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Engineering the quantum states of light in a Kerr-nonlinear
resonator by two-photon driving
Shruti Puri1, Samuel Boutin1 and Alexandre Blais1,2

Photonic cat states stored in high-Q resonators show great promise for hardware efficient universal quantum computing. We
propose an approach to efficiently prepare such cat states in a Kerr-nonlinear resonator by the use of a two-photon drive.
Significantly, we show that this preparation is robust against single-photon loss. An outcome of this observation is that a two-
photon drive can eliminate undesirable phase evolution induced by a Kerr nonlinearity. By exploiting the concept of transitionless
quantum driving, we moreover demonstrate how non-adiabatic initialization of cat states is possible. Finally, we present a universal
set of quantum logical gates that can be performed on the engineered eigenspace of such a two-photon driven resonator and
discuss a possible realization using superconducting circuits. The robustness of the engineered subspace to higher-order circuit
nonlinearities makes this implementation favorable for scalable quantum computation.
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INTRODUCTION
Characterized by photon-photon interaction, Kerr-nonlinear reso-
nators (KNR) display very rich physics and are consequently the
focus of much theoretical and experimental work.1 These
nonlinear oscillators exhibit bifurcation,2 can be used to generate
squeezed radiation and for quantum limited amplification,3, 4 and
have been proposed as a resource for quantum logic.5 Moreover, a
KNR initialized in a coherent state evolves to a quantum
superposition of out-of-phase coherent states, also known as a
cat state.6 In practice, Kerr nonlinearities K in atomic systems are,
however, often small in comparison to photon loss rate κ,7 making
the observation of these non-classical states of light difficult. As an
alternative approach, strong photon-photon interaction can
readily be realized in superconducting quantum circuits, with
K/κ~30 demonstrated experimentally.8 This has led to the
observation of cat states in the transient dynamics of a KNR
realized by coupling a superconducting qubit to a microwave
resonator.8 These photonic cat states play an important role in
understanding the role of decoherence in macroscopic systems,9

in precision measurements10 and are useful for quantum
computation.11, 12 However, because of their sensitivity to
undesirable interactions and photon loss, high-fidelity preparation
and manipulation of these states is challenging.
To address this problem, new ideas building on engineered

dissipation and taking advantage of the strong nonlinearities
that are possible with superconducting circuits have recently
been explored theoretically and experimentally.13–18 One such
approach, known as the qcMAP gate, relies on the strong
dispersive qubit-field interaction that is possible in circuit
quantum electrodynamics (QED)19 to transfer an arbitrary state
of a superconducting qubit into a multi-legged cat state.13, 15, 17

This method is, however, susceptible to single-photon loss that
decoheres the cat. This loss also reduces the amplitude of the cat,
something that must be compensated for by re-pumping in order

to avoid significant overlap between the coherent states.13, 15 A
second approach exploits engineered two-photon dissipation
realized by coupling a superconducting qubit to two microwave
cavities.14, 20 In the absence of single-photon loss, the steady-state
of the field is a cat state whose parity depends on the initial
number state of the field. To preserve coherence of the cat, an
important experimental challenge is that the rate of single-photon
loss must be much smaller than the rate of two-photon loss.
In this paper we propose an experimentally simple alternative

approach to encode and stabilize cat states based on two-photon
driving of a KNR. This method takes advantage of the fact that the
coherent states |±α〉 and, consequently the cat states C ±

α

�� � ¼
N ±

α ð αj i± �αj iÞ with N ±
α ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 ± e�2jαj2Þ

q
, are degenerate

eigenstates of the KNR under two-photon driving. Remarkably,
this property holds true even in the presence of single-photon loss
making this protocol particularly robust and obviating the need
for energy re-pumping. Moreover, in contrast to the above-
mentioned scheme, cat state preparation with this approach does
not require dissipation but rather relies on adiabatically turning on
the two-photon drive, the number state |0/1〉 evolving into

