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Effect of noise on geometric logic gates for quantum computation
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We introduce the nonadiabatic, or Aharonov-Anandan, geometric phase as a tool for quantum computation
and show how this phase on one qubit can be monitored by a second qubit without any dynamical contribution.
We also discuss how this geometric phase could be implemented with superconducting charge qubits. While
the nonadiabatic geometric phase may circumvent many of the drawbacks related to the atBaoatic
version of geometric gates, we show that the effect of fluctuations of the control parameters on nonadiabatic
phase gates is more severe than for the standard dynamic gates. Similarly, fluctuations also affect to a greater
extent quantum gates that use the Berry phase instead of the dynamic phase.
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[. INTRODUCTION computation was also recently suggested in [RE8].
In this paper, we point out that when compared to the
To be useful, quantum computers will require long coher-Berry’s phase, the AA phase seems to have many advantages
ence time and low error rate. To attain this goal, good desigffior quantum computation. We also discuss quite generally
and careful choice of the qubit’s operation point are crucialnow to monitor this global phase on one qubit using a second
[1]. It is, however, believed that this will not be enough anddubit. Implementation of the AA phase in a symmetric su-
that some kind of “software” protection will be necessary. Perconducting charge qutjt7] is also discussed. Implemen-
To achieve this, different strategies have been suggestetftion in other quantum computer architectures is a simple
quantum error correctiofi2], decoherence-free subspacesdeneralization. The main point of this paper, however, is to
[3,4], and bang-bang contrgb]. show that the above arguments concerning tolerance to noise
Another approach to minimize the effect of imperfectionsdo not hold. Logic gates based on this phase are inrfaxce
on the controlled evolution of qubits is to use geometricaffected by random noise in the control parameters than
phases and, in particular, the adiabatic geometric phase €quivalent dynamic gates. By studying the effect of random
the Berry’s phase[6]. Contrary to the dynamic phase, the Noise on the qubit's control parameters, we are able to obtain
Berry’s phase does not depend on time but is related to th@ bound on the value of the phase, beyond which the AA
area enclosed by the system’s parameters over a cyclic evghase gate would be advantageous over its dynamical
lution in parameter space. It is, therefore, purely geometric irffquivalent. In this way, we show that the AA phase is never
nature. As a result, it does not depend on the details of theseful in practice. This result is confirmed numerically for
motion along the path in parameter space: as long as the aréifferent noise symmetries. Moreover, using the same ana-
is left unchanged, the phase is left unchanged by imperfedytical and numerical approaches, we point out that quantum
tions on the path. This tolerance to area preserving imperfe@ates based on Berry’s phase are also more affected by fluc-
tions has suggested to some authors that Berry’s phase coukptions than their dynamical counterparts.
be a useful tool for intrinsically fault-tolerant quantum com-
putafcion. For example, from the al_)ove argument, on_e_is led|; ADIABATIC VERSUS NONADIABATIC GEOMETRIC
to think tha.t Berry’s phase gates will not be very sensitive to PHASE GATES
random noise along the paffi]. Proposals for the observa-
tion and use of this phase for quantum computation have Let us begin by recalling the main ideas related to the
been given for different physical systefis-9]. Application ~ Berry’s phase and see what are its drawbacks for quantum
of the non-Abelian geometric phafk0] to quantum compu- computation applications. Consider a system whose Hamil-
tation was also the subject of several publicatifis—14. tonian H(t) is controlled by a set of external parameters
In this paper, we consider another type of geometric phasB(t). Upon varyingR(t) adiabatically, if the system is ini-
as a tool for gquantum computation: the nonadiabatic, otially in an eigenstate off, it will remain in an eigenstate of
Aharonov-AnandarAA), geometric phasgl5]. As the Ber-  the instantaneous Hamiltonian. MoreoverHifis nondegen-
ry’s phase, the AA phase is purely geometric. It is related tcerate on a closed loof in parameter space such tHz¢0)
the area enclosed by the state vector in projective s =R(7), the final state will differ only by a phase factor from
below) during a cyclic evolution. One would, therefore, be- the initial state. Berry has shown that this phase factor has
lieve that quantum gates based on this geometric phase alboth a dynamic and a geometric contribution, the later de-
have some built-in tolerance to noise about the path. The uggending solely on the loog in parameter spadeé]. If the
of this gate as a tool for intrinsically fault-tolerant quantum initial state is a superposition of eigenstatefs,) of the
Hamiltonian, each of the eigenstates in the superposition will
acquire a Berry phasil(r))=U(7)|#,(0)) = €|y, (0))
*Email address: ablais@physique.usherb.ca for some real, eigenstate dependent, phasd18]. These
"Email address: tremblay@physique.usherb.ca phases will generally have both dynamic and geometric con-
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tributions. This is not a cyclic evolution of the state vector Hamiltonian but of the evolution operator. Aharonov and
but this does not lead to any ambiguities since the Berry'sAnandan15] have shown that the total phageacquired by
phase is defined over parameter space. such a cyclic initial state in the intervgd,7], on which it is

