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Abstract

The interaction of light and matter is often described by the exchange of single excitations. When the
coupling strength is a significant fraction of the system frequencies, the number of excitations are no
longer preserved and that simple picture breaks down. This regime is known as the ultrastrong
coupling regime and is characterized by non-trivial light-matter eigenstates and by complex
dynamics. In this work, we propose to use an array Josephson junctions to increase the impedance of
the light mode enabling ultrastrong coupling to a transmon qubit. We show that the resulting
dynamics can be generated and probed by taking advantage of the multi-mode structure of the
junction array. This proposal relies on the frequency tunability of the transmon and, crucially, on the
use of alow frequency mode of the array, which allows for non-adiabatic changes of the ground state.

1. Introduction

Cavity quantum electrodynamics allows for the study of light—matter interaction at the level of single atoms
interacting with a single photon, both confined in a high-quality cavity. In practice, this interaction is typically
due to the coupling of the light’s electric field to the electric dipole moment of the atom [1]. When only a single
mode of light and only two atomic levels are relevant, this situation can be described by the Jaynes—Cummings
Hamiltonian (%Z = 1),

Hic = w, d'a + %az +g(d'o + aoy), ¢))

where w, is the cavity frequency, w, the atomic frequency and g the electric-dipole coupling. In this expression, a
(a")is the photon annihilation (creation) operator and o; are the Pauli matrices for the atomic levels. The Jaynes—
Cummings Hamiltonian describes the exchange of a single quanta between the field and the atom leading to
Rabi oscillations with angular frequency 2¢. The strong coupling regime is achieved when the coupling, g, is
much larger than the dissipation rates of the system. This Jaynes—Cummings Hamiltonian can be realized with a
wide variety of physical systems such as Rydberg atoms [ 1], quantum dots [2], trapped ions [3, 4] and
superconducting circuits [5].

The Jaynes—Cummings Hamiltonian is, however, only an approximation of the Rabi Hamiltonian
describing coupling between the cavity electric field, Eq(a’ + a), and the atomic dipole moment, dy oy,

Hpabi = wy a'a + %UZ + g(@ + a)oy, ®)

where g = doEy. The Jaynes—Cummings Hamiltonian is a good approximation to Hg,p; when the coupling, g, is
smaller than the system frequencies, § < w,, w;. In this situation, the fast rotating term a’o, + ao_appearing
in the Rabi Hamiltonian can safely be dropped using the rotating wave approximation (RWA) and we recover
equation (1). While more challenging to realize, there has recently been much attention to the situation where
this approximation is no longer valid. This so-called ultrastrong regime, realized when the coupling strength
approaches the system frequencies, differs remarkably from the Jaynes—Cummings regime [6—13]. Most
significantly, while the ground state of Hj¢ is simply the product of the atomic ground state and vacuum of the
field, the ground state of the Rabi Hamiltonian is an entangled atom-field state with a non-zero average photon
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Figure 1. Circuit representation of the system. An array of N Josephson junctions is treated as a series of inductors with inductance L;
and capacitance Cj. These junctions also have a parasitic capacitance to ground, C,. The array interacts via C; with a transmon qubit
characterized by the capacitance C;and the Josephson energy E;. The flux node at the transmon is denoted ¢, and the nodes of the
array goes from ¢ to ¢

number. From a practical point of view, this regime could also be useful in the context of quantum information
processing [14—17].

Superconducting quantum circuits form a promising platform to realize and study this novel light-matter
coupling regime. In particular, the realization of the ultrastrong coupling regime with flux qubits, acting as the
atom, coupled to a microwave resonator have been theoretically studied [ 18] and experimentally implemented
[19-22]. These experiments have primarily probed the spectral properties of the ultrastrong regime. A next step
is to probe the dynamics of the system in this regime and, moreover, to probe its non-trivial ground state. With
the system starting in its ground state, an approach is to non-adiabatically tune the coupling strength g from the
ultrastrong coupling regime to the strong coupling regime. The system will readjust to this change by emitting
photons as it relaxes back to its new ground state. Observing these photons would constitute a clear signature of
the non-trivial nature of the ultrastrong coupling ground state. With system frequencies around 10 GHz [18—
20, 22], this however requires changes in system parameters of the order of 10 pico-seconds. In practice, this
therefore appears to be extremely challenging.

In this work, we address this problem by working with a low-frequency mode of a microwave cavity. We
focus on the transmon qubit [23] capacitively coupled to an array of Josephson junctions realizing an inductance
with a dissipationless impedance larger than the resistance quantum [24—-26]. Together with its capacitance to
ground, this superinductance plays the role of a multi-mode cavity. With g/w, o \/Z,, where Z, is the cavity
impedance [18, 27], this approach allows for large qubit-mode coupling strengths. Moreover, by using a low-
frequency mode of the array, it is possible to realize ultrastrong coupling with only a moderately large coupling
strength. In this situation, fast changes of system parameters are possible and allow for the observation of
signatures of the ultrastrong coupling in the dynamics of the combined system. These dynamics can then be
probed by taking advantage of the presence of multiple modes of the array and their cross-Kerr interaction [24].

The paper is organized as follows: we derive in section 2 the Hamiltonian of the system, taking into account
the multi-mode structure of the array. In section 3, we identify parameters to reach the ultrastrong coupling
regime. In section 4 the dynamics of the ultrastrong coupling regime are investigated. Finally, section 5
concludes the paper.

