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We consider the electromagnetic field generated by a coherent conductor in which electron transport is
described quantum mechanically. We obtain an input-output relation linking the quantum current in the
conductor to the measured electromagnetic field. This allows us to compute the outcome of measurements
on the field in terms of the statistical properties of the current. We moreover show how under ac bias the
conductor acts as a tunable medium for the field, allowing for the generation of single- and two-mode
squeezing through fermionic reservoir engineering. These results explain the recently observed squeezing
using normal tunnel junctions [G. Gasse et al., Phys. Rev. Lett. 111, 136601 (2013); J.-C. Forgues et al.,
Phys. Rev. Lett. 114, 130403 (2015)].
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More than sixty years ago, Glauber showed that the
electromagnetic radiation produced by a classical electrical
current is itself classical [1,2]. The situation can however be
different in mesoscopic conductors at low temperature.
Indeed, in such conductors electron transport should no
longer be considered classical and current is represented by
an operator. Because this operator does not commute with
itself when evaluated at different times or frequencies,
Glauber’s results no longer apply. One may then wonder if
a “quantum current” may generate a nonclassical electro-
magnetic field. This is the central question addressed in this
Letter: how does the quantum properties of current in a
coherent conductor imprint on the properties of the electro-
magnetic field it radiates?
This questionwas partly addressed in Refs. [3–5] where it

was shown, for example, that the statistics of photons
emitted by a quantum conductor can deviate from the
Poissonian statistics of a coherent state. While the photon
statistics are most naturally revealed by power detection,
measurements on quantum conductors are more typically
realized with linear (i.e., voltage) detectors revealing quad-
ratures of the electromagnetic field radiated by the sample.
As a result, Refs. [3–5] only partly answer the question.
More recently it was predicted that, under ac bias, the

electromagnetic field radiated by a coherent conductor can
be squeezed [6]. The field is then characterized by
fluctuations along one of two quadratures being smaller
than the vacuum level. These quantum states of the
electromagnetic field are typically associated with the
presence of a nonlinear element, such as a Kerr medium
in the optical frequency range [7] or a Josephson junction at
microwave frequencies [8]. In contrast, squeezing was
experimentally observed using a tunnel junction with linear
current-voltage characteristics [9,10]. Here squeezing
results, not from a coherent nonlinear interaction, but
rather from the incoherent quantum shot noise of the

junction under ac driving. The predictions of Ref. [6],
however, only consider correlation functions of the current
inside the conductor, not the properties of the emitted field
that is squeezed and ultimately measured.
In this Letter, instead of focusing on the current in the

coherent conductor, we determine the properties of the field
that it radiates. Given that currents and voltages in electrical
circuits are nothing more than another representation of
electromagnetic fields, the theoretical methods of quantum
optics are particularly well suited. By deriving an input-
output relation [11–13] directly connecting the radiated
electromagnetic field to the current, we can compute
measurable properties of the radiated field. We then go a
step further and consider the fermionic degrees of freedom
of the conductor as an environment for the electromagnetic
field of a microwave resonator. Tracing out the conductor’s
degrees of freedom leads to a Lindblad master equation for
the electromagnetic field in a squeezed bath, thus giving to
access to its squeezing and multimode entanglement
properties. Depending on the choice of ac bias for the
junction, one can induce both single- and two-mode
squeezing of the resonator modes. This shows how the
electrons in the coherent conductor act as an effective,
tunable medium for the field, and provides clear insight into
the mechanism responsible for squeezing of the field. In
contrast to conventional schemes based on coherent inter-
actions with nonlinearities, the fermionic degrees of free-
dom here provide a broadband squeezed bath for the
resonator, where dissipation can be used to cool modes
of the resonator into a squeezed state [14].
Our first step is to model the electromagnetic environ-

ment of the sample as a semi-infinite transmission line of
characteristic impedance Z0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L0=C0

p
, with L0 and C0

the inductance and capacitance per unit length, respec-
tively. The position-dependent flux ϕ̂tlðx; tÞ along the
transmission line is [11,12,15]
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ϕ̂tlðx; tÞ ¼ α
Z

∞

0

dωffiffiffiffi
ω

p ðâin½ω%e−iωðtþx=vÞ

þ âout½ω%e−iωðt−x=vÞ þ H:c:Þ; ð1Þ

where v ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
L0C0

p
is the speed of light in the trans-

mission line and α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏZ0=4π

p
. The subscripts “in” and

“out” denote components moving towards and away from
the sample, respectively. The corresponding annihilation
operators satisfy ½âin½ω%; â†in½ω0%% ¼ δðω − ω0Þ and similarly
for âout. Finally, current at position x in the transmission
line is given in terms of the flux by Îtlðx; tÞ ¼
L−1
0 ∂xϕ̂tlðx; tÞ, while voltage is V̂ tlðx; tÞ ¼ ∂tϕ̂tlðx; tÞ.
With the sample located at x ¼ 0, current conservation

imposes that

ÎsðtÞ ¼ Îtlðx ¼ 0; tÞ; ð2Þ

where Îs is the sample’s electron current operator in the
presence of the transmission line and of classical voltage
bias. This equality links the bosonic operators of the line to
the fermionic degrees of freedom of the sample. In the
frequency domain, this takes the form [16]

âout½ω% ¼ âin½ω% − i

ffiffiffiffiffiffiffiffiffi
Z0

πℏω

r
Îs½ω% ð3Þ

which relates the field travelling away from the conductor
âout to the incoming field âin and the condutor’s current
operator Îs [17]. This is akin to an input-output boundary
condition in quantum optics [11,12,18,19]. An expression
similar to Eq. (3) can be found in Ref. [3] for the case of a
quantum conductor coupled to the electromagnetic field
freely propagating in three dimensions.
Since Îs½ω% depends on the current evaluated at all times,

it does not commute with âin½ω%. Care must therefore be
taken when evaluating moments of âout½ω%. In Ref. [3], this
problem was avoided by neglecting the influence of the
field’s vacuum fluctuations on the current Îs. This is
justified for a sample of impedance much larger than Z0,
thus very poorly matched to the transmission line, and does
not correspond to usual experimental conditions where
impedance matching is preferable. Here, we address the
problem of noncommutativity by writing Eq. (3) in terms of
the quantum conductor’s bare current operator Î in the
absence of the electromagnetic environment, rather than the
full current Îs containing the influence of the field. This is
done by going to the Heisenberg picture and solving for the
current operator perturbatively in the light-matter coupling
α. This linear response treatment is justified for typical low
impedance electromagnetic environments such that Z0 ≪
RK with RK ¼ h=e2 ∼ 26 kΩ the quantum of resistance.
For the common experimental value Z0 ¼ 50 Ω, one
indeed has eα=ℏ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z0=2RK

p
∼ 0.03 ≪ 1. For the low

impedance transmission line and when the sample can be
treated in the lumped-element limit, we take the interaction
between the line’s and samples’s degrees of freedom to be

of the form HIðtÞ ¼ ÎðtÞϕ̂tlðx ¼ 0; tÞ [16]. To first order in
the interaction we then find [16,20]

Îs½ω% ¼ Î½ω% þ V̂ tl½ω%=Z½ω%; ð4Þ
with Z½ω% the impedance of the sample. In this expression,
Î½ω% is the Fourier transform of ÎðtÞ, the electronic current
operator evolving according to the bare quantum conductor
Hamiltonian [16]. In principle, this free Hamiltonian can
contain disorder, interactions, etc., as well as the effect of
the classical dc and ac bias voltage, Vdc þ Vac cosωact,
applied to the conductor.
Combining Eqs. (3) and (4) directly leads to