Cþ=�
αðtÞ

��� E
. We find that the fidelity of this preparation approaches

unity when the Kerr nonlinearity K is large with respect to the
photon loss rate κ, something that is easily realized in current
circuit QED experiments. By exploiting the concept of transition-
less quantum driving, we show that rapid, non-adiabatic cat state
preparation is possible by controlling the amplitude and phase of
the two-photon drive.21

While large Kerr nonlinearities can be used to produce cat
states, it also leads to undesired deformations of these states.6, 8

This deformation is problematic for qubit-based schemes because
of the spurious Kerr nonlinearity inherited by the field from the
qubit.22, 23 This affects, for example, the qcMAP protocol where
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the qubit-induced Kerr nonlinearity leads to undesirable phase
evolution and distortion of the cat state. Although this determi-
nistic phase evolution can be corrected with qubit-induced-gates,
this exposes the field to the decoherence channel of the qubit.24

Moreover, in the presence of photons loss, this phase evolution
leads to non-deterministic phase errors.18 We show how the
addition of a two-photon drive of appropriate amplitude and
phase during the qcMAP cancels this distortion and the
corresponding dephasing.
Taking advantage of the engineered subspace of a two-photon

driven KNR, we consider a universal set of gates for an encoding
where the coherent states {|+α〉, |−α〉} are mapped to the logical
states f 0

�� �; 1
�� �g. This mapping is possible because of the quasi-

orthogonality of coherent states for large α.14 We show that high-
fidelity operations can be realized with realistic parameters. Finally,
we discuss realizations based on superconducting Josephson
parametric amplifiers which allow the implementation of a two-
photon drive along with a Kerr nonlinearity. This simple setup is
attractive for building a large scale quantum computing architecture.

RESULTS
Our starting point is the two-photon driven KNR Hamiltonian in a
frame rotating at the resonator frequency

Ĥ0 ¼ �Kâyâyââþ ðEpâ
y2 þ E�

pâ
2Þ: ð1Þ

In the above expression, K is the amplitude of the Kerr
nonlinearity and Ep the amplitude of the two-photon drive. The
above Hamiltonian, known as the Cassinian oscillator Hamilto-
nian,25 can be re-written as

Ĥ0 ¼ �K ay2 � E�
p

K

� �
a2 � Ep

K

� �
þ jEpj2

K
: ð2Þ

This form of the Hamiltonian illustrates that the two coherent
states |±α〉 with α ¼ ðEp=KÞ1=2, which are the eigenstates of the
annihilation operator â, are also degenerate eigenstates of Eq. (1)
with energy |Ep|2/K. Equivalently, the even-odd parity states C ±

α

�� �
are also the eigenstates of Ĥ0. This argument can be generalized
to Hamiltonians of the form �Kâynân þ ðEpâ

yn þ E�
pâ

nÞ that have a
set of n coherent states as degenerate eigenstates (see Methods).
In the presence of single-photon loss, the resonator state

evolves according to the master equation _̂ρ ¼ �iðĤeff ρ̂� ρ̂Ĥ
y
effÞþ

κâρ̂ây, with the non-Hermitian effective Hamiltonian
Ĥeff ¼ Ĥ0 � iκâyâ=2.26 While the steady-state of this master
equation can be obtained analytically,27, 28 it is simple to show
(see Methods) that for κ=8jKα20j � 1 the coherent states ± α0j i ¼
± r0eiθ0
�� �

are degenerate eigenstates of Ĥeff with

r0 ¼
4E2

p � κ2=4

4K2

 !1=4

; tan 2θ0 ¼ κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16E2

p � κ2
q : ð3Þ

This reduces to the eigenstates of Ĥ0 in the absence of photon
loss. The angle θ0 is determined by Ep, with θ0 < 0 (θ0 > 0) for Ep >
0 (Ep < 0). The last term of the master equation, κaρ̂ay, induces
nondeterministic quantum jumps between the even and the odd
parity cat states, Cþα0