2. Transmon coupled to a Josephson junction array

We consider the circuit of figure 1 which consists of a transmon qubit [23] coupled to an array of N Josephson
junctions [24]. The transmon qubit is characterized by the Josephson energy E;and the capacitance C, which for
simplicity we take to include both the shunt capacitance and the junction capacitance. We assume the junctions
forming the array to have a large Josephson energy such that, to a good approximation, they behave as weakly
nonlinear inductances. These junctions are then characterized by their Josephson inductance L;and junction
capacitance Cj. Following [28, 29], the nonlinearity of the array junctions will be perturbatively reintroduced ata
later step. Moreover, we take into account the capacitance to ground C, of the islands formed between the array
junctions. The capacitance C, couples the qubit to the array and will largely control their interaction strength.
Finally, C; is a capacitance to an external control field which will be used to probe the system and C, is the
capacitance to ground of the last array island, which can be constructed arbitrarily [24].
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Following the standard approach [30], the circuit Lagrangian reads

G .
L= Z|: ](¢ n+1)2 ZLL]((% - ¢n+1)2 + %Cbnz]

- N
+ 71%2 + 7%513 + 7‘1(% — Gy’ )
Cs 2
+ 7¢qb + E] Cos ((bqb /QDO)
5TC > )
=656 3738+ Ereos(ay o0, @

where ¢, is the node flux of the nth island of the array, ¢, the node flux of the transmon’s island and
o = Bo/2m with the magnetic flux quantum ®, = h/(2e). In the last line of this equation, we have defined the
vector gg = (Do P> s D> Dy JT oflength N + 2, and the capacitance and inductance matrices C and L such
that equation (4) reproduces equation (3).

Ignoring the nonlinear term proportional to E; for the moment, this Lagrangian leads to the Euler—Lagrange
equation

¢ =-C'L = %, )
which has the qubit mode Eﬁqb = {0,...,0, ¢ }T as one of the eigenvectors. Since the qubit’s Josephson energy is
notincluded in the matrix 2? = —C~'L of size N + 2 X N + 2, this mode has zero eigenvalue and can easily
be identified. A convenient basis to treat the array and the qubit separately is obtained by finding the eigenvectors
ofthe N + 1 x N + 1block matrix of €22 that does not relate to ¢,p,- We refer to these eigenvectors as Vi, such
that the flux across the array is given as 5 (t) = > ¢, (t) Vi with the time-dependence written explicitly. With
this approach, the array modes are already renormalized by the qubit capac1tances, Cyand C,. In contrast to the
modes of a transmission line resonator, notice that the mode vectors, Vk, are not orthogonal, i.e., v, k v = 0.
These modes are, however, linearly independent such that each term of ng (t) decouple from each other in the

time evolution, equation (5), and thus constitute the normal modes of the array. In the basis of these eigenmodes,
the Lagrangian in equation (4) takes the simple form

Ck -2 1 .
L= E[_k¢k - _d)i - Cq v (0) (bk qub:l
C,+C
— =y + Ereos(dy, [20) ©)
where v (1) denotes the nth entry of the eigenvector . In the above expression, we have defined the mode
capacitance Cy and mode inductance Ly as
Cr = ¥, Cy, L' = %" )

With these definitions, the eigenmode frequencies take the usual form wy = 1//L; C.
To obtain the associated Hamiltonian, we first identify the conjugate variables

4 = @ = Gk — Cqvi(0) @y (8
a = (Cq+ Cs)éqb — 3 "Cyvi(0) ¢y 9
k

Introducing § and ¢ as the row vectors of entries g, (qby A0d @y, the above expressions can be written in
compact vector form as

j = Co. (10)
We also define L, the diagonal matrix of matrix elements 1/Ly. Using this notation a Legendre transformation is
performed and the Hamiltonian reads

C _ 1L~
H=4g TTq + ¢ Tzé — Ejcos ¢y, (11)

with the capacitances and inductances for mode k given by the diagonal entries of the matrices,
~ 1 ~_—1 ~
C == C[k kP Lk = L[k,k]. (12)

The Hamiltonian of equation (11) can be expressed as the sum of a qubit Hamiltonian, H, an array
Hamiltonian, Hyyay, and their coupling, H.. The qubit Hamiltonian takes the standard form
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Hyy = 4Ecii* — Ejcos (¢, /#o)s (13)

where —2ei = g b and Ec = €2 / (ZCqb). In the transmon regime, E; /E. > 1, this Hamiltonian can be
approximated as [23]

Hy, ~ w,b'b — %b"'b"’bb, (14)
with the transmon frequency w, = /8E Ec — Ec and where we have introduced the operators
1/4
2E
G = 990(—C) (b" + b), (15)
E
( B\ .
gy = 1 b" —b). 16
qb ( 3 2EC) ( ) (16)

While the above form is useful in simplifying analytical expressions, all numerical calculations in this paper are
based on the exact diagonalization of equation (13).
Expressing the mode operators g and ¢, in terms of the creation (annihilation) operators a; (ay) for mode k

of the array
e
4= 1= @ = ao, (17)

(Dkfk
2

o = (a; + ap), (18)

the array Hamiltonian takes the standard from Hyprqy = 37, &% a,j' ag. In this expression, the mode frequencies are