âout½ω% ¼ r½ω%âin½ω% − it½ω% Î½ω%ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πℏωZ−1½ω%

p ; ð5Þ

with r ¼ ðZ − Z0=Z þ Z0Þ the reflection coefficient and
t ¼ ð2

ffiffiffiffiffiffiffiffiffi
ZZ0

p
=Z þ Z0Þ the transmission coefficient with

jrj2 þ jtj2 ¼ 1. In contrast to Eq. (3), the bare current
operator Î entering Eq. (5) commutes at all times with the
incoming field âin that has not yet interacted with the
conductor. Arbitrary correlation functions of the outgoing
field can thus easily be evaluated with this input-output
boundary condition.
As examples, we now discuss the results for different

types of common measurements. For simplicity we restrict
the discussion to the practically important case of an ideally
matched sample, Z½ω% ¼ R ¼ Z0. Then r ¼ 0 and the
outgoing field takes the simple form âout½ω% ¼
−iÎ½ω%=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πSvacðωÞ

p
where SvacðωÞ ¼ ℏω=R is the current

noise spectral density of vacuum noise. Measurable proper-
ties of the output field are then fully determined by the
current. In particular, second order moments of the output
field are given in terms of current-current correlation
functions which under ac excitation obey [16,21,22]

hI½ω0%I½ω%i ¼ 2π½ ~Sðω0Þ þ Svacðω0Þ%δðω0 þ ωÞ

þ 2π
X

p≠0
Xðω0Þδðω0 þ ω − pωacÞ: ð6Þ

In this expression,

~SðωÞ ¼
X∞

n¼−∞
J2n

"
eVac

ℏωac

#
S
"
Vdc þ

nℏωac

e
;ω

#
; ð7Þ

is the photoassisted noise, SðV;ωÞ ¼ F½S0ðV þ ℏω=eÞþ
S0ðV − ℏω=eÞ%=2þ ð1 − FÞS0ðℏω=eÞ the noise spectral
density of current fluctuations in the conductor,
S0ðVÞ ¼ R−1eV cothðeV=2kBTÞ, and F the Fano factor
[23]. Moreover,

XðωÞ ¼ F
2

X

n

JnJnþp

$
S0

"
Vdc þ

ℏ
e
ðωþ nωacÞ

#

þ ð−1ÞpS0
"
Vdc −

ℏ
e
ðωþ nωacÞ

#%
; ð8Þ
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characterizes the noise dynamics [24]. For brevity we have
here omitted the argument of the Bessel functions Jn that is
the same as in Eq. (7).
We first consider photodetection of the output field in the

experimentally relevant situation where the signal is band-
pass filtered before detection. This can be taken into
account by defining a filtered output field

b̂outðtÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πB

p
Z

B
dωe−iðω−ω0Þtâout½ω%; ð9Þ

where B refers to a measurement bandwidth centered at the
observation frequency ω0 ≫ 2πB. With this definition, the
filtered photocurrent is [16]

hb̂†outðtÞb̂outðtÞi ¼
~Sðω0Þ − Svacðω0Þ

2Svacðω0Þ
; ð10Þ

where we have assumed a small filter bandwidth and
dropped fast rotating terms [16]. As expected, a photo-
detector is sensitive to the spectral density of the current
noise emitted by the conductor [25–27]. In practice, this can
be measured by separating the emission and absorption
noise [28,29]. A more common detection scheme is to
measure the time-averaged power of the emitted electro-
magnetic field. Again assuming a small measurement
bandwidth, we find from Eq. (1) that hV̂ tl;fðtÞ2i=R ¼
B ~Sðω0ÞR, with V̂ tl;f the filtered transmission-line voltage
and where we have omitted a contribution from the vacuum
noise of the in-field [16]. In contrast to photodetection,
measurement of the power of the electromagnetic field is
related to the symmetric current-current correlator contain-
ing both emission and absorption [27]. This is not in
contradiction with the fact that a passive detector cannot
detect vacuum fluctuations [26]. Power measurements are
indeed performed using active devices like amplifiers and
mixers.
Following the experiments of Refs. [9,10], we now

consider measurement of field quadratures as obtained
by homodyne detection [7]. Defining quadratures of the
output field in the frequency domain as X̂out½ω% ¼ â†out½ω% þ
âout½ω% and Ŷout½ω% ¼ iðâ†out½ω% − âout½ω%Þ, and using
Eq. (5), we immediately find for the variance of these
quantities [16]

ΔX̂2
out½ω% ¼

hfÎ½−ω%; Î½ω%gi − 2hÎ½ω%2i
4πSvacðωÞ

;

ΔŶ2
out½ω% ¼

hfÎ½−ω%; Î½ω%giþ 2hÎ½ω%2i
4πSvacðωÞ

: ð11Þ

In practice, hI½ω%2i is only nonzero in the presence of ac
bias on the sample. Indeed, as expressed by Eq. (6),
modulation of the bias voltage at frequency ωac induces
correlations between Fourier components of the current
separated by pωac, with p an integer [21,22]. For

pωac ¼ 2ω0, and defining filtered output quadratures,
X̂out;fðtÞ ¼ b̂†outðtÞ þ b̂outðtÞ and Ŷout;fðtÞ ¼ i½b̂†outðtÞ−
b̂outðtÞ%, we find [16]

ΔX̂2
out;fðtÞ ¼ 2

"
Nðω0Þ þ

1

2
−Mðω0Þ

#
;

ΔŶ2
out;fðtÞ ¼ 2

"
Nðω0Þ þ

1

2
þMðω0Þ

#
; ð12Þ

where

NðωÞ ¼
~SðωÞ − SvacðωÞ

2SvacðωÞ
; MðωÞ ¼ XðωÞ

2SvacðωÞ
: ð13Þ

Clearly, the X quadrature of the output field is squeezed
when Mðω0Þ > Nðω0Þ, equivalently Xðω0Þ > ~Sðω0Þ−
Svacðω0Þ, with MðωÞ and NðωÞ bounded from the
Heisenberg inequality by NðωÞ½NðωÞ þ 1% ≥ MðωÞ2 [7].
The same condition for squeezing was found in Refs. [6,9]
by directly postulating the link between the field quad-
ratures and the current operator for a normal tunnel
junction. The squeezing generated by such a junction is,
however, moderate; Gasse et al.’s experiment reporting a
value of 1.3 dB is in excellent agreement with our
theoretical predictions, see Fig. 2 of Ref. [9]. The degree
of squeezing can be tuned through Vac and Vdc. As shown
in Ref. [16], we find the squeezing to be maximal for
eVdc ¼ ℏω0, ωac ¼ 2ω0, with a maximum squeezing of
∼2 dB at zero temperature.
To better understand the mechanism responsible for

squeezing by the quantum conductor we now derive an
equation of motion for the state ρðtÞ of the field. This is
done by following the standard quantum optics approach:
the bath is integrated out invoking the Born-Markov
approximation to obtain a Lindblad master equation
describing the dynamics of the field only [7]. The crucial
difference from the usual treatment is that here the
fermionic degrees of freedom of the sample play the role
of bath for the bosonic modes of the field. Moreover, it is
possible to engineer the system-bath interaction with the ac
modulation frequency, leading to different field steady
states.
To simplify the discussion and because it is experimen-

tally relevant [30–32], we consider the setup illustrated in
Fig. 1 where a normal tunnel junction is fabricated at the
end of a λ=4 transmission line resonator of characteristic
impedance Z0. The case of a Josephson junction has been
considered in Refs. [15,33–35]. The effect of the junction
on the resonator is easily found by decomposing the
resonator flux in terms of normal modes ϕðx; tÞ ¼P

mϕmðtÞumðxÞ, with umðxÞ the mode envelope [16,36].
The full line in Fig. 1 illustrates ju1ðxÞj for a junction
impedance R < Z0, while the dashed line corresponds to
Re½u1ðxÞ% for R > Z0. As expected, in the former case the
junction acts as a short to ground and the mode envelope
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approaches that of a λ=4 resonator, except for a small gap
ju1ð−LÞj ∼ R=Z0 at the location of the junction. On the
other hand, for large tunnel resistance the junction acts as
an open and the resonator’s bias on the junction is larger
with ju1ð−LÞj ∼ 1þ ðZ0=RÞ2.
Having characterized the resonator mode in the presence

of the junction, we now obtain the master equation
assuming Z0 ≪ RK. In this limit, the interaction
Hamiltonian reads ĤI ¼