�� E
and C�α0

�� E
, leading to decoherence, but not

to leakage out of the degenerate subspace f C ±
α0

�� E
g. In steady-

state, the density matrix therefore takes the form ρ̂s ¼ ð α0j i
α0h j þ �α0j i �α0h jÞ=227, 28 (see Methods).
Figure 1 shows the steady-state Wigner function for κ=8jkα20j �

1=4 and ~1/16 obtained by numerical integration of the master
equation.29, 30 Even for the relatively large value of κ=8jkα20j � 1=16
shown in panel a), the steady-state approaches the ideal case ρ̂s
with a fidelity of 99.91%. As expected and evident from Fig. 1b,
the coherent states are deformed at the larger value of κ=8jkα20j �
1=4 and the fidelity with respect to the ideal steady state is
reduced to 96.55%. These numerical results confirm that, even in
the presence of single-photon loss, it is possible to confine the

state of the resonator to the manifold of coherent states |±α0〉.
Although the photon loss channel remains the dominant source of
error, the resonator can also have small amount of dephasing
noise, which can cause jumps between |α0〉 and |−α0〉. With this
bit-flip rate decreasing exponentially with α0

14 (see also Supple-
mentary Information S2), this channel is neglected here.

Adiabatic initialization of cat states
Going beyond steady-states, we now describe a protocol to
deterministically prepare cat states. The vacuum |n = 0〉 and the
single-photon Fock state |n = 1〉 are the two-degenerate eigen-
states of the undriven KNR. Under the application of a time-
dependent two-photon drive Ep(t), the instantaneous eigenstates
of the system are the degenerate states |±α0(t)〉 (or equivalently
C ±
α0ðtÞ

��� E
), where α0(t) is given by Eq. (3). Since the two-photon drive

preserves parity, under adiabatic increase of Ep(t), the vacuum
state |0〉 evolves to the even parity cat state Cþα0ðtÞ

��� E
while the

single-photon Fock state evolves to the odd parity cat state
C�α0ðtÞ
��� E

(see Supplementary Information S3 for the evolution of
the energy spectrum). To demonstrate this deterministic prepara-
tion, we take as an example EpðtÞ ¼ E0

p½1� expð�t4=τ4Þ� such
that for t � τ, EpðtÞ � E0

p ¼ 4K with τK = 5 to satisfy the adiabatic
condition. Without photon loss, the fidelity of the resulting cat
state at t = 6.5/K is 99.9% while for K/κ = 25031 the fidelity at t =
6.5/K is reduced to 98.3%.

High-fidelity nonadiabatic initialization
To speed up the adiabatic preparation described above, we follow
the approach of transitionless driving.21, 32, 33 This technique relies
on introducing an auxiliary counter-adiabatic Hamiltonian,
Ĥ′ðtÞ ¼ i½ _ψnðtÞ

�� �
ψnðtÞh j � ψnðtÞj i _ψnðtÞ

� ���, chosen such that the
system follows the instantaneous eigenstate ψnðtÞj i of the system
Hamiltonian Ĥ0ðtÞ even under nonadiabatic changes of the
system parameters. This idea has been experimentally demon-
strated with Bose-Einstein condensates in optical lattices34 and
nitrogen vacancy centers in diamonds.35 Here, to prepare the
even parity cat-state Cþα0ðtÞ

��� E
, the required counter-adiabatic

Hamiltonian is

Ĥ′ðtÞ ¼ i
_α0ðtÞ
N�

α0ðtÞ
ây C�α0ðtÞ
��� E

Cþα0ðtÞ
D ���� Cþα0ðtÞ

��� E
C�α0ðtÞ
D ���âh i

: ð4Þ

Fig. 1 Steady-state Wigner function of a two-photon driven KNR
with |K|/κ= 1/8 and a Ep = 16K, K> 0 and b Ep = 4K, K< 0,
corresponding to κ=8jKα20j � 1=16 and ~1/4, respectively. The white
circles indicate the expected position of the coherent states
following Eq. (3)
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While exact, this does not correspond to an easily realizable
Hamiltonian. It can, however, be approximated to (see Methods),

