simplifications that greatly reduces the complexity of
the problem. First of all, we treat Ĥ1 as a perturbation to first order only, in
which case the time-ordering in Eq. (21) can be dropped. See, however,
refs 72, 73 for a discussion on the breakdown of this approximation.
Subsequently we take a “scattering limit” and let the initial and final times
to t0 ¼ �1 and t1 ¼ 1, respectively. The time-integral then gives rise to
delta-functions in frequency space, and we are left with approximate
asymptotic evolution operator, or scattering matrix,71

Û � Û �1;1ð Þ¼e�
i
�hK̂1 ; ð22Þ

where

K̂1¼K̂CPM þ K̂SQ þ KSPM: ð23Þ

Explicit expressions for K̂1 for a general classical pump can be found in
Supplementary Methods 1. We from now on make one last simplifying
approximation and focus on the monochromatic pump limit, taking
b ωð Þ ! b ωð Þδ ω� Ωp

� �
. In this limit we have

K̂CPM ¼ �2�hz
Z 1

0
dω βj j2kωâ†RωâRω; ð24Þ
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and

K̂SQ ¼ � �h
2

Z1

0

dωλ ωð ÞΦ �ΔkL ωð Þ½ � ´ â†Rωâ†R 2Ωp�ωð Þ þ H:c:; ð25Þ

and KSPM ¼ ��hz βj j2kpb�pbp, where we have defined bp ¼ b Ωp
� �

, β ¼
β Ωp
� �

and

λ ωð Þ ¼ β2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kωk2Ωp�ω

q
; ð26Þ

ΔkL ωð Þ ¼ 2kp � kω � k2Ωp�ω: ð27Þ
Here, ΔkL ωð Þ quantifies a phase-mismatch due to the linear dispersion in

the JTWPA section. As we show below there is also an additional nonlinear
contribution to the phase-mismatch that must be taken into account.
Defining asymptotic output fields, âoutRω¼Û†âRωÛ, we find the

input–output relation in Eq. (3), where

u ω; zð Þ ¼ cosh g ωð Þz½ � � iΔk ωð Þ
2g ωð Þ sinh g ωð Þz½ �; ð28Þ

v ω; zð Þ ¼ λ ωð Þ
g ωð Þ sinh g ωð Þz½ �; ð29Þ

g ωð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ ωð Þj j2 � Δk ωð Þ

2

� �2
s

: ð30Þ

A straightforward calculation shows that u ω; zð Þj j2 � v ω; zð Þj j2 ¼ 1, and
that the modes satisfy the commutation relation âoutRω ; â

out†
Rω0

	 

¼ δ ω� ω0ð Þ.

To summarize, this limiting equation is valid for weak nonlinearity and
weak fields, only treating the nonlinear Hamiltonian Ĥ1 to first order, a
strong monochromatic classical pump at a frequency Ωp , and in an
asymptotic large time limit where t0 ¼ �1 and t1 ¼ 1.
How can we interpret the asymptotic limit where the initial and final

times are taken to minus and plus infinity, respectively? If we consider a
situation where an initial wave packet is localized far away at x � 0 at an
early time t0 � 0, this can be interpreted as a scattering limit, where we let
the wave packet propagate through the nonlinearity and consider the
asymptotic field at x 	 z for a late time t1 	 0.71, 75 Since the initial
evolution before the wave packet enters the nonlinear section is governed
by Ĥ0, it is trivial to propagate the wave packet forward towards the
nonlinearity. The late evolution after the wave packet has left the nonlinear
section is similarly trivial. We can therefore think of âRω as a frequency
domain input field entering the JTWPA and âoutRω as the corresponding
output field leaving the device. This is similar to the definition of input and
output fields used in the description of damped quantum optical
systems.75, 77 One should keep in mind, however, that the validity of this
interpretation depends on the problem one is trying to solve: it is clearly
not appropriate if, for example, the initial state of the field is delocalized
over the nonlinear section.