It follows from the above that the application of adiabatic cyclic is given by the sum of a dynamié &1),
geometric phases to quantum computation has several draw-
backs. First, quantum computers will very likely have a short 5= — JTdt< POHD (D), (3)
coherence time. To take full advantage of this short time, the 0
logic operations should be realized as fast as possible. The
adiabaticity constraint means that Berry’s phase gates will band of a geometric contribution,
slow, thereby reducing the effective quality factor of the B=¢—6 ()
guantum computer. '
_ Another drawback of the adiabatic phase gate is that durThe |atter is the AA phase. This result is exact, it does not
ing the adiabatic evolution, both geometric and dynamiCest on an adiabatic approximationt, it is restricted to cy-
phases are acquired. The latter is not tolerant to area presemuic initial states, for which Eq(2) holds.
ing noise and must be removed. This could be done using The AA phase is not associated to a closed loop in param-
refocusing schemes, analogous to spin echo, which requiger space, as in Berry’s case, but rather to a closed@op
going over the adiabatic evolution twidg—9]. However, iy projective Hilbert spacd15]. For a (pseudd spin 1/2,
this further increases the time required to realize a singlgynich'is the system of interest for quantum computatjén,
phase gate and imperfect operation will cause the dynamig equal to plus or minus half of the solid angle enclosed by
phase not to cancel completely, thereby introducing errors. ine Bloch vectorb(t) on the Bloch sphere. Recall that the

A third difficulty is that adiabatic geometric phases areg|qch vector is defined through the density matrix as
only possible if nontrivial loops are available in the space of

parameters controlling the qubit’s evolution. In other words, _ 1
the single-qubit Hamiltonian must be of the form p(O)=[d())(P(t)|= SL1+b()- o], (5)
Hle (t)o +EB o +EB (t)o (1) Wwherel is the identity matrix ando the vector of Pauli
27T 2Ty e e matrices.

. ) . Let us now consider the AA phase as a tool for quantum
where control over all thregeffective) fields Bi(t) is pos-  computation. The first of the above-mentioned issues with
sible. Such control is not possible in many of the currentg gdiabatic phase has already been solved as the adiabatic-
proposals for solld-staye guantum compu_ter arch|tecture§ty constraint has been relaxed by choosing appropriate cy-
Control over only two fields, sa, andB,, is usually the  ¢jic initial states, which depend on the particular evolution
norm. In this case, all loops in parameter space are limited tQ;e 5re interested in.
the x-z plane and therelative Berry phase is limited to  The second drawback of the adiabatic phase is solved by
integer multiples of 2r, of no use for computation. Control choosing evolutions such that
over fields in all three directions is possible in nuclear mag-
netic resonancéNMR), where the Berry phase gates have (P(OH)|g(1))=0 (6)
been implemented experimentally]. More recently, Falci _ ) o )
et al. [9] have extended the original superconducting charg&t all times. The dynamic contributiof8) is thus zero and
qubit proposa[17] from a symmetric to an asymmetric de- ONly & geometric AA phase is acquired ov&t. For Eq.(6)
sign to allow a nonzer®, and, therefore, nontrivial closed t© be zero at all time, the axis of rotation must always be
paths in parameter space. orthogonal to the state vector. The correspondm_g paths are

This need for external control of many terms in the single-then spherical polygons, where each segment lies along a
qubit Hamiltonian means additional constraints, experimendreat circle on the Bloch sphere. It is a clear advantage of the
tal difficulties, and sources of noise and decoherence. This &4 Phase for computation that such paths exist since there is
clearly contrary to the efforts now invested in reducing quan{hen no need for cancellation of the dynamic phase using

tum computer design complexity using the approach of ent€focusing techniques. _ _
coded universality19]. To address the third issue, we restrict our attention to

