
P H Y S I C A L R E V I E W L E T T E R S week ending
28 MARCH 2003VOLUME 90, NUMBER 12
Tunable Coupling of Superconducting Qubits
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We study an LC circuit implemented using a current-biased Josephson junction (CBJJ) as a tunable
coupler for superconducting qubits. By modulating the bias current, the junction can be tuned in and out
of resonance and entangled with the qubits coupled to it. One can thus implement two-qubit operations
by mediating entanglement. We consider the examples of CBJJ and charge-phase qubits. A simple
recoupling scheme leads to a generalization to arbitrary qubit designs.
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as a tunable anharmonic LC circuit, which guarantees
a nonuniform level spacing, reducing leakage to higher FIG. 1. A pair of capacitively coupled CBJJ qubits.
Significant successes in manipulating the quantum
state of superconducting qubits [1–4] once more make
them prime candidates for a solid-state quantum com-
puter [5]. Since the experiments yield single-qubit coher-
ence times close to the accepted limits [6], one can focus
on other steps towards realizing the potential of quantum
information processing [7] in these systems. The critical
next step is controlled coupling of, at least, two qubits.

Several coupling mechanisms are possible, e.g., capaci-
tive coupling [8] for charge, charge-phase [1], and
current-biased Josephson-junction (CBJJ) qubits [2,3].
Importantly, it is simple to implement and recently en-
abled entangling two charge qubits [4]. Also, this type
of coupling can be turned on and off by tuning the
qubits’ level spacings in and out of resonance [if the
interaction Hamiltonian is off diagonal in the computa-
tional basis, e.g., �x � �x]. A clear disadvantage is that
tuning the qubits themselves may cause extra decoher-
ence. Moreover, not all qubits are thus tunable, or have
off-diagonal interactions. To avoid this problem, the cou-
pling can be controlled using refocusing pulses—similar
to liquid-state NMR, where the J coupling must be re-
focused [9]. In this case, universal quantum computing is
still possible, but imperfect refocusing introduces errors
and the threshold for fault tolerance is not yet known.

We propose to capacitively couple superconducting qu-
bits to a CBJJ, implementing an LC circuit and acting as a
tunable bus. This parallels cavity QED [10] (the CBJJ and
qubits playing the roles of the cavity and atoms, respec-
tively) and ion traps [11]. LC circuits can also be coupled
to flux qubits (inductively) [12] and other superconducting
devices [13–15]. In another scheme to entangle qubits
through an LC circuit [5], the latter’s virtual states me-
diate an effective qubit-qubit interaction.

The CBJJ’s kinetic inductance depends on the bias and
modifies the circuit’s overall inductance [16]. It thus acts
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states. However, for anharmonic oscillators, transitions
from jni to jn� 2i etc. can cause leakage; this is mini-
mized for suitable system parameters (see below).

For illustration, we first consider a pair of CBJJs,
coupled by a capacitance Cc (Fig. 1; cf. Ref. [17]). One
plays the role of the qubit and the other of the tunable bus.
Controlled coupling of charge-phase qubits follows.
Coupling of a charge qubit to a CBJJ was studied in
Ref. [18].

A Josephson junction biased by a dc current has the
well-known washboard potential [19]. Close to the criti-
cal bias Ic, there are few levels in each washboard well.We
consider a large junction with a bias such that there are
only three such levels [2]. Then, the two lowest levels in
one of the wells form the qubit’s computational subspace
fj0i; j1ig. State jni has decay rate �n to the continuum.
The j0i $ j1i transition frequency is �.

The circuit of Fig. 1 has the Hamiltonian
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2003 The American Physical Society 127901-1



FIG. 2. Quality of coupled identical CBJJ qubits. (a) De-
coherence time Tdec (full lines) and leakage time Tleak (dashed
line) over the oscillation period TRabi, vs the coupling capaci-
tance Cc. We take T	1

dec � T	1
1 
 T	1

2 [see Eqs. (5) and (6)] and
T	1
leak � �2�1	 P01 	 P10�; Pij is the population of jiqjbi. The

resonant cases (Ibias � 20:8 �A) at T � 10, 25, and 70 mK are
shown. At 25 mK [2], Cc � 10 fF maximizes the effective
quality factor Q. (b) Populations P01 and P10 of j 
i vs Cc