The squeezing spectrum
The squeezing of the JTWPA’s output field is manifest in correlations
between frequencies ω and 2Ωp � ω, symmetric around the pump
frequency. It is convenient to define for the right moving field the thermal
photon number

NR ω; zð Þ ¼
Z1

0

dω0 âout†Rω âoutRω0
� �

� âout†Rω

� �
âoutRω0
� �� �

; ð31Þ

the squeezing parameter

MR ω; zð Þ ¼
Z1

0

dω0 âoutRω â
out
Rω0

� �
� âoutRω

� �
âoutRω0
� �� �

; ð32Þ

and the squeezing spectrum50

SR ω; zð Þ ¼
R1
0
dω0 ΔŶθ

RωΔŶ
θ
Rω0

� �
;

¼ 2NR ω; zð Þ þ 1� 2 MR ω; zð Þj j

ð33Þ

where we have defined quadratures Ŷθ
Rω ¼ i eiθ=2âout†Rω � e�iθ=2âoutRω

	 

, with

fluctuations ΔŶRω ¼ ŶRω � ŶRω
� �

. We have also defined θ, the squeezing

angle, which is given through MR ω; zð Þ ¼ MR ω; zð Þj jeiθ . We emphasize that
Eqs. (31)–(33) are defined exclusively in terms of the right-moving field.
The left-moving field also contributes vacuum noise and might add to the
total photon number, but will have zero squeezing parameter in the
absence of left-moving pump fields. The squeezing spectrum is typically
probed in experiments by heterodyne measurement of filtered field
quadratures.43, 52–54 We discuss how Eq. (33) is probed in some more detail
in Supplementary Methods 1.
For a vacuum input field, where âR ω; 0ð Þâ†R ω0; 0ð Þ

� �
¼ δ ω� ω0ð Þ and all

other second order moments vanish, it follows that NR ω; zð Þ ¼ G ω; zð Þ � 1 ¼
v ω; zð Þj j2 and MR ω; zð Þ ¼ iu ω; zð Þv ω; zð ÞeiΔk ωð Þz . These expressions satisfy
MR ω; zð Þj j2 ¼ NR ω; zð Þ NR ω; zð Þ � 1½ �, the maximum value allowed by the
Heisenberg uncertainty relation and also imply quantum-limited amplifica-
tion.13 This, of course, assumes that there is no internal loss in the JTWPA
device.

Two qubits in a squeezed bath
Assuming for simplicity that the qubits are both located at the JTWPA
output, x0 > z, their reduced dynamics after tracing out the bath is
governed by a Markovian master equation, _ρ ¼ Lρ. The form of L for the
general case is given in Supplementary Method 2, while we here focus on
the most interesting situation when the two qubits are tuned in with the
squeezing interaction, such that ω1 +ω2 = 2Ωp. We can then write the
Lindbladian in the interaction picture

L ¼
P

ν¼L;R
m¼1;2

γm
2 Nm;ν þ 1
� �

D σ̂ðmÞ
�

	 

þ γm

2 Nm;νD σ̂
ðmÞ
þ

h in o

�
ffiffiffiffiffiffiffi
γ1γ2

p

2 SMν
σ̂
ð1Þ
þ ; σ̂

ð2Þ
þ

h i
;

ð34Þ

where

SM A; B½ �ρ ¼ M AρBþ BρA� AB; ρf gð Þ þ H:c:; ð35Þ
describes a dissipative squeezing interaction, and D A½ �ρ ¼ AρA† �
A†A; ρ

� �
=2 is the usual dissipator. γm is the decay rate of qubit m and

σ̂� ¼ gj i eh j (σ̂þ ¼ ej i gh j) is the qubit lowering (raising) operator. The
Lindbladian has two contributions coming from the left-moving field and
the right-moving field, respectively. In general, both fields can have non-
zero thermal photon number Nm;ν ¼ Nν ωmð Þ and squeezing parameter
Mν ¼ Mν ω1ð Þ þMν ω2ð Þ½ �=2. If, on the other hand, the qubits are tuned out
of resonance with the squeezing interaction, ω1 +ω2 ≄ 2Ωp, the last line in
Eq. (34) will be fast rotating and can be dropped in a rotating wave
approximation (see Supplementary Method 3 for more details).
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