Ĥ′ðtÞ � i
_α0ðtÞ

N�
α0ðtÞ½1þ 2α0ðtÞ� ðâ

y2 � â2Þ; ð5Þ

which can be implemented with an additional two-photon drive
orthogonal to Ep(t). As an illustration of this method, we
reconsider the example presented in the previous section now
with the much shorter evolution time of τ = 1/K. As shown by the
Wigner function in Fig. 2a, without the additional two-photon
drive of Eq. (5), the state at time t = 1.37/K is highly distorted.
On the other hand, and as illustrated in Fig. 2b, initialization with
the appropriate auxiliary orthogonal two-photon drive leads to
cat-state fidelities of 99.9% with κ = 0 and 99.5% with κ = K/250. In
other words, we find that the protocol is made ~5 times faster by
the addition of the orthogonal drive, thereby improving the
fidelity in the presence of single-photon loss. These results,
obtained with the analytical expression of Eq. (5), can be further
improved upon using numerical optimal control.36 For example,
using the approach recently described in ref. 37, we find that cat
states can be initialized in times as short as 0.3/K with fidelity
99.995% (see Supplementary Information S4). Adiabatic cat state
preparation with two-photon driving was also investigated in a
noiseless idealized KNR.38, 39 These previous studies lack the
crucial examination of eigenspace distortion that arise, as will be
discussed below, during gate operations and fall short of
accounting for higher-order nonlinearities that exist in realistic
physical implementations.

Realization with superconducting circuits
One standard approach to realize a two-photon driven Kerr-
nonlinear resonator is to terminate a λ/4 microwave resonator
with a flux-pumped SQUID, a device known as a josephson
parametric amplifier (JPA)40–42 (see also Supplementary Informa-
tion S5). The non-linear inductance of the SQUID induces a Kerr
nonlinearity and a two-photon drive is introduced by the
modulation of the flux-pump at twice the resonator frequency.
As an illustrative example, with a realistic JPA Kerr-nonlinearity of
K/2π = 750 KHz it is possible to encode a cat state with α0 = 2 in a
time 0.3/K = 63.6 ns using the transitionless driving approach with
numerically optimized pulse shape. We have, moreover, simulated
the cat state initialization protocol under the exact Hamiltonian of
a JPA including the full Josephson junction cosine potential.

As discussed in the Supplementary Information S5, the results are
essentially unchanged showing that the strong state confinement
to the coherent states |±α0〉 is also robust against higher-order
nonlinearities that will arise in a circuit implementation of these
ideas. An alternative realization of the two-photon driven KNR is
based on a 3D microwave cavity coupled to a Josephson junction.
The non-linear inductance of the junction induces a Kerr
nonlinearity, while a microwave drive on the junction at the 3D
cavity frequency introduces the required two-photon drive.14, 20

We note that the engineered dissipation approach of Refs 14, 20
also relies on a two-photon drive to achieve confinement to the
subspace of two coherent states with opposite phases. There, the
two-photon drives is used to induce two-photon loss at a rate κ2ph.
This rate must be made large with respect to the single-photon
loss rate κ for high fidelity initialization of cat states, something
which is challenging experimentally. In contrast, the present
approach does not rely on dissipation but rather takes advantage
of the large Kerr-nonlinearity K that is easily realized in super-
conducting quantum circuits. Even in the presence of two-photon
loss, robust confinement is obtained if K > κ2ph, a condition that is
easily satisfied in practice.

Stabilization of cat states against Kerr induced rotation and
dephasing
Even with high-fidelity cat state preparation, it is important to limit
the unwanted phase evolution and dephasing arising from Kerr
nonlinearity and single-photon loss. We now illustrate, with two
examples, how a two-photon drive of appropriate amplitude and
phase can correct this unwanted evolution. First consider a
resonator deterministically initialized to Cþα

�� �
. Fig. 3a–c illustrates

the evolution of this initial state in the absence of two-photon
drive. Kerr nonlinearity leads to deterministic deformation of the
state6, 8 which, in the presence of single-photon loss, also induces
additional dephasing. This results in a reduction of the contrast of
the Wigner function fringes, a reduction of the separation of the
cat components and a broadening of these components. As a
result, the fidelity of C ±