in resonance. At large Cc, poisoning by other states reduces P01

and P10. (c) Same as (b) but off resonance: Ibias;q � 20:8 �A,
Ibias;b � 20:43 �A (full lines), and Ibias;b � 20:74 �A (dashed
lines).
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pi is the charge at node i and �i the phase difference
across junction i; ‘‘q’’ (‘‘b’’) denotes qubit (bus). The
effective capacitances are ~CCjq � Cjq 
 �C	1

jb 
 C	1
c �	1,

~CCjb � Cjb 
 �C	1
jq 
 C	1

c �	1, and ~CCc � CjqCjb�C	1
jq 


C	1
jb 
 C	1

c �. Below, we take both junctions identical:
Cjq � Cjb 
 Cj and Ejq � Ejb 
 Ej.

For near-critical bias, the washboard potentials are
well approximated by cubic ones [20] and the junc-
tions can be treated as anharmonic oscillators.
Using this analogy, the charge at node i is pi �

i�2�=�0�
������������������
m �h!p=2

q
�ayi 	 ai�, with the ‘‘mass’’

m � ~CCj��0=2��2 and the plasma frequency !pi �������������������������
2�Ic=~CCj�0

q
�1	 �Ibias;i=Ic�2�1=4; a�y�i is an annihilation

(creation) operator [19,20].
Expressing (1) in the basis fj0qi; j1qi; j2qig �

fj0bi; j1bi; j2big, we find the coupled eigenstates. First,
focus on the Hamiltonian H 2 in L, the span of
fj0q1bi; j1q0big: To first order in the anharmonicity,

H 2 �

�
Eq0 
 Eb1 �=2
�=2 Eq1 
 Eb0

�
; (2)

where the coupling coefficient is � 
 �h ����������������!pq!pb
p ~CCj=~CCc

and Eik is the energy of level k. Without coupling, j0q1bi
and j1q0bi are degenerate for bias currents such that
Eq1 	 Eq0 � Eb1 	 Eb0. A nonzero � lifts the degeneracy,
and the new (maximally entangled) eigenstates are

j �i 
 �j0q1bi � j1q0bi�=
���
2

p
: (3)

In resonance, H 2 thus acts as e	i�x��=2 �h in L and as
phase factors outside. Hence, for a system prepared in
j1q0bi, the probability to find the qubit in j1qi oscillates
with period TRabi � h=�. For a single CBJJ, such oscil-
lations occur only under current bias at frequency � [2,3].
Oscillations for the coupled qubit and bus without applied
resonant perturbation on them individually then demon-
strate their entanglement.

Anharmonicity is crucial here as it keeps other relevant
level pairs out of resonance, suppressing leakage out of L.
However, pqpb=~CCc in (1) causes nonresonant leakage, in
particular, to j2q�b�i. These states are closer to the top of
the potential barrier, so �2;q�b� are large. Hence, poisoning
of j �i with j2q�b�i shortens the coherence time.

We evaluate the extent of this leakage numerically. The
Hamiltonian of each anharmonic oscillator is expressed
in terms of about 20 harmonic-oscillator eigenstates
and diagonalized. For each junction, we use Cj � 6 pF
and Ic � 21 �A [2]. With Ibias � 20:8 �A, each well
contains three levels. We take Cc � 25 fF, minimizing
leakage while keeping a reasonable TRabi � 40 ns (see
below) [2].

We find that j2q�b�i poisons j �i with a small probabil-
ity (P2 � 10	6) only, as expected. The coupled system’s
other states also have weak poisoning by j2q�b�i; worst is
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the eigenstate close to j1q1bi, with P2 � 10	4. Roughly,
the lifetime of a state with poisoning P2 is �P2�2�

	1.
Since �2=�1 � 103 [2], then P2 & 10	4 should hardly
change the lifetime of the qubit or bus.

When the bus is not tuned to the qubit’s frequency
�q, the two are decoupled. For this, we keep the qubit’s
bias constant, and for the bus decrease it to 20:43 �A;
each well then contains about 11 levels. The eigen-
states are now computed as 0:007j0q1bi 
 0:999j1q0bi
and 0:999j0q1bi 
 0:007j1q0bi, where poisoning by
higher states with probabilities & 10	6 has been omitted.