P
mαmÎðâ

†
m þ âmÞ, where αm ¼ffiffiffiffiffiffiffiffiffi

ℏZm
p

umð−LÞ with Zm the effective impedance of the
resonator’s mth mode and âð†Þm the annihilation (creation)
operator for the same mode [16]. As above, the current
operator Î takes into account the presence of classical dc
and ac bias on the junction.
We first focus on the situation where the ac frequency is,

as above, pωac ¼ 2ωm where p is an integer and ωm now
the frequency of the mth resonator mode. In the rotating-
wave approximation we find [16]

_ρðtÞ ¼ κmðNm þ 1ÞD½âm%ρþ κmNmD½â†m%ρ

þ κmMmS½âm%ρþ κmMmS½â†m%ρ; ð14Þ

with D½â%ρ ¼ âρâ† − fâ†â; ρg=2 and S½X%ρ ¼ âρâ−
fâ2; ρg=2. Equation (14) is the standard master equation
of a bosonic mode in a squeezed bath [7] where κm ¼
umð−LÞ2ωmZm=R is the cavity damping rate caused by the
tunnel junction resistance [37]. The thermal photon number
Nm ¼ NðωmÞ and the quantity Mm ¼ MðωmÞ responsible
for squeezing are the same as in Eq. (13). Evolution under
Eq. (14) leads to steady-state variances of the intracavity
quadratures X̂m ¼ â†m þ âm and Ŷm ¼ iðâ†m − âmÞ taking
the form ΔX2

m ¼ 2Nm þ 1 − 2Mm and ΔY2
m ¼ 2Nmþ

1þ 2Mm. In other words, intracavity squeezing is identical
to what was found in Eq. (12) in the absence of the
resonator.
The form of the above master equation clearly illustrates

the dissipative nature of squeezing by a tunnel junction.
This type of squeezing by dissipation has been explored
theoretically in various systems and, in particular, in
Ref. [14] where it was shown that modulating the quality
factor of a linear cavity could lead to ideal and unbounded

squeezing. A similar mechanism is in action here with the
periodic modulation of the Fermi level of the tunnel
junction by the ac bias. The achievable squeezing is,
however, neither pure nor unbounded, with the purity

p ¼ Svac=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~S2 − X2

p
< 1. At zero temperature, the highest

expected purity is p ∼ 0.91 corresponding to the 2 dB of
squeezing mentioned above. This conclusion also applies
to the cavity output field. Indeed, taking into account an
output port (illustrated by the capacitor on the right-hand
side of Fig. 1) reduces intracavity squeezing by adding
vacuum noise. This additional contribution is, however,
absent from the cavity output field if the decay rates at the
two ends of the resonator are matched [13], leaving the
degree of squeezing unchanged from the above input-
output theory without cavity [16].
Taking advantage of the multimode structure of the

resonator, other choices of ac drive can lead to entangled
steady states. In particular, taking pωac ¼ ωm þ ωn results
in [16]

_ρðtÞ ¼
X

l¼n;m

fκlðNlþ 1ÞD½âl%ρþ κlNlD½â†l %ρg

þ ffiffiffiffiffiffiffiffiffiffi
κnκm

p
Mnmðânρâmþ âmρân − fânâm;ρgÞ

þ ffiffiffiffiffiffiffiffiffiffi
κnκm

p
Mnmðâ†nρâ†mþ â†mρâ†n − fâ†nâ†m;ρgÞ; ð15Þ

where κl and Nl are the same as above and
Mnm ¼ XðωnÞ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SvacðωnÞSvacðωmÞ

p
. This master equa-

tion leads to two-mode squeezing. Indeed, in steady state
the variance of the joint quadratures X̂' ¼ X̂n ' X̂m and
Ŷ' ¼ Ŷn ' Ŷm are

ΔX2
þ ¼ ΔY2

− ¼ 2ðNn þ Nm þ 1 − 2MnmÞ;
ΔX2

− ¼ ΔY2
þ ¼ 2ðNn þ Nm þ 1þ 2MnmÞ; ð16Þ

where we have assumed κn ¼ κm for simplicity. Similarly
to the above single-mode case, the pairs of commuting
quadratures ΔX2

þ and ΔY2
− are squeezed for 2Mnm >

Nn þ Nm.
It is interesting to point out that these quadratures are

entangled when ΔX2
þ þ ΔY2

− < 4 [39]. This type of two-
mode squeezing generated by a normal tunnel junction
under the above ac modulation frequency was already
experimentally reported in Ref. [10]. Equation (15) shows
how this entanglement generation can be understood as
resulting from correlated absorbtion (emission) of
entangled excitations from (into) the bath, without any
direct coupling between the modes.
Finally, it is interesting to also consider the situation

where the ac modulation is such that pωac ¼ jωn − ωmj.
Rather than two-mode squeezing, this leads to correlated
decay where emission by mode n stimulates emission from
mode m, and vice versa. Details are given in the
Supplemental Material [16]. For this choice of ac bias,
the variance of the above joint quadratures keeps the same

FIG. 1. Transmission line resonator (blue) terminated by a
normal tunnel junction. The first resonator mode envelopes are
illustrated for R=Z0 ¼ 0.1 (full brown line) and R=Z0 ¼ 2000
(dashed brown line). The output field can be measured via the
capacitive coupling to the output port (dark blue).
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form, except for ΔX2
þ andΔX2

− whose roles are exchanged.
Since ½X̂−; Ŷ−% ¼ 4i, the variance of these two quadratures
must respect ΔX−ΔY− ≥ 2 implying that Nn þ Nm ≥
2Mnm. In other words, these quadratures cannot be
squeezed below the vacuum level when the ac-bias fre-
quency is matched to the frequency difference of the two
modes, also implying that the two modes are not entangled.
In summary,we have shownhow the electromagnetic field

radiated by a quantum conductor is related to its electronic
properties. This establishes a common language between
quantum optics andmesoscopic physics. In particular, recent
experimental observations of squeezing and entanglement
produced by a tunnel junction arewell understoodwithin our
framework. These results have been obtained assuming a
simple quantum conductor in a low impedance electromag-
netic environment. A next step is to go beyond the assump-
tions made here by considering conductors with internal
dynamics, such as quantum dots, or conductors placed in a
high impedance environment. By engineering such environ-
ments, for which the dynamical Coulomb blockade becomes
prominent, one can expect different mechanisms producing
squeezing, entanglement, and even the generation of non-
Gaussian electromagnetic fields.

We thank Julien Gabelli and Karl Thibault for useful
discussions. This work was supported by the Canada
Excellence Research Chairs program, NSERC, FRQNT
via INTRIQ and the Université de Sherbrooke via EPIQ.

Note added.—Recently, we became aware of an alternate
description of squeezing by tunnel junction in a resona-
tor [40].

[1] R. J. Glauber, Phys. Rev. 84, 395 (1951).
[2] R. J. Glauber, Phys. Rev. 131, 2766 (1963).
[3] C. W. J. Beenakker and H. Schomerus, Phys. Rev. Lett. 86,

700 (2001).
[4] C. W. J. Beenakker and H. Schomerus, Phys. Rev. Lett. 93,

096801 (2004).
[5] A. V. Lebedev, G. B. Lesovik, and G. Blatter, Phys. Rev. B

81, 155421 (2010).
[6] A. Bednorz, C. Bruder, B. Reulet, and W. Belzig, Phys. Rev.

Lett. 110, 250404 (2013).
[7] D. Walls and G. J. Milburn, Quantum Optics 2nd ed

(Springer, Berlin, 2008).
[8] B. Yurke, P. G. Kaminsky, R. E. Miller, E. A. Whittaker,

A. D. Smith, A. H. Silver, and R.W. Simon, Phys. Rev. Lett.
60, 764 (1988).

[9] G. Gasse, C. Lupien, and B. Reulet, Phys. Rev. Lett. 111,
136601 (2013).