O = 1/(ZCy) where Z; = | Li/Cy is the characteristic impedance of mode k [27, 28]. The frequencies &
differ slightly from wy, due to the off-diagonal elements of C. As can be seen from the first term of equation (11),
these terms also causes a small coupling between the array modes. This mode-mode coupling is due to the qubit-
array interaction and is analogous to a multi-mode A*-term [31, 32]. Omitting array junctions nonlinearities,
the Hamiltonian then takes the form

H= qu + Harray + ng(bT - b)(alj - ak)
k

+ 3 Gula) — ap(a] — ap. (19)
k=1

In the transmon regime E; /E¢ >> 1, the qubit-array coupling strength takes the form

85 [T~
==L |—e Crupr 20
8 ( Ec) 2z, ¢ Clan (20)

As expected, we find that g, /@y o \/Z [18, 27]. As already mentioned, in addition to a qubit-array coupling,
equation (19) also contains a mode-mode interaction given by

1 1 -~
Gyu= |— |— C 2. 21
Kl /ZZk N 27 or/ (21

In practice the frequency difference between modes is such that @, — @y 2 100Gy, evaluated using the
parameters used in section 3. Due to the small magnitude of these Gy, we can neglect their renormalization of
the mode-frequencies.

To finalize the derivation of the system Hamiltonian, we now include the array junction nonlinearities
following the approach of [28, 29]. Taking advantage of the weak nonlinearity of these junctions, we consider
only the fourth order expansion of the cosine potential of each array junction leading to the nonlinear
potential

1 Nl \
Ui == ;:jo(@ Gy )" (22)
Expressing this in the eigenmode basis, using the mode creation and annihilation operators, and dropping all
rotating terms, this leads to the additional term in the Hamiltonian of equation (11) [28]

Hy = ZKkzazakalTal, (23)
kl
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where the self- (Ky;) and cross-Kerr (Ky;) coefficients can be expressed as

2 — Sy anlyanl =
Ky=— ZZNTAP, (n)2AG; (n)?, 24
i Lo 2 2 ’; O (M)A (n) (24)

with A¢, (n) = vk (n) — v (n + 1). It follows immediately that Ky = —2/Kj Ky [29].

We note that the Hamiltonian of equation (19) was obtained by first finding the qubit-renormalized array
modes which were used as a convenient basis. With this approach, the modes already take into account the
capacitances C;and C,; which may be much larger than the array capacitances and hence significantly change the
mode structure. With this choice, the mode-mode-couplings , Gy, are then very small and can be ignored.
Another approach to find the system Hamiltonian would be to first diagonalize the Lagrangian without coupling
to (bqb and then reintroduce this coupling. Such an approach would lead to much larger mode-mode-coupling
which would then have to be taken into account by exact diagonalization. Both approaches, in the end, lead to
equivalent coupling strengths between the array modes and the qubit, g;.

Before concluding this section, we note that the distinction between the resonator and the transmon in the
system Hamiltonian may seem artificial. After all, the split into a transmon degree of freedom and array degrees
of freedom is unnecessary to calculate the eigenfrequencies of the combined system. This distinction is, however,
useful since one of the modes of the total system, the qubit mode, inherits the most from the transmon’s large
nonlinearity. This can be made more apparent by replacing the qubit junction by a SQUID. For symmetric
junctions, this leads to the replacement E; — Ej cos(®,/2¢,), with P, the external flux, in the qubit
Hamiltonian H. In this situation, the qubit mode is widely flux tunable while the array modes have, following
our treatment, no explicit dependence on flux. This also affects the qubit-array coupling which, in the transmon
regime, now takes the form

gk(‘I’x) ~ cos (P, /2S00)1/4 8k (&, = 0), (25)

with g, (®, = 0) given by equation (20). As will be explored below, replacing the qubit junction by a SQUID also
provides a tool for initiating dynamics in the system.

3. Ultrastrong coupling with a transmon

To investigate how strongly the transmon can be coupled to the array, we now focus on the lowest mode of the
resonator, k = 0.Indeed, this mode is expected to have the largest zero-point fluctuations as characterized by
2 / Wy X \/Z_O (from now on we write wy, however, still referring to @, calculated in section 2). To reach alarge
value of Z, the array junctions must be of large Josephson inductance L;and of small capacitance to ground Cj.
Moreover, since g, naturally depends on the coupling capacitor, C,, it is also useful to make this capacitance
large. However, a change in Cy and C, does not only change g, but it also influences other system parameters
such as the transmon anharmonicity, E, the transmon frequency, w,, the mode frequencies, wy, and the other
mode couplings, gx. Our approach to maximize the coupling strength is thus to fix the qubit anharmonicity Ec
and the mode frequency wj, for fixed values of the capacitance Cy. The coupling g, is then optimized numerically
by varying the rest of the system parameters. As will be clear below, C, is not part of this optimization but we will
varied to find an explicit dependence of gy on this capacitance. This approach does not guarantee the globally
maximal coupling strength, but it is sufficient to identify parameters that yield a transmon in the ultrastrong
coupling regime.