As we shall see, all of the above issues, namely, slovfiamiltonians, for which only two control fields are nonzero,
evolution, need for refocusing and control over many effec-

tive fields, seem to be resolved when one considers the nona- H= 1Bx(t)a,(Jr EBz(t)az. (7)
diabatic generalization of the Berry’s phase: the Aharonov- 2 2
Anandan(AA) phase. If one can turn on and tune the coefficientsogfand o,
The latter is introduced by restricting oneself, for a givensimultaneously, the following evolution is possible:
H(t), to initial states which satisfy R?A( 0)=R (7/2)R(7)R(2), @)
[9(1)=U(7)|(0))=€"¢|4(0)). (2)

with n=(—cos#,0,sind) andB,= \/BX2+ BZZ. This operation
For nonadiabatic evolutions, these so-called cyclic initialacts asR2*(6) |0)=e~'?|0). Figure 1a) is a plot of this
states[20] are generally not eigenstates of the system’spath on the Bloch sphere. Since this path satisfies@gthe
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E) In the nonadiabatic case, however, there is clearly no
a) 5 b) .
10) ] closed loop on the Bloch sphere, as shown on Fig. 3, and
— | x —| identifying the AA phase according to Aharonov and Anan-
dan’s original definition is more subtle. This situation has
Es suggested to some authdr@?] that the AA phase is not
C) Ng | Rx(w2); Rn(x) ; R(ni2) observable for any evolution on an isolated quantum system.
"2 ) E ) The reason is that the AA phase is defined only for cyclic
0 0 |—’ evolutions and, since global phase factors are not physical,
% observable properties are unchanged for such evolutions.
Dx : : While a non-Abelian version of the nonadiabatic phase
-§ 0.2 : : . .
— can be defined and the phase factors in(Bfcan be seen as
0

T geometrid 23], a direct observation of the AA phase as in the
NMR experiment of Suteet al. [24] is interesting but will
require more than one qubit. In the language of quantum
computation, the analog of this NMR experiment is to use a
second qubit to “monitor” the phase on the first one. Explic-
itly, start with a two-qubit state assuming the first qubit is in
an arbitrary linear superposition,

FIG. 1. (a) Evolution of the Bloch vector on the Bloch sphere
for the sequence of pulsé). The initial (cyclic) state vector i$0).
Starting with|1) yields a similar path but centered on the south pole
of the Bloch sphere(b) Symmetric charge qubit. The control pa-
rameters are the gate voltayk and the external fluxb,. (c)
Sequence of the external fldx, and the dimensionless gate charge

ng implementingR;(¢). The gate charge is related to the gate (a]0)+b|1))]0). (10)
voltage byny=C,V /2e. Relative amplitude of flux and gate volt-
age duringR,(7) is used to tund, see Fig. 2. Then, apply the sequen¢®) on the second qubit, condition-

ally on the first qubit to bé1),
dynamic phase is zero for this evolution and, as a result, the

geometric AA phase is just . By varying the angle of the Craa=Cpor R\~ 6/2)Cror R (6/2)

axis of rotationd, it is possible to obtain any geometric

phases. Incidentally, in implementations for which the fields 1

B, and B, cannot be nonzero simultaneously, one is re- 1

stricted ton=*z and hence to multiples of/2 for 6. = o : (13)
This operation can be implemented, for example, with a

symmetric superconducting charge quli?], Fig. 1(b), by e

using the sequence of flux and gate voltage of Fig). This ] ] ] .

is similar to what was suggested recently in Rd6]. Fig- The operatlorCNQT is the gontrolled\IOT_ operation appllAed

ures 2a) and 2b) show, respectively, the angke and the ©n the two qubits, the first one acting as contrfy

magnitude of the effective field, for R,() as a function (*6/2) is Eq.(8) applied on the second qubit only. This

of gate voltage and external flux applied on the charge qubiﬁ/'eIdS

+i6

Here, B,=4E;(1—-2n,) and B,=2E;cos@m®,/®,), where C 00+ b|10)) = al00) + be~ 1?10
®,y=h/2e is the flux quantum andt, and E; are, respec- RfA(al )+ b[10)) =a]00)+ be™%|10)
tively, the charging and Josephson enerfjied. Because of =(al0)+e %b|1))|0).  (12)