[10] J.-C. Forgues, C. Lupien, and B. Reulet, Phys. Rev. Lett.
114, 130403 (2015).

[11] B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984).
[12] B. Yurke, Quantum Squeezing (Springer, New York, 2004),

Chap. 3.
[13] M. J. Collett and C.W. Gardiner, Phys. Rev. A 30, 1386

(1984).

[14] N. Didier, F. Qassemi, and A. Blais, Phys. Rev. A 89,
013820 (2014).

[15] J. Leppäkangas, G. Johansson, M. Marthaler, and M.
Fogelström, Phys. Rev. Lett. 110, 267004 (2013).

[16] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.116.043602 for more
information.

[17] We use the Fourier transform convention fðtÞ ¼R∞
−∞ dωe−iωtf½ω%=2π

[18] M. J. Collett and C.W. Gardiner, Phys. Rev. A 30, 1386
(1984).

[19] C. Gardiner and P. Zoller, Quantum Noise: A Handbook of
Markovian and Non-Markovian Quantum Stochastic Meth-
ods with Applications to Quantum Optics (Springer, New
York, 2004).

[20] R. Graham, Z. Phys. B 76, 265 (1989).
[21] J. Gabelli and B. Reulet, Proc. SPIE Int. Soc. Opt. Eng.

6600, 66000T (2007).
[22] J. Gabelli and B. Reulet, arXiv:0801.1432.
[23] Y. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[24] J. Gabelli and B. Reulet, Phys. Rev. Lett. 100, 026601

(2008).
[25] G. Lesovik and R. Loosen, J. Exp. Theor. Phys. Lett. 65,

295 (1997).
[26] U. Gavish, Y. Levinson, and Y. Imry, Phys. Rev. B 62,

R10637 (2000).
[27] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and

R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).
[28] R. Aguado and L. P. Kouwenhoven, Phys. Rev. Lett. 84,

1986 (2000).
[29] R. Deblock, E. Onac, L. Gurevich, and L. P. Kouwenhoven,

Science 301, 203 (2003).
[30] J. R. Souquet, M. J. Woolley, J. Gabelli, P. Simon, and A. A.

Clerk, Nat. Commun. 5, 5562 (2014).
[31] C. Altimiras, O. Parlavecchio, P. Joyez, D. Vion, P. Roche,

D. Esteve, and F. Portier, Phys. Rev. Lett. 112, 236803
(2014).

[32] O. Parlavecchio, C. Altimiras, J.-R. Souquet, P. Simon,
I. Safi, P. Joyez, D. Vion, P. Roche, D. Esteve, and F. Portier,
Phys. Rev. Lett. 114, 126801 (2015).

[33] M. Hofheinz, F. Portier, Q. Baudouin, P. Joyez, D. Vion,
P. Bertet, P. Roche, and D. Esteve, Phys. Rev. Lett. 106,
217005 (2011).

[34] V. Gramich, B. Kubala, S. Rohrer, and J. Ankerhold, Phys.
Rev. Lett. 111, 247002 (2013).

[35] A. D. Armour, M. P. Blencowe, E. Brahimi, and A. J.
Rimberg, Phys. Rev. Lett. 111, 247001 (2013).

[36] J. Bourassa, F. Beaudoin, J. M. Gambetta, and A. Blais,
Phys. Rev. A 86, 013814 (2012).

[37] The Markov approximation is valid when the environment’s
time scale is short with respect to κ−1 [38] or in other
words for κ−1 ≫ Min½ℏ=kBT;ℏ=eVdc%. As expected, this
implies that the sample resistance should not be matched
to Z0.

[38] H. J. Carmichael, Statistical Methods in Quantum Optics 1
(Springer, New York, 1999).

[39] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 84, 2722 (2000).

[40] U. C. Mendes and C. Mora, New J. Phys. 17, 113014
(2015).

PRL 116, 043602 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

29 JANUARY 2016

043602-5

http://dx.doi.org/10.1103/PhysRev.84.395
http://dx.doi.org/10.1103/PhysRev.131.2766
http://dx.doi.org/10.1103/PhysRevLett.86.700
http://dx.doi.org/10.1103/PhysRevLett.86.700
http://dx.doi.org/10.1103/PhysRevLett.93.096801
http://dx.doi.org/10.1103/PhysRevLett.93.096801
http://dx.doi.org/10.1103/PhysRevB.81.155421
http://dx.doi.org/10.1103/PhysRevB.81.155421
http://dx.doi.org/10.1103/PhysRevLett.110.250404
http://dx.doi.org/10.1103/PhysRevLett.110.250404
http://dx.doi.org/10.1103/PhysRevLett.60.764
http://dx.doi.org/10.1103/PhysRevLett.60.764
http://dx.doi.org/10.1103/PhysRevLett.111.136601
http://dx.doi.org/10.1103/PhysRevLett.111.136601
http://dx.doi.org/10.1103/PhysRevLett.114.130403
http://dx.doi.org/10.1103/PhysRevLett.114.130403
http://dx.doi.org/10.1103/PhysRevA.29.1419
http://dx.doi.org/10.1103/PhysRevA.30.1386
http://dx.doi.org/10.1103/PhysRevA.30.1386
http://dx.doi.org/10.1103/PhysRevA.89.013820
http://dx.doi.org/10.1103/PhysRevA.89.013820
http://dx.doi.org/10.1103/PhysRevLett.110.267004
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://link.aps.org/supplemental/10.1103/PhysRevLett.116.043602
http://dx.doi.org/10.1103/PhysRevA.30.1386
http://dx.doi.org/10.1103/PhysRevA.30.1386
http://dx.doi.org/10.1007/BF01312694
http://dx.doi.org/10.1117/12.724656
http://dx.doi.org/10.1117/12.724656
http://arXiv.org/abs/0801.1432
http://dx.doi.org/10.1016/S0370-1573(99)00123-4
http://dx.doi.org/10.1103/PhysRevLett.100.026601
http://dx.doi.org/10.1103/PhysRevLett.100.026601
http://dx.doi.org/10.1134/1.567363
http://dx.doi.org/10.1134/1.567363
http://dx.doi.org/10.1103/PhysRevB.62.R10637
http://dx.doi.org/10.1103/PhysRevB.62.R10637
http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1103/PhysRevLett.84.1986
http://dx.doi.org/10.1126/science.1084175
http://dx.doi.org/10.1038/ncomms6562
http://dx.doi.org/10.1103/PhysRevLett.112.236803
http://dx.doi.org/10.1103/PhysRevLett.112.236803
http://dx.doi.org/10.1103/PhysRevLett.114.126801
http://dx.doi.org/10.1103/PhysRevLett.106.217005
http://dx.doi.org/10.1103/PhysRevLett.106.217005
http://dx.doi.org/10.1103/PhysRevLett.111.247002
http://dx.doi.org/10.1103/PhysRevLett.111.247002
http://dx.doi.org/10.1103/PhysRevLett.111.247001
http://dx.doi.org/10.1103/PhysRevA.86.013814
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1103/PhysRevLett.84.2722
http://dx.doi.org/10.1088/1367-2630/17/11/113014
http://dx.doi.org/10.1088/1367-2630/17/11/113014


Supplemental Material for “Quantum optics theory of electronic noise in coherent

conductors”

Arne L. Grimsmo,1 Farzad Qassemi,1 Bertrand Reulet,1 and Alexandre Blais1, 2
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I. INPUT-OUTPUT THEORY FOR A TRANSMISSION LINE TERMINATED BY A TUNNEL
JUNCTION

This section details the derivation of to Eqs. (3)–(5) of the Main Letter. We first write the position-dependent flux
�̂

tl

(x, t) along the transmission line in terms of annihilation and creation operators [1–3]

�̂
tl

(x, t) = ↵

Z 1

0

d!p
!