α

�� �
decreases faster in a KNR than in a linear

resonator (see Supplementary Information S9). While the deter-
ministic phase rotation can be accounted for and corrected in a
simple way, this is not the case for Kerr-induced dephasing.24

Fig. 3d–f illustrates the same initial cat state now stabilized against
Kerr-induced rotation and dephasing by the application of a
two-photon drive. This drive is chosen such that its amplitude

Fig. 2 Wigner function for a KNR initialized in vacuum |0〉 and driven by a a single parametric drive Ep ¼ E0
p½1� expð�t4=τ4Þ� b with two

orthogonal parametric drives, Ep ¼ E0
p½1� expð�t4=τ4Þ� and E′

pðtÞ ¼ i _α0ðtÞN�
α0ðtÞ=ð1þ 2α0ðtÞÞ, where α0ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiEpðtÞ=K
p

. The Wigner function is

plotted at time t= 1.37τ, with τ= 1/K, E0
p ¼ 4K . Without the auxiliary drive E′

p the non-adiabatic driving of the system results in an imperfect
cat state. However, the auxiliary drive induces counter-adiabatic terms, resulting in near perfect initialization of the cat state. At t = 1.3τ, the
fidelity with respect to Cþ2

�� �
is 99.9% for κ= 0 and 99.5% for K/κ= 250
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Ep satisfies Eq. (3). The confinement in phase space provided by
the two-photon driven KNR prevents amplitude damping of the
stabilized coherent states |±α0〉. As a result, the cat state fidelity in
this system decreases more slowly in time that in a linear
resonator. As a simple extension, we also find that it is possible to
stabilize coherent states against Kerr-induced rotation and
dephasing (see Supplementary Information S1). These somewhat
counterintuitive results shows that, even in the presence of loss, a
Gaussian drive (i.e., two-photon drive) can completely remove the
highly non-Gaussian effect of a Kerr nonlinearity.
As a second example, we consider the qcMAP gate for cat state

preparation, a protocol that relies on the strong dispersive qubit-
resonator interaction that is realized in circuit QED.13 In practice,
this strong interaction is accompanied by a qubit-induced Kerr
nonlinearity of the field.22, 23 As a result, even at modest α, cat
states suffer from deformations.15 This effect is illustrated in
Fig. 4a, b which shows the cat state obtained from qcMAP under
ideal dispersive interaction (ignoring any Kerr nonlinearities) and
under the full Jaynes–Cummings Hamiltonian, respectively.
Distortions are apparent in panel b) and the fidelity to the ideal
cat is reduced to 94.1%. In contrast, Fig. 4c shows the same
Wigner function prepared using the qcMAP protocol with the full
Jaynes–Cummings interaction and an additional two-photon
drive. The resulting fidelity is 99.4%, approaching the fidelity of
99.8% obtained under the ideal, but not realistic, dispersive
Hamiltonian. The amplitude of the two-photon drive was

optimized numerically to take into account the qubit-induced
Kerr nonlinearity (see Supplementary Information S10).

Universal quantum logic gates
Following the general approach of Ref. 14, we now turn to the
realization of a universal set of gates in the two-photon driven
KNR. Taking advantage of the quasi-orthogonality of coherent
states for large α, both the fjC ±

α0
ig and the f ± α0j ig basis can be

used as logical states. Here, we choose the latter which we will
now refer to as f 0

�� �; 1
�� �g. With this choice, a logical Z rotation can

be realized by lifting the degeneracy between 0
�� � and 1

�� � using a
single-photon drive in combination to Ĥ0: Ĥz ¼ Ĥ0 þ Ezðây þ âÞ.
For jEzj � j4Kα30j and Ep real, the only effect of this additional
drive is to lift the degeneracy by δz = 4Ezα0 (Supplementary
Information S6). Indeed, in the space spanned by f 0

�� �; 1
�� �g, the

single-photon drive Hamiltonian can be expressed as IEzðây þ âÞ
I ¼ δzσz=2, where I ¼ 0

�� � 0
� ��þ 1

�� � 1
� �� and σz ¼ 0

�� � 0
� ��� 1

�� � 1
� ��.