For the numerical examples presented below, we fix the first mode frequency to wy = 27 x 2 GHz, while
the transmon anharmonicity is fixed to Ec = 27 x 300 MHz with Josephson energy E; /Ec = 50. Fora
resonator mode at this frequency cooled to 15 mK [24], the thermal population is as small as ~ 0.0016 photons.
On the other hand, larger effective temperatures have been reported in some experiments [33]. We note that,
evenat 50 mK, the thermal population is, however, only still of 0.14 photons. With a small value of this mode
frequency, it is possible to reach a large g, /wj ratio even with a moderate value of g, /27 ~ 1 GHz. In turn, this
means that non-adiabatic changes of parameters are possible with realistic flux modulations, allowing for the
observation of ultrastrong dynamics. With these choices, figure 2 shows the results of a numerical optimization
of the coupling strength as a function of C; and for different values of Cy. As expected, increasing C, leads to an
increase of g. The observed oscillations in the coupling strength are due to local maxima in the numerical
optimization. While the value of the coupling capacitor used here is larger than used in a previous realization of
the ultrastrong coupling regime [34], it is comparable to capacitances used in transmon qubits [33]. More
importantly, despite the large coupling capacitance, the parameters that we propose using here leads to the
standard Ej /E¢ ratio of transmons. The results of figure 2 highlight that it is possible to reach the ultrastrong
coupling regime with a large range of parameters. Finally, we note that the mode frequency w, was chosen to be
small, but still large enough to avoid important thermal photon population.
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081 —(Cy=0.11F

20 40 60 80

Figure 2. Coupling strength, g, in units of wy as a function of the coupling capacitance C, as obtained by numerical optimization.
From top to bottom the parasitic capacitance Cy is increased with 0.1 fF at the top followed by Cy = 1{Fand finally Cy = 10 fF. The
other parameters are listed in the text.

While generating non-trivial dynamics is the objective here, it also important to have a readout mechanism
to probe this dynamic. Because of the photon-number dependent frequency shift resulting from cross-Kerr
coupling, it is possible to use a second mode to probe the photon population of the fundamental mode [24].
Therefore, another design objective is to have a large cross-Kerr coupling between modes.

To reach these objectives, we take as parameters:

N =145, Ly = 1.5 nH,
Co=0.1fF,  C,=85fF,
Ci=261F, G =30fF,
C.=72fF,  C.=63fF,

which lead to
wo/2m =2 GHz, 8o/wo = 0.61,
w; /27 = 8.8 GHz, & /wi = 0.11,
wy /2w =14.45 GHz, gz/wz = 0.04,
K00/27T = — 0.03 MHz, K22/27T = —2.46 MHz,

Ky, /27 = — 0.54 MHz, wy /2w = 5.7 GHz,

with w, the transmon qubit frequency at &, = 0. Furthermore we take the resonator decay rate

k = 2m X 50 kHz, corresponding to the losses observed in [24], which also includes losses induced by phase
slips in the junction array. The qubit decay rate and the pure dephasing rate are taken as

Y =7, = 27 x 50 kHz, values that are routinely observed for flux tunable transmons [35]. With these choices,
the Oth mode is well within the ultrastrong coupling regime while the 1st mode is on the edge of that regime.
Moreover, the 2nd mode is both outside the ultrastrong coupling regime and is far-detuned from the qubit. As a
result, the dispersive coupling of that mode and any higher mode to the qubit is vanishingly small. On the other
hand, as desired the 2nd mode has a significant cross-Kerr coupling to the 0th mode allowing for photon
population readout.

Before moving to the dynamics of the system, it is instructive to also consider the spectral properties of the
coupled transmon-array system by numerical diagonalizing of Hamiltonian equation (19). In figure 3(a), the
eigenenergies for the transmon and the fundamental mode, k = 0, is shown as a function of the flux through the
transmon SQUID, ®,, with the parameters listed above. The eigenmodes are highly hybridized due to the
ultrastrong coupling and, as such, each eigenstate consists of both a substantial transmon and array component.
To gain a more qualitative understanding of these results, we present in figures (b) and (c) a similar spectrum,
but with the transmon replaced by a two-level system and a harmonic oscillator, respectively. The two-level
system model of panel (b) is constructed by truncating the transmon Hilbert space to only two levels, while the
harmonic oscillator is chosen such that its transition frequency is that of the transmon’s 0-1 separation. We
notice that, while the transmon hybridizes the energy levels in a similarly way as to the harmonic oscillator, the
transmon spectrum includes a qubit-like avoided crossing indicated with the blue circles in figure 3. Moreover,
the crossings highlighted by the red ellipse in harmonic oscillator spectrum are not present for the transmon.
Therefore, while the transmon is not a qubit (i.e. a two-level system) due to its small anharmonicity, it pertains
matter-like features similar to a two-level system.
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Figure 3. Energy spectrum of (a) the transmon model, (b) two-level system model and (c) a purely harmonic system as a function of
the flux trough the SQUID which controls the transition frequency of the system. In all three cases, the coupling strength is

8o/wo = 0.61,with wy/(27) = 2 GHz and w;, /(27) = 5.7 GHz. The blue circles in (a) and (b) indicates avoided crossings, while the
red ellipse in (c) highlight crossings.