⇣

â
in

[!]e�i!(t+x/v) + â
out

[!]e�i!(t�x/v) + h.c.
⌘

, (1)

where v = 1/
p

L
0

C
0

is the speed of light in the transmission line and ↵ =
p

~Z
0

/4⇡. The subscripts ‘in’ and ‘out’
denote components moving towards and away from the sample, respectively. The corresponding annihilation operators
satisfy [â

in

[!], â†
in

[!0]] = [â
out

[!], â†
out

[!0]] = �(! � !0).
The current at position x in the transmission line is given in terms of the flux by

Î
tl

(x, t) =
1

L
0

@x�̂
tl

(x, t) = �i

r

~
4⇡Z

0

Z 1

0

d!
p

!
⇣

â
in

[!]e�i!(t+x/v) � â
out

[!]e�i!(t�x/v) + h.c.
⌘

(2)

The current of the sample, Î
s

(t), located at x = 0, we write in terms of its Fourier transform

Î
s

(t) =
1

2⇡

Z 1

�1
d!e�i!tÎ

s

[!] =
1

2⇡

Z 1

0

d!
⇣

e�i!tÎ
s

[!] + ei!tÎ
s

[�!]
⌘

. (3)

Current conservation at x = 0, i.e.,

Î
s

(t) = +Î
tl

(x = 0, t), (4)

then implies for the frequency components

â
out

[!] = â
in

[!] � i

r

Z
0

⇡~! Î
s

[!]. (5)

This is Eq. (3) of the main letter.
Following [4], we next perform a linear response treatment for the sample assuming a lumped element coupling

Hamiltonian, Ĥ
I

(t) = Î(t)�̂
tl

(0, t), in the interaction picture. Here Î(t) is the sample’s bare current operator in
the absence of the transmission line (but including any ac and dc-bias, if present). A detailed justification of this
Hamiltonian starting from a microscopic Hamiltonian of a normal tunnel junction is provided in Sect. II.

As shown in [4] the dynamics of Îs(t), the sample’s current operator, in the Heisenber picture can be written to
first order in the interaction as

Îs(t) = Î(t) � i

~

Z t

ti

dt0[Î(t), �̂
tl

(t0)Î(t0)] + O(↵2), (6)

where �̂
tl

(t) ⌘ �̂
tl

(0, t) and

Î(t) = eiH
0

tÎ(ti)e
�iH

0

t, (7)

is the bare current operator for the sample, evolving according to the bare Hamiltonian H
0

. The initial time ti is here
some arbitrary time where the Heisenberg and Schrdinger picture operators coincide. We next assume that quantum



2

fluctuations in the current operator are small such that these can be neglected in the second term in Eq. (6) [4]. We
can thus approximate

Îs(t) = Î(t) � i

~

Z 1

0

d⌧h[Î(t), Î(t � ⌧)]i�̂
tl

(t � ⌧), (8)

where we have taken ti ! �1 and changed integration variable to ⌧ = t � t0. We next use that

h[Î(t), Î(t � ⌧)]i =
1

(2⇡)2

Z 1

�1
d!d!0ei(!+!0

)t�i!0⌧ h[Î[!], Î[!0]]i, (9)

h[Î[!], Î[!0]i = 2⇡ ⇥ 2 S
vac

(!)�(! � !0), (10)
Z 1

0

d⌧ei(!+!0
)⌧ = ⇡�(!00 + !) + iP

✓

1

! + !0

◆

, (11)

where Eq. (10) follows from Eq. (6) of the Letter, where S
vac

(!) = ~!/Z[!] is the current noise spectral density in
vacuum (see Sect. II for a derivation), and in Eq. (11), P (x) is a principal value that cancels in the final expression.
By writing the quantities in Eq. (8) in terms of their Fourier transforms, we can then arrive at

Îs[!] = Î[!] � i

~
~!

Z[!]
�̂

tl

[!]. (12)

Here, �̂
tl

[!] is the Fourier transform of �̂
tl

(t):

�̂
tl

(t) =
1

2⇡

Z 1

�1
e�i!t�̂

tl

[!]. (13)

By comparison with Eq. (1) we find that

�̂
tl

[!] =
2⇡↵p

!
(â

in

[!] + â
out

[!]) , (14)

where for ! < 0 we define â
in

[!] = �iâ†
in

[�!] and similarly for â
out

[!]. On the other hand, the voltage at x = 0 is

V̂
tl

(t) = � i↵

Z 1

0

d!
p

!
�

â
in

[!]e�i!t + â
out

[!]e�i!t � h.c.
�

, (15)

which implies that we have for the Fourier transform

V̂
tl

[!] = � i2⇡↵
p

! (â
in

[!] + â
out

[!]) , (16)

= � i!�̂
tl

[!]. (17)

We thus finally arrive at Eq. (4) of the Letter:

Îs[!] = Î[!] +
V̂

tl

[!]

Z[!]
. (18)

Eq. (5) of the main letter is found straight forwardly by using Eq. (18) in Eq. (5):

â
out

[!] =
Z[!] � Z

0

Z[!] + Z
0

â
in

[!] � i
2
p

Z[!]Z
0

Z[!] + Z
0

r

Z[!]

4⇡~! I[!]. (19)

II. NOISE PROPERTIES OF AN AC-BIASED TUNNEL JUNCTION

For concreteness we consider here a normal tunnel junction. The results of this section are however general and
have been obtained for an arbitrary quantum conductor using the Landauer-Büttiker formalism in Refs. [5, 6]. Our
starting point is therefore the Hamiltonian of a tunnel junction biased by a classical voltage V

dc

+ V
ac

cos !
ac

t and by
the transmission line voltage at the position x = 0 of the junction, described by the operator V̂

tl

(t),

Ĥ = Ĥ
tj

+ Ĥ
T

, (20)



3

where

Ĥ
tj

=Ĥ
tj,0 + Ĥ

tj,1, (21)

Ĥ
tj,0 =

X

k

(✏k + eV
dc

) ĉ†k ĉk +
X

q

✏qc
†
qcq, (22)

Ĥ
tj,1 =

X

k

h

eV
ac

cos(!
ac

t) + eV̂
tl

(t)
i

ĉ†k ĉk, (23)

ĤT =
X

kq

tkq ĉ
†
k ĉq + h.c.. (24)

Ĥ
tj,0 is the junction Hamiltonian in the presence of the dc voltage, Ĥ

tj,1 is the contribution coming from the ac

voltage bias as well as the transmission line voltage, and ĤT is the tunneling Hamiltonian. The operators ĉk and ĉq

are fermionic annihilation operators at the two di↵erent leads of the junction.
The voltage operator, V̂

tl

(t) = d�̂
tl

(t)/dt for the transmission line is the time-derivative of the transmission line flux,
evaluated at the position of the junction. Following the standard step, a unitary transformation is applied leading to
Ĥ ! ĤI = ÛĤÛ † � iÛ d

dt Û
†, with

Û(t) = exp



i

✓

t

~Ĥ
tj,0 +

eV
ac

~!
ac

sin(!
ac

t)ĉ†k ĉk +
e

~ �̂
tl

(t)

◆�

. (25)

This removes H
tj

and leads to

ĤI(t) =
X

kq

exp



i

~ (eV
dc

+ ✏k � ✏q) t +
ie

~

✓

V
ac

!
ac

sin(!
ac

t) + �̂
tl

(t)

◆�

ĉ†k ĉq + h.c.