Numerical simulations of this process for a time τ = 1/δz,
corresponding to the gate R̂zðπÞ, with the resonator initialized to
Cþα0
�� E

and the choices Ep=4K, Ez=0.8K leads to a fidelity of 99.9%
with κ = 0 and 99.5% for K/κ = 250. Increasing Ez, so that the
condition jEzj � j4Kα30j is no longer satisfied, distorts the
eigenstates and as a consequence the fidelity of the gate
decreases. The dependence of the gate fidelity on the strength
of the single photon drive is examined further in Supplementary
Information S8. A similar scheme for single-qubit rotation has

Fig. 3 Wigner functions at different times for a lossy KNR initialized to Cþ2
�� �

without a–c and with d–f two-photon driving. K/κ= 20 and Ep~4K
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been proposed for resonators with engineered two-photon loss.14

However, this requires the drive strength to be significantly
smaller than the two-photon loss rate which is typically of the
order of 50–100 kHz,20 thereby leading to long-gate times.
The strong state confinement resulting from the two-photon

driven KNR prevents population transfer between the two logical
states, making it difficult to implement X rotations. One approach
to implement R̂xðπ=2Þ is to temporarily remove the two-photon
drive and let the state evolve under the Kerr Hamiltonian.14

Alternatively, an arbitrary R̂xðθÞ can be realized by introducing a
detuning between the two-photon drive and the resonator
corresponding to the Hamiltonian Ĥx ¼ Ĥ0 þ δxâ

yâ. For δx �
2Ep (Supplementary Information S7), this can be understood by
projecting the number operator in the logical basis: IâyâI ¼
jα0j2I � jα0j2e�2jα0j2σx . Despite the exponential reduction with α0
of the effective Rabi frequency, high-fidelity rotations can be
achieved. Numerical simulations on a resonator initialized to 0

�� �
and for a time τ ¼ π=ð4δxjα0j2e�2jα0j2Þ, corresponding to the gate
R̂xðπ=2Þ, leads to a fidelity of 99.7% for κ = 0 and 98.6% for K/κ =
250 with Ep ¼ K and δx = K/3. Similarly to the Z rotations, the
fidelity of the X gate also decreases if the condition δx � 2Ep is
not met (see Supplementary Information S8).
To complete the set of universal gates, an entangling gate

between the field stored in two distinct resonators, or alternatively
two modes of a single resonator, is needed. From the discussion
on the R̂zðθÞ gate, it follows that a σz1σz2 interaction between
the two fields is obtained by linearly coupling the two-photon
driven KNRs, the Hamiltonian now reading Ĥzz ¼ Ĥ01 þ Ĥ02þ
Ezzðây1â2 þ â1â

y
2Þ. To simplify the discussion, the two resonators

are assumed to be identical with Ĥ0i ¼ �Kây2i â2i þ Epðây2i þ â2i Þ.
Expressed in the logical basis, the bilinear coupling Hamiltonian
takes the desired form δzzσz1σz2, with δzz ¼ 4Ezzjα0j2. In order to
demonstrate this gate, we simulate the master equation under Ĥzz

with the resonators initialized to the product state Cþα0
�� E

� Cþα0
�� E

and Ep= 4K, Ezz = K/5. As expected, the initial product state is
transformed to the maximally entangled state ð 0; 0�� �þ i 0; 1

�� �þ
i 1; 0
�� �þ 1; 1

�� �Þ=2 at t = π/2δzz with fidelity F = 99.99% for κ = 0
and F = 94% for K/κ = 250. Supplementary Information S8 exam-
ines the fidelity dependence on the strength of the two-photon
drive. Similar approaches for Z rotations and entangling gate have
been presented before,39 however without the crucial analysis of
the restrictions on the amplitude of the single-photon drive and
strength of the single-photon exchange coupling.