the dependence @, on the external parameters, the time
t,=7/B, required to implemenR,() depends on the de- The net result is equivalent to a geometric phase gate on the

sired geometric phase, Fig. Zc). first qubit. It can be observed from the first qubit by interfer-
The gate sequencé8) on the superposition a(0)  ence[25]. There is no ambiguity in defining the AA phase in
+b|1))/ V2 yields this situation : The second qubit undergoes a cyclic evolution
and its phase is measurable since the evolution of the total
1 i i system is not cyclic. ' .
E(ae |0)+be"'1)) 9 The controlledNOT operation can be realized as

Cnot=€ "*™*R(37/2)Cp(37/2)Ryp(7/2)
and the phase difference betwd®h and|1) has observable
consequences. While this final stzte depe>nds on the AA phase X Ryo(I12)Ryp(mI2) Ry (7/2) Cp(37/2). (13
of the evolution of|0) and|1) separately, it is not a cyclic
evolution when acting on their superposition.

For the adiabati¢Berry) phase, a similar situation does
not cause any ambiguities. In that case, as stated earlier, a Cp(y)=e 17729072 (14
superposition of eigenstates does not yield a cyclic evolution
for the state vector either. Nevertheless, the phase acquiredl their repertory but similar sequences can be found for
by each eigenstate still has a contribution, which is geometether implementations. For the charge qubit, suchra
ric in nature since cyclicity is not required in projective space® o, interaction can be implemented by capacitive coupling
but in the Hamiltonian parameter spdde]. [9].

This particular sequence is specific to quantum computer
implementations having the control phase-shift gate
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tary gates, a number that is quite large for a gate whose
purpose is to implement a “noiselessfjeometri¢ phase-
shift gate.

IIl. TOLERANCE TO NOISE IN CONTROL PARAMETERS

A central issue to address in a pragmatic way is tolerance
to imperfections. If nonadiabatic geometric logic gates are to
be useful for computation, there should be some tolerance to
fluctuations in the control parameters. Fluctuations of the
control fields will introduce imperfections in the angles and
axes of rotation of the gates implementing the geometric
evolution. These imperfections change the overall unitary
evolution applied on the qubit and the corresponding final
phase may now have a dynamic component. It is important
to note that whether the imperfections affect the dynamic or
the geometric component is not relevant for our analysis.
Any unwanted phase factor represents an error on the quan-
tum computation. In the following, we thus focus on the
errors on the total phase coming from fluctuations in the
control parameters around the values that are needed to
achieve the desired unitary transformations in the nonfluctu-
ating case.

Let us consider first the effect of the simplest of such
errors: an errok in the angle of the first gate of the sequence

®),

Bn (kelvin)

R (7/2)R(m)R,(m/2+ €). (15)

We do not consider the extra gatékl) for the moment.
.(.\‘\\\ S Evidently, this is not an area preserving error and one should
\\\\\\\\‘\‘\‘\‘\ not expect the AA phase to be invariant in this circumstance.
\\\\\\\\\\\\\\\“‘ N However, this is exactly the type of errors which will occur if
N\ the control fieldB,(t) is fluctuating.
That the nonadiabatic phase gate is not tolerant to this
error is easily checked by applying the erroneous sequence

(15) on the statg0) to obtain
cog efl2)e "%0)—i sin(e/2)e|1). (16)

Running Time (ps)

FIG. 2. (a) Possible values of the geometric phase The evolution is not cyclic anymore and we cannot define
=arctaf2E(2ng—1)/E; cosm®,/®o)] for the symmetric supercon-  the AA phase in this situatiofat least not in the computa-
ducting charge qubit as a function of gate changeand extemal tjonal basis. In other words, the computational basis does
qux_(I)X of the rotano_an(w). The characteristic energies of the not coincide anymore with the basis of cyclic states of the
qubit are chosen as in R4R1J: E,=0.6 K andE.=135K. The o ayqlution operator. Note that to first order én the
relat've.phase 2 can be chosen in the full rang@’.zﬂ by an noncyclicity remains and, therefore, nonadiabatic phase
appropriate choice of the control parametéts.Magnitude of the gates are not tolerant to small imperfections. Small errors
effective fieldB,, as a function of the external parametdc3.Total can take the state vector out of areat circles ;and bring in a
running time ofR2*(#) (in picosecondsas a function of external q ical bution. | 9 b h 9 |
control parameters of thR,(7) operation in Eq(8). We assume .yne}mlca contri utlop - In worse cases, as above, the evolu-
that theR,(7/2) part of the operation is performed at the faSteStgce)?ir:Zdn% Itohnegi:)r%)é)clrt(;t?c?r?althbeagé phase can no longer be