=
1
X

n=�1

X

kq

Jn(A)tkq exp



i

~ (eV
dc

+ ✏k � ✏q + ~n!
ac

) t +
ie

~ �̂
tl

(t)

�

ĉ†k ĉq + h.c.,

(26)

where Jn(A) are Bessel functions of the first kind and A = eV
ac

/~!
ac

. Taking advantage of the fact that

r

e2Z
0

2~ =

r

2⇡Z
0

2RK
⌧ 1, (27)

where R
K

= h/e2 ⇠ 25 k⌦ is the quantum of resistance, we expand the exponential in (26) to first order in e�̂
tl

(t)/~

ĤI(t) ⇡
1
X

n=�1

X

kq

Jn(A)tkqe
i
~ (eV

dc

+✏k�✏q+~n!
ac

)t

✓

1 +
ie

~ �̂
tl

(t)

◆

ĉ†k ĉq + h.c.. (28)

The first term in the parenthesis of the above equation can easily be transformed away with a further unitary
transformation, leaving us with

ĤI(t) ⇡ Î(t)�̂
tl

(t), (29)

where we have introduced the standard current operator of the junction in the presence of ac bias

Î(t) =
ie

~

1
X

n=�1

X

kq

Jn(A)tkqe
i
~ (eV

dc

+✏k�✏q+~n!
ac

)tĉ†k ĉq + h.c.. (30)

As discussed in the main paper, second order moments of the output field are determined by the current-current
correlation function hÎ[!0]Î[!]i, where Î[!] =

R

dt exp(i!t)Î(t) is the Fourier transformed junction current. From (30)
we find

hÎ[!0]Î[!]i = 2⇡
1
X

p=�1
X(p)

+

(!0)�(!0 + ! � p!
ac

), (31)
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where

X(p)

+

(!) =
1

2

X

n

Jn

✓

eV
ac

~!
ac

◆

Jn+p

✓

eV
ac

~!
ac

◆

⇥

SLR(! + n!
ac

) + (�1)pSRL(! + n!
ac

)
⇤

, (32)

with

SLR(!) = 2
e2

~
X

kq

|tkq|22⇡�(eV
dc

+ ✏k � ✏q + ~!)fk|1 � fq|

= S
0

(~!/e + V
dc

) + S
vac

(! + eV
dc

/~)
(33)

and

SRL(!) = 2
e2

~
X

kq

|tkq|22⇡�(eV
dc

+ ✏k � ✏q � ~!)fq|1 � fk|

= S
0

(~!/e � V
dc

) + S
vac

(! � eV
dc

/~).
(34)

In these expressions, f is the Fermi-Dirac distribution and we have assumed tkq to be energy independent. Finally,
in the last step we have defined

S
0

(V ) =
eV

R
coth

✓

eV

2kBT

◆

, (35)

S
vac

(!) =
~!
R

. (36)

with R�1 = 2⇡(e2/~)|t|2dLdR the tunnel resistance and dL and dR the density of modes on the left and the right

of the tunnel junction, respectively. Note that X(p)

+

(!) is a real function for energy-independent transmission. It is

straightforward to show that X(p)

+

can also be written as

X(0)

+

(!) = S̃(!) + S
vac

(!), (37)

X(p 6=0)

+

(!) = X(!), (38)

with

S̃(!) =
1

2

X

n

Jn(A)2


S
0

✓

V
dc

+
~
e
(! + n!

ac

)

◆

+ S
0

✓

V
dc

� ~
e
(! + n!

ac

)

◆�

, (39)

X(!) =
1

2

X

n

Jn (A) Jn+p (A)



S
0

✓

V
dc

+
~
e
(! + n!

ac

)

◆

+ (�1)pS
0

✓

V
dc

� ~
e
(! + n!

ac

)

◆�

, (40)

where A = eV
ac

/~!
ac

. As already mentioned, while we have obtained these expressions taking a tunnel junction (Fano
factor F = 1) as a specific example, they can be obtained for a general quantum conductor using the Landauer-Büttiker
formalism [5, 6].

III. MEASUREMENTS OF THE TRANSMISSION LINE OUTPUT FIELD

A. Power measurement

From Eq. (1) of the main paper, the voltage at x = 0 is

V̂
tl

(t) = � i↵

Z 1

0

d!
p

!
�

â
in

[!]e�i!t + â
out

[!]e�i!t � h.c.
�

. (41)

In an experiment, the voltage will be filtered by a bandpass filter before measurement and for this reason we define
the filtered voltage

V̂
tl,f(t) = � i↵

Z

B

d!
p

!
�

â
in

[!]e�i!t + â
out

[!]e�i!t � h.c.
�

, (42)
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where the subscript B refers to the measurement bandwidth centred around the observation frequency !
0

� 2⇡B.
Squaring and taking the expectation value yields

hV̂
tl,f(t)

2i = ↵2

ZZ

B

d!d!0 p!0!
⇣

hâ
out

[!0]â†
out

[!]iei(!�!0
)t + hâ†

out

[!0]â
out

[!]iei(!0�!)t

�hâ
out

[!0]â
out

[!]ie�i(!+!0
)t � hâ†

out

[!0]â†
out

[!]iei(!+!0
)t
⌘

+ 2⇡↵2

Z

B

d!!hâ
in

[!]â†
in

[!]i,
(43)

where we have assumed an impedance matched junction for which â
out

[!] = �iÎ[!]/
p

4⇡S
vac

(!). We have also used

[â
in

, Î] = 0, hâ
in

[!]i = 0 (vacuum input). The last term represents the input field vacuum noise contribution and is
dropped in the Letter.

The time-averaged power is obtained using Eq. (31) and dropping fast-rotating terms to find

hV̂
tl,f(t)2i = BS̃(!

0

)R2 + 2⇡↵2

Z

B

d!!hâ
in

[!]â†
in

[!]i, (44)

where the overline denotes time-averaging.

B. Quadratures

We define the filtered output field [2]

b̂
out

(t) =
1p
2⇡B

Z

B

e�i(!�!
0

)tâ
out

[!], (45)

and quadratures

X̂
out,f

(t) = b̂
out

(t) + b̂†
out

(t), (46)

Ŷ
out,f

(t) = �i
⇣

b̂
out

(t) � b̂†
out

(t)
⌘

. (47)

Repeating a similar calculation as above, we find for the variances

�X̂2

out,f

= 2



N(!
0

) +
1

2
� M(!

0

)

�

, (48)

�Ŷ 2

out,f

= 2



N(!
0

) +
1

2
+ M(!

0

)

�

, (49)

where we have dropped all fast rotating terms. The X-quadrature is squeezed for M(!
0

) > N(!
0

), while the Y -
quadrature is anti-squeezed.

The squeezing of the output field quadratures can be tuned through the applied voltages, V
dc

and V
ac

. From Eq. (39)
and (40), we can compute N and M as functions of the voltages. In Fig. 1 we show the behaviour as a function of
V

dc

for di↵erent values of A = eV
ac

/~!
ac

, at zero temperature and with !
ac

= 2!
0

(i.e. p = 1). When considered
as a function of V

dc

, the thermal population N has its minimum for |eV
dc

/~!
0

|  1, while the squeezing strength,
as quantified by M , grows most rapidly in the same interval. It is clear from the behaviour of these functions, as
illustrated in Fig. 1, that the di↵erence N �M is minimal at eV

dc

= ~!
0

. This is thus where we will get the maximal
squeezing.

The dependence on the ac-bias is shown in Fig. 2 for eV
dc

= ~!
0

. N grows quadratically, while M grows linearly
for small V

ac

. The squeezing, as quantified by �X2

out,f , thus has a minimum for some A = eV
ac

/~!
ac

> 0, as shown in
the bottom panel of the figure. Numerically we find this minimum to be around A ⇠ 0.7, with a degree of squeezing
⇠ �2.1 dB. The degree of squeezing for p!

ac

= 2!
0

with other choices of p 6= 1 is found to be smaller than that for
p = 1.

IV. TRANSMISSION LINE RESONATOR TERMINATED BY A TUNNEL JUNCTION

In this section we compute the mode functions of a transmission line resonator terminated by a tunnel junction to
ground at one end (x = �L) and with open boundary conditions at the other end (x = 0). This system is illustrated
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in Fig. 1 of the Letter. We model the junction as a resistor with impedance R assuming for simpicity that the junction
capacitance can be neglected.