DISCUSSION
To summarize, we have shown that, in the presence of a two-photon
drive, the eigenspace of a KNR can be engineered to be two out-of-
phase coherent states that are robust against single-photon loss. This
quantum state engineering offers a practical way to correct the
undesirable effects of Kerr nonlinearity in applications such as the
qcMAP gate. We have also described protocols for fast-high fidelity
initialization and manipulation cat states for quantum information
processing. This approach offers significant improvements over
previous techniques based on dispersive qubit-resonator interactions
or reservoir engineering. These results suggest a minimal approach
to prepare and manipulate cat states of the field of a microwave
resonator using only a Josephson parametric amplifier and are of
immediate practical importance for realization of a scalable,
hardware efficient platform for quantum computation. Furthermore,
the observation that n coherent states are the degenerate
eigenstates of the Hamiltonian Ĥ ¼ �Kâynân þ Epðâyn þ ânÞ pro-
vides an approach for initializing n-component cat states. Such a
Hamiltonian could be implemented with a JPA, in which the cosine
potential of a Josephson junction supplies the required nonlinearity
and flux modulation through the SQUID loop at n-times the
resonator frequency triggers the n-photon drive. Our work opens
new directions for the JPA as a powerful device for implementing
quantum algorithms based on multi-component cats.

METHODS
Eigenstates of the n-photon driven Hamiltonian
Consider the Hamiltonian

Ĥn ¼ �Kâynân þ ðEpâ
yn þ E�

pâ
nÞ ¼ �K âyn � E�

p

K

� �
ân � Ep

K

� �
þ jEpj2

K
:

ð6Þ
The second form makes it clear that the coherent state |α〉 with αn−Ep/K = 0

is an eigenstate of Ĥn . Thus, in general, there are n coherent states that are
the degenerate eigenstates of Ĥn with energy |Ep|

2/K.

Effective Hamiltonian and steady-state
Under single-photon loss, the system’s master equation takes the form26

_̂ρ ¼ �iðĤeff ρ̂� ρ̂Ĥ
y
effÞ þ κâρ̂ây; ð7Þ

where Ĥeff ¼ Ĥ0 � iκâyâ=2 and Ĥ0 ¼ �Kâyâyââþ ðEpâ
y2 þ E�

pâ
2Þ. Under

displacement transformation Dðα0Þ ¼ expðα0ây � α0âÞ, Ĥeff reads

Ĥ′
eff ¼ Dyðα0ÞĤeffDðα0Þ

¼ ½ð�2Kα20α
�
0 þ 2Epα

�
0 � i k2 α0Þây þ h:c:�

þ½ð�Kα20 þ EpÞây2 þ h:c:� � 4Kjαj2âyâ� i k2 â
yâ

�Kây2â2 � ð2Kα0ây2αþ h:c:Þ;

ð8Þ

where we have dropped the constant term E ¼ �K jα0j4 þ E�
pα

2
0 þEpα

�2
0 � iκjα0j2=2 that represents a shift in energy of the non-Hermitan

effective Hamiltonian. We take α0 to satisfy

�2Kα20α
�
0 þ 2Epα

�
0 � i

κ

2
α0 ¼ 0; ð9Þ

Fig. 4 Wigner function of final state under qcMAP gate with a ideal
dispersive Hamiltonian, b full Jaynes–Cummings Hamiltonian and c
full Jaynes–Cummings Hamiltonian and two-photon drive
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such as to cancel the first line of Ĥ′
eff which now reads

Ĥ′
eff ¼ ½ð�Kα20 þ EpÞây2 þ h:c:�

�ð4Kjα0j2 þ i κ2Þâyâ� Kây2â2 � 2Kα0â
y2â� 2Kα�0â

yâ2:

ð10Þ

Eq. (9) is satisfied for α0 ¼ 0; ± r0eiθ0 where

r0 ¼
4E2

p � κ2=4

4K2

 !1=4

; θ0 ¼ 1
2
tan�1 κffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16E2
p � κ2

q
0
B@

1
CA: ð11Þ

For α0 ¼ 0, the first two terms of Eq. (10) represent a near resonant
parametric drive of strength Ep. This results in large fluctuations making
the system unstable around α0=0. On the other hand, for α0 ¼ ± r0eiθ0 , the
displaced effective Hamiltonian can be rewritten as