One can choose aCc optimizing the effective quality of
the coupled qubits, as shown in Fig. 2. To avoid further
leakage and gate errors, the qubit-bus coupling should be
turned on faster than TRabi but adiabatically with respect
to the bus interlevel spacing, corresponding to �1 ns [2];
this leaves a suitable window of turn-on time.

Let us turn to a pair of charge-phase qubits coupled
through a CBJJ (Fig. 3). For the qubits, only two levels are
considered. To be able to couple the bus to only one qubit
at a time, we assume �1 � �2 for their level spacings.
Similarly to the above, tuning the bus in resonance with
�i causes coherent oscillations between it and qubit i,
while the other qubit is hardly affected.

As before, the interaction Hamiltonian couples the bus
charge to the qubit-island charge and, in the logical basis
for the qubit [1], takes the form �ixpb=~CCc. The qubit-
bus coupling coefficient is �0 


���
2

p
��2e��2�=�0�

2 ����������������
m �h!pb

p
=~CCc, where ~CCc now depends on the total
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FIG. 3. A pair of charge-phase qubits capacitively coupled to
a CBJJ.
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capacitances of both qubits C#;i � Cgi 
 2Cji. The
number � depends on the ratio of the qubit island’s
charging and Josephson energies; we take � � 1:16, cor-
responding to the parameters of Ref. [1].

For two-qubit operations, the qubits should interact
sequentially with the bus which, at the end of the opera-
tion, should be disentangled from them. This can be done
as follows. Assume the qubits are in an arbitrary state and
the bus prepared in its ground state. The bus is first tuned
to �1 for a time t1 such that �0t1=2 �h � �=2. It is then
tuned to �2 for a time t2 with �0t2=2 �h � �=4 and, finally,
tuned again to �1 for another t1. Afterwards, the bus is
disentangled from the qubits. Omitting some phase fac-
tors, the net effect is to implement a square root of
swap on the qubits. Together with single-qubit operations,
this gate is universal for quantum computation [21].
The phase factors have to be accounted for. Since all
energies involved are known from numerics and depend
on experimentally accessible parameters, this should not
be a problem. Moreover, since these qubits always have
�i � 0, they accumulate phase shifts. Refocusing on the
idle qubit is therefore assumed.

As above, leakage can occur to higher bus states.
Taking, e.g., Ic � 147:9 �A, Cj � 5:8 pF [3], and Ibias *

0:99Ic, then �b is in the range of the qubit energy split-
ting in Ref. [1]. For the qubits, we take C# � 5:5 fF, and
�1 and �2 equal to �b at Ibias � 146:5 �A and
146:75 �A, respectively. Further, Cc � 0:1 fF. These val-
ues reduce mixing while keeping the coherent oscilla-
tions as fast as possible, h=�0 � 100 ns, of the order of the
single-qubit Rabi period under microwave excitation in
Ref. [1].

Since charge-phase qubits are at least as anharmonic as
CBJJs, the leakage per qubit will be no larger than for the
circuit in Fig. 1.With two qubits, the total Hilbert space is
however larger, leaving more room for leakage. A higher
density of states also means that operations must be
slower to avoid spurious transitions, hence the longer
Rabi period. As above, poisoning with j2bi has probabil-
ity P2 � 10	4 and smaller Cc helps to avoid mixing, but at
the price of a longer Rabi period. [A small Cc also ensures
that the qubit islands’ charging energies are virtually
unchanged.] Moreover, the qubit-bus eigenstates are not
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maximally entangled as in (3), their amplitudes having a
small difference �10	3. This will have to be accounted
for when realizing logic operations. Finally, biasing the
bus at Ibias � 146:6 �A decouples it from both qubits,
again with P2 � 10	4.

Besides leakage, other imperfections must be dealt
with, in particular, relaxation and dephasing due to fluc-
tuations of the control parameters—Ibias, gate voltage,
etc. The effect of these noises on a single qubit or CBJJ
has been given in Refs. [5,22]. Here we study them for the
coupled system near the degeneracy point. Consider, e.g.,
the CBJJs in Fig. 1. Major sources of decoherence are the
qubit  Iq�t� and bus  Ib�t� bias noises. These correspond
to two separate environments, leading to independent
fluctuations of!pq and!pb. Near degeneracy, focus again
on the subspace L. First rewrite (2) as H 2 �
1
2 !��z cos#
 �x sin#�, where cos# � ��q 
�b�=!,
sin# � �=!, and ! �

�������������������������������������
��q 
�b�

2 
 �2
q

. Then, expand
H 2 to O� I�, obtaining the system-bath Hamilto-
nian H SB � �z�Xq 
 Xb� 
 �x�X

0
q 
 X0

b�. The �n are
Pauli matrices in the eigenbasis of H 2 and X�0�

i are bath
operators.