The resonator has length L, capacitance per unit length c and inductance per unit length l. Following Ref. [7], we
expand the flux at position x of the resonator over modes m as �(x, t) =

P

m �m(t)um(x) with um(t) oscillating at

the mode frequency !̃m = ⌫k̃m with k̃m the mode wavevector and ⌫ = 1/
p

lc the speed of light in the resonator.
The mode envelope um(x) is found from the ansatz

um(x) = cos(k̃mx + ✓m). (50)

The phase ✓m is fixed by setting the current to be zero at x = 0

1

l

@�(x, t)

@x

�

�

�

�

x=0

= 0, (51)

This immediately leads to ✓m = 0. On the other hand, at the junction location we have that

1

l

@�(x, t)

@x

�

�

�

�

x=�L

=
1

R

@�(�L, t)

@t
(52)

which leads to

�i!̃m

R
cos(k̃mL) =

k̃m

l
sin(k̃mL) ) cot(k̃mL) = i

R

Z
0

, (53)

where Z
0

=
p

l/c is the characteristic impedance of the transmission line. This transcendental equation can be solved

numerically to find the values of k̃m. Since the impedance of the junction is real, the wavevectors are in general
complex, and the envelope functions are thus complex functions of x. Examples of mode envelope functions for
respectively large and small tunnel junction resistance R are shown in Fig. 3.

Approximate expressions for the value of the envelope functions at x = �L can be found in the limits of large
impedance mismatch between the junction and the transmission line. Focusing on the fundamental mode, i.e. the
smallest non-zero km, we find for Z

0

/R ! 0

!̃
1

= !
1

� i
1

' ⇡v

L
� i

Z
0

R

v

L
, (54)

u
1

(�L) '�
"

1 +

✓

Z
0

R

◆

2

#

, (55)

and for Z
0

/R ! 1

!̃
1

= !
1

� i
1

' ⇡v

2L
� i

R

Z
0

v

L
, (56)

u
1

(�L) ' i
R

Z
0

. (57)
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In the former limit, the boundary condition approaches that of a �/2 resonator, i.e. open boundary conditions at
both ends, and in the latter case that of a �/4 resonator, i.e. a resonator terminated to ground at x = �L and open
at x = 0. It is important to note that the coupling between the tunnel junction and the resonator modes can be
non-zero also for large Z

0

/R due to the non-zero imaginary part of the envelope function. The predictions for the
decay rates m made with this simplified model is verified by a master equation treatment in the next section.

V. MASTER EQUATION: JUNCTION IN A RESONATOR

We now derive a master equation for the resonator modes, assuming weak coupling between the tunnel junction
and the transmission line resonator, and invoking the usual Born-Markov approximations. Our starting point is the
same as in Sec. II, only that the semi-infinite transmission line is now replaced by a transmission-line resonator. We
denote the resonator’s voltage operator by V̂ (t) and write the total Hamiltonian as

Ĥ =
X

m

!mâ†
mâm + Ĥ

tj

+ Ĥ
T

, (58)

where

Ĥ
tj

=Ĥ
tj,0 + Ĥ

tj,1, (59)

Ĥ
tj,0 =

X

k

(✏k + eV
dc

) ĉ†k ĉk +
X

q

✏qc
†
qcq, (60)

Ĥ
tj,1 =

X

k

h

eV
ac

cos(!
ac

t) + eV̂ (t)
i

ĉ†k ĉk, (61)

ĤT =
X

kq

tkq ĉ
†
k ĉq + h.c.. (62)

Ĥ
tj,0 is the junction Hamiltonian in the presence of the dc voltage, Ĥ

tj,1 is the contribution coming from the ac voltage

bias as well as the resonator voltage, while ĤT is the junction’s tunnel Hamiltonian.
Following Sec. II, the voltage operator V̂ (t) = d�̂(t)/dt is related to the transmission line flux evaluated at the

position of the junction x = �L with

�̂(t) ⌘ �̂(�L, t) =
X

m

p

~Zmum(�L)
�

âme�i!mt + â†
mei!mt

�

, (63)

where, for simplicity, we have taken the mode envelope functions to be real at the position of the junction and have
introduced the e↵ective mode impedance Zm = 1/!mLc [8].

Taking advantage of the fact that
s

e2

~Zm
um(�L) =

r

2⇡Zm

RK
um(�L) ⌧ 1, (64)

and following the same steps as in Sec. II, we again find

ĤI(t) ⇡ Î(t)�̂(t), (65)

where the junction current operator is unchanged.
The interaction picture Hamiltonian of Eq. (65) is the starting point to derive a Markovian master equation for the

resonator modes. Following the standard approach, this is done by going to second order in ĤI and tracing out the
junction degrees of freedom leading to [9]

⇢̇(t) = � 1

~2

Z 1

0

d⌧ tr
tj

[ĤI(t), [ĤI(⌧), ⇢(t) ⌦ ⇢
tj

]]. (66)

Here ⇢(t) is the density matrix of the resonator modes and ⇢
tj

of the tunnel junction. Eq. (66) can be expressed in
terms of the one-sided Fourier transform

S(t, !) =

Z 1

0

d⌧hÎ(t)Î(t � ⌧)iei!⌧ , (67)
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where the brackets refer to an expectation value with respect to ⇢
tj

. We find

⇢̇(t) =
X

m,n

n

� i

~ [�(!m,�!n, t)â†
mân, ⇢(t)] + �(!m,�!n, t)C[ân, â†

m]⇢(t)

� i

~ [�(�!m, !n, t)âmâ†
n, ⇢(t)] + �(�!m, !n, t)C[â†

n, âm]⇢(t)

� i

~ [�(�!m,�!n, t)âmân, ⇢(t)] + �(�!m,�!n, t)C[ân, âm]⇢(t)

� i

~ [�(!m, !n, t)â†
mâ†

n, ⇢(t)] + �(!m, !n, t)C[â†
n, â†

m]⇢(t)
o

,

(68)

where

C[x̂, ŷ]⇢ = x̂⇢ŷ � 1

2
{ŷx̂, ⇢}, (69)

and where we have defined the Lamb shifts and rates

�(!m, !n, t) =
1

2i

p

ZmZnum(�L)un(�L)ei(!m+!n)t [S(t,�!n) � S(t, !m)⇤] , (70)

�(!m, !n, t) =
1

~
p

ZmZnum(�L)un(�L)ei(!m+!n)t [S(t,�!n) + S(t, !m)⇤] . (71)

Using the Fourier transformed current Î[!] =
R1
�1 dt exp(i!t)Î(t), we can write

S(t, !) =
1

4⇡

Z 1

�1
d!0hÎ[!0]Î[�!]ie�i(!0�!)t, (72)

where we have used
Z 1

0

d⌧ei(!00
+!)⌧ = ⇡�(!00 + !) + iP

✓

1

!00 + !

◆

, (73)

and we have dropped the principal part. Using Eqs. (31) and (72), the above rates � and lamb shifts � can be taken
to be time-independent by using the rotating-wave approximation and dropping all fast-rotating terms (assuming
su�ciently high and well-separated mode frequencies). In the next three subsections, this will be done for particular
choices of !

ac

.

A. Single-mode squeezing

We first set p!
ac

= 2!m. After dropping all rotating terms in Eq. (68), we are left with the following master
equation for mode m

⇢̇(t) = m(Nm + 1)D[âm]⇢ + mNmD[â†
m]⇢ + mMmS[âm]⇢ + mM⇤

mS[â†
m]⇢, (74)

where

m(Nm + 1) =
Zmum(�L)2

2~ X(0)

+

(!m), (75)

mNm =
Zmum(�L)2

2~ X(0)

+

(�!m), (76)

mMm =
Zmum(�L)2

2~ X(p)

+

(!m). (77)

This can be expressed in terms of noise spectral densities by using

X(0)

+

(!m) =S̃(!m) + S
vac

(!m), (78)

X(0)

+

(�!m) =S̃(!m) � S
vac

(!m), (79)

X(p)

+

(!m) =X(!m) (p > 0), (80)
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with S
vac

(!), S̃(!) and X(!) defined in Eqs. (36), (39) and (40), respectively. Note that Eq. (77) implies that Mm

is real. Using this, we obtain

m =
1

~Zmum(�L)2S
vac

(!m), (81)

Nm =
1

2

S̃(!m) � S
vac

(!m)

S
vac

(!m)
, (82)

Mm =
1

2

X(!m)