Ĥ′
eff ¼ 1

2 ½i κα02α�0
ây2 þ c:c:� � ð4Kjα0j2 þ i κ2Þâyâ

�Kây2â2 � 2Kα0â
y2â� 2Kα�0â

yâ2:

ð12Þ

The first two terms of Eq. (12) now represent a parametric drive
whose amplitude has an absolute value of κ/2 and is detuned by
4Kjα0j2 þ iκ=2 	 4K jα0j2. In other words, the effect of single-photon loss
κ is to squeeze the field around α0 ¼ ± r0eiθ0 leading to increased
quantum fluctuations. For κ � 8Kjα0j2, the resulting fluctuations are,
however, small and |0〉 remains an eigenstate in the displaced frame. This
implies that, back in the lab frame, |±α0〉 are the degenerate eigenstates of
Ĥeff . As a result, ρ̂s ¼ ð α0j i α0h j þ �α0j i �α0h jÞ=2 is a steady-state of Eq. (7).
It is, moreover, the unique steady-state of this system since only the two
eigenstates |±α0〉 of the effective Hamiltonian are also invariant under the
quantum jump operator â.43 Following the analysis here, it is also possible
to characterize the effect of, for example, single-photon drive, detuning,
etc (see Supplementary Notes).

Cat state decoherence under single-photon loss
In the previous section, we saw that the coherent states |±α0〉 are
eigenstates of the two-photon driven KNR even in the presence of single-
photon loss. However, this loss channel results in decoherence of
superpositions of these two states, i.e., of cat states. Indeed, the last term
of the master equation Eq. (7), κâρ̂ây , transforms the even parity cat state
Cþα0
�� E

to the odd parity cat state C�α0
�� E

and vice-versa. This results in
decoherence and reduction in the contrast of the Wigner function fringes.
The rate of this phase decay is given by γ ¼ κjα0 � ð�α0Þj2=2 ¼ 2κjα0j2.
Consider for example the cat state initialization protocol with Ep ¼ E0

p

½1� expð�t4=τ4Þ� and E0
p ¼ 4K so that α0ðtÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½1� expð�t4=τ4Þ�p
. The

phase error during this initialization can be estimated to be
expð�2

R
κjα0ðtÞj2dtÞ ¼ 0:016, resulting in a fidelity of 98.4%. This estimate

compares very well with the numerically estimated fidelity quoted earlier
in the manuscript (98.3%).

Additional Hamiltonian for faster than adiabatic initialization of cat
state
Consider the exact Hamiltonian in Eq. (4) required for transitionless
quantum driving. At short times t~0, we have that α0(t)~0 and as a result

Cþ0
�� � � n ¼ 0j i and C�0

�� � � n ¼ 1j i. Therefore, ây C�α0ðtÞ
��� E

Cþα0ðtÞ
D ���� Cþα0ðtÞ

��� Eh
C�α0ðtÞ
D ���âi � ây 1j i 0h j � 0j i 1h jâ

h i
� ây2 � â2. On the contrary, at long time

the coherent states become quasi-orthogonal and a single photon jump
leads to the transition between even and odd photon number cat states.
This suggests that if α0ðtÞ � 1, it is possible to approximate

ây C�α0ðtÞ
��� E

Cþα0ðtÞ
D ���� Cþα0ðtÞ

��� E
C�α0ðtÞ
D ���âh i

� ðây2 � â2Þ=2α0ðtÞ in the restricted

coherent state basis. Therefore, in order to reconcile both short and long-

time behavior, we choose, ây C�α0ðtÞ
��� E

Cþα0ðtÞ
D ���� Cþα0ðtÞ

��� E
C�α0ðtÞ
D ���âh i

� ðây2 �
â2Þ=½1þ 2α0ðtÞ� to obtain Eq. (5).
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