4. Dynamics in the ultrastrong coupling regime

In this section, we present numerical results of the dynamics for the system with the above parameters and in the
presence of damping. Because of the breakdown of the rotating-wave approximate in the ultrastrong coupling
regime, it is not possible to use the standard quantum optics master equation [36]. We instead use a master
equation derived in the instantaneous eigenbasis {| j (+) ) } of the full system Hamiltonian including Kerr
nonlinearity. Following [36], this master equation reads

P=%ﬁ&phj;PﬁMﬁWM
1,k=]
+ > @+ IOHDI) Kl p

jk>j

" Dlzcw <j|]p, 26)

J

with D[O]p = OpO' — %(OTOp + pO'0). This equation describes incoherent transitions and dephasing of
the system eigenstates with the relaxation rates

IJF = [(jlb* + blk) 1, 27)
T = & {jlag + aolk) P, (28)

@:f§wmwa (29)

and the dephasing-induced relaxation rates

the dephasing rates

wz?mmWH (30)

In the above expressions, a, (aJ ) refers to the fundamental mode annihilation (creation) operator and b (b") to
the qubit lowering (raising) operator. With these forms for the rates, the equilibrium state of equation (26) is the
ground state of the coupled system [36]. In contrast, the quantum optics master equation would bring the system
to the ground state of the uncoupled system, a state which is far from the true ground state in the ultrastrong
coupling regime.

4.1. Non-adiabatic generation of photons
As already mentioned, an important feature of the Jaynes—Cummings Hamiltonian is that its ground state is that
of the uncoupled system. As a result, the nature of this ground state does not change with system parameters. In
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Figure 4. (a) Average photon number in the fundamental mode of the array as a function of time. The coupling strength is

8o (@ = 0) = 0.61w, (dark blueline) and 0.1w, (light blue line). The external fluxis &, = 0.35®, x cos(w;t) with

wg = 27 X 1.5 GHz. The other parameters are listed in the text. (b) Average photon number in the fundamental mode when
interaction with a transmon (dark blue line), a two-level system (light blue line) and a harmonic oscillator (red line). The transmon
data in (b) is identical to dark blue line in (a). (c) Population of the transmon levels at the final point of the dark blue line in (a).

other words, if prepared in its ground state, a system described by the Jaynes—Cummings Hamiltonian will
remain in the vacuum state under parametric modulations.
In contrast, the ground state, | j = 0), of the Rabi Hamiltonian can be approximated as [36]

lj=0)~ (1 — %z)mo) — AJ11) + &J2]02) (31)

tosecondorderin A = g/(w, + w,)and with £ = gA/2w,. On the right-hand-side of this expression, the first
index in the states refers to the qubit and the second to the photon number. Equation (31) makes it clear that the
ground state of Hy,p,; depends on the system parameters and, moreover, has a finite average photon number.
Since the master equation equation (26) relaxes the system back to | j = 0), these photons do not decay out of the
cavity and are consequently difficult to observe.

Here we propose to take advantage of the dependence of | j = 0) on the system parameters to observe a
signature of these photons. Indeed, a non-adiabatic change of the system parameters should lead to a change of
the average photon population under Hy,p,; while it should have no effect under Hjc. As alluded to earlier, this
photon population can then be probed by taking advantage of the cross-Kerr coupling between the array modes.
For the photon population to change under parametric modulations, this modulation must, however, be non-
adiabatic. This is possible in this system and with the parameters of section 3 because of the small mode
frequency wy and therefore the reasonably small g, required to reach ultrastrong coupling.

To realize this, we modulate the flux through the transmon’s SQUID loop as

D, (1) = D cos(wyt) (32)

to induce non-adiabatic dynamics [37]. To reach measurable photon populations, large flux modulations
20.1® are required. While this modulation amplitude is larger than what is typically used in flux-pumped
Josephson parametric amplifiers, similar amplitudes have already been demonstrated experimentally [38].
Because of the change in system parameters under this flux modulation, the overlap between the
instantaneous ground state ata given time, | j = 0(¢) ), and the j'th excited state at alater time ¢/, | j’ (¢') ) will in

general be non-zero,
(j=0mlj't)) =0, (33)

aresult that holds only when the RWA is not valid. This implies that flux modulations can excite the system away
from the ground state. An example of this non-adiabatic dynamics is presented in figure 4(a) which shows the
photon population as a function of time as obtained by numerical integration of equation (26) with the
parameters of section 3 and a modulation frequency of w; = 27 X 1.5 GHz. In these simulations, the system
was first initialized in the ground state | j = 0). Importantly, the drive frequency does not correspond to a
resonance frequency of the coupled system and is therefore not expected to directly drive specific system
transitions. Despite this, a consequential photon population is observed for g, /wy = 0.61 (dark-blue line). On
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Figure 5. Time-averaged photon number for different modulation frequencies and coupling strengths. The lines from light to dark
indicate stronger coupling, gy, as indicated by the legend. The vertical dashed line indicates the value used in figure 4.

the other hand, a weaker coupling of g, /wy = 0.1 (light blue line) for which the Jaynes—Cummings Hamiltonian
is expected to be a good approximation shows a much smaller average photon population.