S
vac

(!m)
. (83)

The above expression for the cavity damping rate m can be compared with the phenomenological model of Sec. IV.
Indeed, taking the large impedance mismatch limits of Eqs. (55) and (57) in Eq. (81), we find that m can be written
as

 =
Z

0

R

v

L
for

Z
0

R
! 0, (84)

 =
R

Z
0

v

L
for

Z
0

R
! 1. (85)

These expressions agree with the imaginary parts of Eqs. (54) and (56) as expected.
From Eq. (74), the variance of the quadratures X̂m = âm + â†

m and Ŷm = �iâm + iâ†
m in steady-state are

�X2

m =2

✓

Nm +
1

2
� Mm

◆

=
S̃(!m) � X(!m)

S
vac

(!m)
, (86)

�Y 2

m =2

✓

Nm +
1

2
+ Mm

◆

=
S̃(!m) + X(!m)

S
vac

(!m)
, (87)

where �O2 = hÔ2i � hÔi2. The quadrature X̂m is thus squeezed if S̃(!m)�X(!m) < S
vac

(!m). Note, however, that
the Heisenberg uncertainty principle implies that �X2

m�Y 2

m � 1, or in other words

S̃(!m) � X(!m) � S
vac

(!m)2

S̃(!m) + X(!m)
, (88)

which puts a bound on the degree of squeezing.
One can also consider the output field from the resonator when adding another decay channel, e.g. by considering a

capacitive coupling to an output at x = 0 as illustrated in Fig. 1 of the Letter. Weak coupling to this output port only
slightly modifies the mode envelopes and adds new dissipative terms to the master equation. For simplicity, taking
the incoming field in this new output channel to be in the vacuum state, and calling the damping rate associated to
this channel 0, we find that the squeezing of the X̂m quadrature is modified to be

�X2

m =
2m

m + 0
m

(Nm +
1

2
� Mm) +

0
m

m + 0
m

. (89)

As usual, the last term shows that the squeezing is degraded due to the vacuum noise from the new output port.
It is also interesting to compare the squeezing of the intracavity field to that of the output field emitted through
the output port. To do this it is convenient to compute the squeezing spectrum of the intracavity and output fields,
respectively. The squeezing spectra are defined as

S
intra

[!] =
1

2⇡

Z 1

�1
d!0hX̂[!]X̂[!0]i, (90)

S
out

[!] =
1

2⇡

Z 1

�1
d!0hX̂

out

[!]X̂
out

[!0]i, (91)

where X̂
out

[!] is the Fourier transformed output field [9]. We find using standard methods [9] that

S
intra

[!] =
2m

!2 + (0
m + m)2/4

(Nm +
1

2
� Mm) +

0
m

!2 + (0
m + m)2/4

, (92)

S
out

[!] =
20

mm

!2 + (0
m + m)2/4

(Nm +
1

2
� Mm) +

!2 + (0
m � m)2/4

!2 + (0
m + m)2/4

. (93)
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An interesting case is when 0
m = m where the squeezing spectra at ! = 0 are S

intra

[! = 0] = 2(Nm + 1

2

� Mm + 1

2

)
and S

out

[! = 0] = 2(Nm + 1

2

�Mm). This shows that the squeezing of the intracavity field is degraded by the vacuum
noise of the new decay channel (�X2

m cannot go below 1/2), while this is not the case for the output field. The
squeezing spectrum of the output field at ! = 0 for 0

m = m is equal to that of the intracavity field in the limit
0

m ! 0 (with m > 0).

B. Two-mode squeezing

We now consider a setup where the tunnel junction is ac biased such that p!
ac

= !m + !n for an integer p and two
modes m and n. We find after dropping all rotating terms

⇢̇(t) =
X

l=m,n

n

l(Nl + 1)D[âl]⇢ + lNlD[â†
l ]⇢

o

+
p

mnM⇤
mnC[ân, âm]⇢ +

p
mnMmnC[â†

m, â†
n]⇢

+
p

mnM⇤
nmC[âm, ân]⇢ +

p
mnMnmC[â†

n, â†
m]⇢,

(94)

where l and Nl are defined as before in Eqs. (81)–(82), for l = m, n, while Mm,n is

p
mnMmn =

p
ZmZnum(�L)un(�L)

4⇡~ X(p)

+

(!n) (95)

p
mnMnm =

p
ZmZnum(�L)un(�L)

4⇡~ X(p)

+

(!m). (96)

Using again that X(p)

+

(!) is real, and the fact that hÎ[!n]Î[!m]i = hÎ[!m]Î[!n]i, which implies that Mmn = Mnm

(real) [6], we can then write for the two-mode master equation

⇢̇(t) =
X

l=n,m

n

l(Nl + 1)D[âl]⇢ + lNlD[â†
l ]⇢

o

+
p

nmMnm (ân⇢âm + âm⇢ân � {ânâm, ⇢})
+

p
nmMnm

�

â†
n⇢â†

m + â†
m⇢â†

n � {â†
nâ†

m, ⇢}� ,

(97)

where

Mnm =
1

2

X(!n)
p

S
vac

(!n)S
vac

(!m)
. (98)

To consider two-mode squeezing we define the following two-mode quadratures

X̂± =X̂n ± X̂m, (99)

Ŷ± =Ŷn ± Ŷm. (100)

Assuming for simplicity that n = m, we find that the variances in steady state are

�X2

+

= �Y 2

� = 2(Nn + Nm + 1 � 2Mnm), (101)

�X2

� = �Y 2

+

= 2(Nn + Nm + 1 + 2Mnm). (102)

The commuting two-mode quadratures X̂
+

and Ŷ� are both squeezed for 2Mnm > Nn + Nm.

C. Two-mode photon conversion

Finally, it is interesting to consider the influence of the noise emitted from the junction when the ac bias frequency
is matched to the frequency di↵erence of two modes, i.e., p!

ac

= !n � !m, for p a positive integer (!n > !m). Once
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more dropping all rotating terms we find

⇢̇(t) =
X

l=n,m

n

l(Nl + 1)D[âl]⇢ + lNlD[â†
l ]⇢

o

+
p

mnTmnC[ân, â†
m]⇢ +

p
mnT ⇤

mnC[âm, â†
n]⇢

+
p

mnTnmC[âm, â†
n]⇢ +

p
mnT ⇤

nmC[ân, â†
m]⇢.

(103)

This master equation describes a dissipative process where photons can be converted from mode n to m and vice
versa. The parameter Tmn is given by

Tmn =

p
ZmZnum(�L)un(�L)

4⇡~ X(p)

+

(!n), (104)

Tnm =

p
ZmZnum(�L)un(�L)

4⇡~ X(p)

+

(!m), (105)

Again, we have that Tmn = Tnm ⌘ Mnm, where Mnm is given by Eq. (98). This leads to

⇢̇(t) =
X

l=n,m

n

l(Nl + 1)D[âl]⇢ + lNlD[â†
l ]⇢

o

+
p

nmMnm

�

ân⇢â†
m + â†

m⇢ân � {ânâ†
m, ⇢}�

+
p

nmMnm

�

â†
n⇢âm + âm⇢â†

n � {â†
nâm, ⇢}� .

(106)

In steady-state under the above master equation, and for m = n for simplicity, the variances of the two-mode
quadratures defined above are now

�X2

� = �Y 2

� = 2(Nn + Nm + 1 � 2Mnm), (107)

�X2

+

= �Y 2

+

= 2(Nn + Nm + 1 + 2Mnm). (108)

Importantly, the two “squashed” quadratures, X̂� and Ŷ� are non-commuting, with [X̂�, Ŷ�] = 4i, implying the
following uncertainty relation

�X��Y� � 1

2
|[U�, V�]| = 2, (109)

which leads to

2Mnm  Na + Nb. (110)

In other words, the quadrature variances cannot be squeezed below their vacuum value. The two modes become
correlated through the bath-induced photon conversion process (hâ†

nâmi is non-zero in steady state), but they do not
become entangled through this process.
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