For an environment represented by real impedances
Z�!� � RI in parallel to each junction, the spectral den-
sity of the bath operators is J�!� � Jx�!� 
 Jz�!�, where

RIJz�!�
!

�

�
!pqIbias;q

4�I2cq 	 I2bias;q�

�
� sin#
2!pq

	 �h cos#
��

2




�
!pbIbias;b

4�I2cb 	 I2bias;b�

�
� sin#
2!pb


 �h cos#
��

2
; (4)

and similarly for Jx�!� but with # � #
 �=2. The
effects of the two independent baths add up in J�!�.

The relaxation and dephasing rates now become [23]

T	1
1 � Jx�!= �h� coth�!=2kBT�=2 �h; (5)

T	1
2 � T	1

1 =2
 2�'kBT= �h; (6)

where ' � Jz�!�=2� �h! for !! 0. For the CBJJ, long
coherence times require an environment with sufficiently
high impedance, engineered to be ReZ�!� � 560 k� in
Ref. [2] (instead of the standard �100 � at microwave
frequencies). With this RI, T � 25 mK, and the above
parameters for two CBJJs, T1;2 are �1 ms at exact reso-
nance. Out of resonance, T1 grows while T2 stays of the
same order. This lower bound on T1;2 is > 103 times the
decoherence time of the decoupled system [1–3], so  Iq;b
should hardly affect the coherence.

For a charge-phase qubit at the working point, voltage
fluctuations  V across the coupling-bus impedance Zb�!�
affect the qubit island through H SB � e� V�Cc=C#��

0
x.

Here, �0x is a Pauli matrix in the single-qubit eigenbasis.
As is clear from the general (5) and (6), there is no
dephasing since H SB does not couple to �0z [1].
Moreover, in the case of a purely resistive Zb�!�, and
127901-3
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for now considering only the junctions’ capacitance [5],
the spectrum of  V is centered at ! � 0. With, e.g., a
large ReZb�!� � 560 k� as above, this spectrum is very
narrow and its weight at �1;2 small. The relaxation due to
Zb is therefore weak [24].

Finally, let us generalize to other qubit designs. The
above holds if the interaction Hamiltonian is completely
off diagonal in the computational basis. If it is of the form
�zq � qb, recoupling can be used [25]. Start from the
relations H�xH � �z and H�zH � �x for the Hada-
mard gate H [7]. Since Hq�Bxq�xq 
�b�zb 


1
2��zq �

pb�Hq � Bxq�zq 
�b�zb 

1
2��xq � pb, applying H on

the qubit before and after the qubit-bus interaction (real-
ized here by taking the single-qubit Hamiltonian as
Bxq�xq with Bxq � �b), the coupled system will behave
as if it had an off-diagonal interaction. All our results
then apply.

In conclusion, we have considered a CBJJ acting as a
tunable LC circuit to mediate entanglement between
superconducting qubits and perform logic operations.
The method allows coupling qubits not just with different
parameters, but of different kinds: The two qubits in Fig. 3
need not be the same. It allows one to switch the coupling
on and off without tuning individual qubits. Estimates
show that no significant additional relaxation or dephas-
ing is introduced into the system. Leakage to higher states
can be minimized by choosing the junction parameters
and coupling capacitances. The issue of leakage has been
addressed previously [26], and this should be adapted to
apply here. Since the qubits and LC circuit can be opti-
mized independently, this gives reason for optimism. Our
approach thus has the potential to lead to a universal
coupling scheme for solid-state qubit registers.

As this article was being finalized, a paper inves-
tigating capacitive coupling between charge qubits
through an LC circuit appeared on the LANL pre-
print server. In Ref. [27], coupling between the qubits is
realized using both on- and off-resonant pulses with the
LC circuit.
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