To further illustrate this point, figure 5 shows the time-averaged photon number as a function of the
modulation frequency wj, and for different drive strengths. Again, we observe that, for the small coupling
strengths, very few photons are generated and this occurs only at well-defined resonances. In the ultrastrong
coupling regime photons are, however, generated for a large range of frequencies. For the strongest coupling of
8y/wo = 0.61 (dark blue line), photons are observed for all drive frequencies. Moreover, for some specific
frequencies, we observe an enhancement of the photon generation. Due to the complexity of the transmon-array
spectrum, these features can be difficult to identify as specific transitions in the spectrum. Additionally, we
notice that the generated photon number is significantly larger than the expected thermal population of the
array. The fact that any modulation frequency leads to photons in the array confirms that photons are not
generated by directly exciting a transition of the static system, but are due to the non-adiabatic change of the
ground state. An analogy can be drawn to multi-passage Landau-Zener transitions [39]. These transitions appear
when the parameters of a two-level system is changed in a non-adiabatic fashion through an avoided crossing. A
similar effect is observed here with a non-adiabatic change in the ground state. The transmon-array system has,
however, a complex level structure where the Landau-Zener results cannot be explicitly applied. However, as
illustrated in figure 3, avoided crossings appear both in the spectrum obtained for a transmon and a two-level
system. In both cases this helps towards the generation of photons in the array. In figure 4(b), we see that in the
two-level system plus array, the photon number admits a much richer dynamics due to the stronger nonlinearity
and broader avoided crossing. In figure 4(b), we also compare the situation to a purely harmonic system. As
illustrated in figure 3(c), this system does not shown avoided crossings and the modulation can here be
considered as a simple change of boundary condition of the array mode. This modulation is then comparable to
the dynamical Casimir effect [38]. In practice, we see that the effect is much weaker than the non-adiabatic
generation of photons that are observed for the ultrastrong light—matter interaction with a transmon and a two-
level system. Finally, we emphasize the qubit-like behavior of the transmon by pointing out the populations of
the transmon, shown in figure 4(c). We observe the small population beyond the first two level, with less than
0.1% above the first 4 levels. This emphasize the few-level matter-like behavior of the transmon.

4.2. Photon population measurement

To measure the photon population in the ultrastrongly coupled mode k = 0, we take advantage of the cross-
Kerr coupling between modes k = 0 and 2. This coupling was already used experimentally to characterize a
junction array [24]. Ignoring the other array modes, this coupling takes the form

Hy = Kpajag ajay, (34)

with Ky, = —4./Ky K5, . Photon population in mode 0 will shift the second mode frequency by Ko, a(}L ao, a shift
that can be resolved by probing mode 2.

The general approach is now to apply a coherent drive, H, = €, (a, + a3), on resonance with the probe
mode via the input port C; (see figure 1). The signal reflected from this port is then continuously monitored.
Similarly to dispersive qubit readout [40], the photon number, (a a,), can be determined by homodyne
measurement of the field amplitude a,. The integrated homodyne signal can be expressed as
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Figure 6. Cross-Kerr readout schemes to probe the photons generated by the ultrastrong coupling dynamics. In (a) we apply the
modulation of the transmon continuously while probing a higher mode of the Kerr resonator. In (b) we only modulate for a time 7
followed by a probing of a higher mode.

T+ T .
M= 7z [ o) + aly (0] do (35)

with T, the integration time and 7 the initial time of the integration. In this expression,
Aout (1) = JE2 4 (t) + ain (t) is the output field [41], with a;, the input noise of the vacuum respecting
[ai, (D), ai; ("] = 6 (¢’ — t),and k, the decay rate of mode k = 2. The ability for such a measurement to
distinguish the state from the system with no flux modulation, ie. no ultrastrong dynamics, is captured by the
signal-to-noise ratio (SNR). Following [42, 43], the SNR can be expressed as
o — M) — 001 6
(VL) + (M)
with M, 6 =M., — (M, 5p> and M, corresponds to the same measurement without flux-modulation, ®, = 0.
As illustrated in figure 6, two approaches are considered. In the first approach, depicted in panel (a), the
probe field is monitored while continuously modulating the qubit flux. For simplicity, the nonlinearity of the
probe mode is ignored and the photon number a a, is taken to be a classical number. Then, the equation of

motion for a, reads

. . ¥ Ky .

a, = —iKpy {agag)ar — 7a2 — igp + JR2ain (37)
which as the steady state solution

JR2ain — i€
iK()z (aga()) + Iiz/z

a; = (38)

To obtain a simple estimate for the SNR, we use the values of (a] a,) oscillating between 0.2 and 0.8 shown in
figure 4 and integrate the signal taking 7 = 100 ns to go beyond the initial ring up dynamics. For the parameters
presented in section 3, together with ¢, = 27 x 2 MHzand k, = 27 X 0.35 MHz, this yields a SNR larger
than 1 for an integration time T;, ~ r . Alarger SNR can be obtained by longer integration times, however, the
ultrastrong dynamics will eventually dephase due the dephasing rates /. Using equation (38) the value of (a, ao)
is estimated and we recover, as desired, the numerical time-averaged results shown in figure 5. In this analysis we
neglected the self-Kerr nonlinearity, Ky, = 27 X —2.4 MHz, butin general similar results for the cross-Kerr
probing can be obtained by including the nonlinearity in the analysis [44].

An alternative method to map the dynamics shown in figure 4 is sketched in figure 6(b). In this approach, the
qubit flux is modulated for a time 7around &, = 0 with an amplitude of &, = 0.35,. After this initial period of
ultrastrong dynamics, the flux is rapidly increased to &, = @, /2 in a time span of one full period of oscillation,
27 /wy ~ 0.66 ns. At that point, the qubit has a vanishingly small transition frequency and is uncoupled from the
array, see equation (25). Now, with the coupling to the qubit absent, the population of mode a, simply decays to
the vacuum state at a rate . Again, it is worth emphasizing that due to the choice of a small resonator frequency
and, thus, low coupling, this change in flux is fast enough to maintain the photon number in the 4, mode. Using
the same parameters as in figure 4, we numerically integrate equation (36) and find, taking into account array
damping, amaximal SNR 7, ~ 0.5 for ameasurement time 7, ~ 6 ps. For larger measurement times, the signal
will be dominated by noise because the photon population of the ao mode have decayed. This estimate is
obtained from numerical integration including cross-Kerr coupling given by equation (34) and self-Kerr
nonlinearities for both modes. As above, from the measured signal, the detuning of the probe mode a, from its
bare frequency w, can now be inferred. Using the inferred probe detuning, the photon population in mode
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k = 0 can then be estimated. Therefore, by treating the average photon number as an unknown parameter,
standard parameter estimation techniques [45, 46] can be used and the dynamics generated during the
ultrastrong coupling is observed. We expect that a measurement of the dynamics can be obtained by only a few
experimental runs for each value of 7.

5. Conclusion

In conclusion, we have shown that it is possible to reach the ultrastrong coupling regime of light-matter
interaction by coupling a transmon qubit to a high impedance mode realized by an array of weakly nonlinear
Josephson junctions. Using realistic system parameters, we find coupling strengths as large as 0.6 times the
system frequency. By working with a low frequency mode of the array, this ultrastrong coupling is obtained for
moderate values of the coupling. This is an important advantage of our proposal. Indeed, with this choice, we
have shown that realistic modulations of the transmon parameters are sufficient to result in dynamics of the
system that is distinctive of the ultrastrong coupling regime. Moreover, we have shown how this dynamic and
the corresponding photon population can be probed by taking advantage of the multi-mode structure of the
array. These results show the possibility to probe the complex dynamics of the ultrastrong coupling regime,
opening a new window on this unconventional regime of quantum optics.

Although, these results were obtained using a transmon, the general idea applies to different types of artificial
atoms. For example, it could be interesting to take advantage of the large anharmonicity of flux qubits [47] or of
the rich level structure of the fluxonium [48] in probing the ultra-strong dynamics.

Acknowledgments

The authors are grateful to ] Bourassa, N Didier, A Kamal and N Roch for discussions. Financial support from
the Villum Foundation Center of Excellence, QUSCOPE, from the Danish Ministry of Higher Education and
Science and by NSERC is acknowledged. This research was undertaken thanks in part to funding from the
Canada First Research Excellence Fund.

References

[1] Haroche Sand Raimond J M 2006 Exploring the Quantum (Oxford: Oxford University Press)
[2] Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
[3] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[4] BuzekV, Drobny G, Kim M S, Adam G and Knight P L 1997 Phys. Rev. A 56 2352
[5] Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R-S, Majer J, Kumar S, Girvin S M and Schoelkopf R ] 2004 Nature 431 162
[6] CiutiCand Carusotto 12006 Phys. Rev. 74033811
[7] Braak D 2011 Phys. Rev. Lett. 107 100401
[8] Hausinger J and Grifoni M 2010 Phys. Rev. A 82062320
[9] Peropadre B, Forn-Diaz P, Solano E and Garcia-Ripoll ] ] 2010 Phys. Rev. Lett. 105 023601
[10] Casanova], Romero G, Lizuain I, Garcia-Ripoll ] J and Solano E 2010 Phys. Rev. Lett. 105 263603
[11] CaoX, You], Zheng H and Nori F 2011 New J. Phys. 13 073002
[12] YingZ-J, LiuM, Luo H-G, Lin H-Q and You ] Q 2015 Phys. Rev. A 92 053823
[13] Giinter G etal 2009 Nature 458 178
[14] Sanchez-Burillo E, Zueco D, Garcia-Ripoll ] ] and Martin-Moreno L2014 Phys. Rev. Lett. 113 263604
[15] Romero G, Ballester D, Wang Y M, Scarani V and Solano E 2012 Phys. Rev. Lett. 108 120501
[16] Kyaw T H, Herrera-Marti D A, Solano E, Romero G and Kwek L-C 2015 Phys. Rev. B91 064503
[17] Felicetti S, Douce T, Romero G, Milman P and Solano E 2015 Sci. Rep. 5 11818
[18] BourassaJ, Gambetta ] M, Abdumalikov A A, Astafiev O, Nakamura Y and Blais A 2009 Phys. Rev. A 80032109
[19] Niemczyk T et al 2010 Nat. Phys. 6 772
[20] Forn-DiazP, Lisenfeld J, Marcos D, Garcia-Ripoll J ], Solano E, Harmans C and Mooij ] 2010 Phys. Rev. Lett. 105 237001
[21] Forn-Diaz P, Garcia-Ripoll ] J, Peropadre B, Yurtalan M A, Orgiazzi J-L, Belyansky R, Wilson CM and Lupascu A 2016 Nat. Phys. 13
39-43
[22] YoshiharaF, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2016 Nat. Phys. 13 44-7
[23] Koch], YuTM, Gambetta J, Houck A A, Schuster D I, Majer J, Blais A, Devoret M H, Girvin S M and Schoelkopf R ] 2007 Phys. Rev. A
76042319
[24] Masluk N A, Pop I M, Kamal A, Minev Z K and Devoret M H 2012 Phys. Rev. Lett. 109 137002
[25] Bell M T, Sadovskyy I A, Ioffe L B, Kitaev A Y and Gershenson M E 2012 Phys. Rev. Lett. 109 137003
[26] Weif] T, Kiing B, Dumur E, Feofanov A K, Matei I, Naud C, Buisson O, Hekking F W J and Guichard W 2015 Phys. Rev. B 92 104508
[27] Devoret M, Girvin S M and Schoelkopf R ] 2007 Ann. Phys. 16 767
[28] BourassaJ, Beaudoin F, Gambetta ] M and Blais A 2012 Phys. Rev. A86 013814
[29] NiggSE, Paik H, Vlastakis B, Kirchmair G, Shankar S, Frunzio L, Devoret M H, Schoelkopf R J and Girvin S M 2012 Phys. Rev. Lett. 108
240502
[30] Devoret M H 1995 Quantum fluctuations in electrical circuits Les Houches Session LXIII
[31] Viehmann O, von Delft ] and Marquardt F 2011 Phys. Rev. Lett. 107 113602
[32] Nataf P and Ciuti C 2010 Nat. Commun. 172

11


https://doi.org/10.1103/PhysRevLett.83.4204
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/PhysRevA.56.2352
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevA.74.033811
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1103/PhysRevA.82.062320
https://doi.org/10.1103/PhysRevLett.105.023601
https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/10.1088/1367-2630/13/7/073002
https://doi.org/10.1103/PhysRevA.92.053823
https://doi.org/10.1038/nature07838
https://doi.org/10.1103/PhysRevLett.113.263604
https://doi.org/10.1103/PhysRevLett.108.120501
https://doi.org/10.1103/PhysRevB.91.064503
https://doi.org/10.1038/srep11818
https://doi.org/10.1103/PhysRevA.80.032109
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1038/nphys3906
https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1103/PhysRevLett.109.137002
https://doi.org/10.1103/PhysRevLett.109.137003
https://doi.org/10.1103/PhysRevB.92.104508
https://doi.org/10.1002/andp.200710261
https://doi.org/10.1103/PhysRevA.86.013814
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.108.240502
https://doi.org/10.1103/PhysRevLett.107.113602
https://doi.org/10.1038/ncomms1069

10P Publishing

NewJ. Phys. 19 (2017) 023022 C K Andersen and A Blais

[33] Rigetti C etal2012 Phys. Rev. B 86 100506

[34] Bishop LS, Chow ], Koch J, Houck A, Devoret M, Thuneberg E, Girvin S and Schoelkopf R 2009 Nature Physics 5 105
[35] MlynekJ, Abdumalikov A, Eichler C and Wallraff A 2014 Nat. Commun. 5

[36] Beaudoin F, Gambetta ] M and Blais A 2011 Phys. Rev. A 84 043832

[37] Huang]J-F, Liao J-Q, Tian L and Kuang L-M 2016 arXiv:1603.08641

[38] Wilson C, Johansson G, Pourkabirian A, Simoen M, Johansson J, Duty T, Nori F and Delsing P 2011 Nature 479 376
[39] Shevchenko S, Ashhab Sand Nori F 2010 Phys. Rep. 492 1

[40] Blais A, Huang R-S, Wallraff A, Girvin S M and Schoelkopf R ] 2004 Phys. Rev. A 69 062320

[41] Gardiner C and Zoller P 2004 Quantum Noise (Berlin: Springer)

[42] Clerk A A, Devoret M H, Girvin S M, Marquardt F and Schoelkopf R J 2010 Rev. Mod. Phys. 821155

[43] Didier N, Kamal A, Oliver W D, Blais A and Clerk A A 2015 Phys. Rev. Lett. 115 093604

[44] Andersen CK, Kamal A, Devoret M H and Blais A in preparation

[45] Wiseman HM and Milburn G ] 2009 Quantum Measurement and Control (Cambridge: Cambridge University Press)
[46] Gammelmark S and Melmer K 2013 Phys. Rev. A87 032115

[47] YanFetal2015 arXiv:1508.06299

[48] Manucharyan V E, Koch J, Glazman LI and Devoret M H 2009 Science 326 113

12


https://doi.org/10.1103/PhysRevB.86.100506
https://doi.org/10.1038/nphys1154
https://doi.org/10.1038/ncomms6186
https://doi.org/10.1103/PhysRevA.84.043832
http://arxiv.org/abs/1603.08641
https://doi.org/10.1038/nature10561
https://doi.org/10.1016/j.physrep.2010.03.002
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/RevModPhys.82.1155
https://doi.org/10.1103/PhysRevLett.115.093604
https://doi.org/10.1103/PhysRevA.87.032115
http://arxiv.org/abs/1508.06299
https://doi.org/10.1126/science.1175552

	1. Introduction
	2. Transmon coupled to a Josephson junction array
	3. Ultrastrong coupling with a transmon
	4. Dynamics in the ultrastrong coupling regime
	4.1. Non-adiabatic generation of photons
	4.2. Photon population measurement

	5. Conclusion
	Acknowledgments
	References