possible rate. Due to limitations of voltage and curr@m., flux) . . .
pulse generators, actual running time may be laf@&}. Finite rise It is possible to get a more complete picture of the effect
time of the pulses was not taken into account. of random noise on the nonadiabatic phase gate and see how

it compares to the simpler dynamic phase gate,

Using EQgs.(8) and (13), it is possible by inspection to R,(9)=e 1077 (17
“compile” the total sequence(1l) from 2X(7+3)=20
down to 18 elementary operations. Moreover, one can veriffpy studying the Hamiltonian
that the dynamic phase cancels in Efjl). This, therefore,
corresponds to a purely geometric two-qubit operation. This H= E D [Bi(t)+ 8B;(t)]o, (18)
logic gate, however, involves the application of 18 elemen- 25, ' t
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& , To compute the distance, we expaddn) in Eq. (19) to

i first order in6B andt/N and average the distance obtained
0)+|1 from this approximation by applying the central limit theo-
vz rem to the variableX;== ,6B;(n). In addition, we note
that the time necessary to compleig(¢) is t;=N;At
=¢/B;. For the geometric gate, this leads ,B,
=2N,B, since the rotation angles involved in E§) are =
and /2, respectively. In this way, we obtain in the presence
of noise alongx andz,

- w1 1 |\sB
2yIl (DREA(012) Ry(0)))~ E(—ﬁ 55
FIG. 3. The sequence of rotatio(®) applied on the superposi- Bx x=n \/N_x
tion of states [0)+|1))/2 does not yield a closed path on the (223
Bloch sphere.
. \/E 0 5B ax/ B,
Here, 5B; represents fluctuations of the control fi@g. It is (D(R,(6),R,(8)))~ 6 \/N—z ' (22b

believed that fluctuations of the control fields are the most

damaging sources of noise and. decoherence for solid—sta%hereB , B,, andB, are the magnitudes of the effective
qubits [17]. For the charge qubit of Fig. (), this corre-  fioids used to implemzent, respectiveRy(/2), R,(). and
sponds to Nyquist-Johnson noise in the gate voltdgend g gy As N, gets smaller, the noise is constant on a larger
in the current generating the fluk, portion of the evolution and excursions on the Bloch sphere
Without noise R;"(6/2) andR,(6) have the same effect. tarther away from the original path are possible. The distance

To compare these gates in the presence of noise, we Simppetween the noisy and noiseless gates, therefore, increases as
use the composition property of the evolution operator, N; diminishes.

N Figure 4 shows a numerical verification of these relations.
Ut)=Te Vod'H = im [T u(n), (19 The weak dependence ofD(R;A(6/2),R,(6))) on 6
N n=1 throughB, is apparent in Fig. @). For (D(R,(6),R,(6))),

the dependence goes a¥ since N,x 6, Fig. 4b). The
agreement between the analytical and numerical results is
very good, with an error of about 3% in both cases. Our
first-order estimates are then enough for this level of noise.
) . i . ... Systems where the noise is of larger amplitude will most
n th_e interval = 5B,y Without noise, the deco_mposmon probably not be relevant for quantum computation so, for all
(19? is of course E,)faCt’ whatever the va]uel\hfsmce the practical purposes, this approximation should be enough.
'99'0 o_peratlonsRZ (‘9/2)_ a”?' R.(6) are |_mplemented by Using the analytical estimat€22), the criterion(21), and
piecewise constant Hamiltonians. With noise, we assume th@king the noise correlation time to be equal for dynamic and
the 6B; are time independent during the intensi=t/N; . geometric gates, we obtain a bound on the amigleeyond

We then defineAt as the noisg correlation _timg. It will be which the geometric gate becomes favorable over the dy-
assumed to be the same during the application of any ekamic one

ementary operatioR; . With the decomposition of Eq19),

whereU(n)=exd —iH(n) /N] andH(n) is the Hamiltonian
during thenth interval. We use units where=1. To simu-
late noise, the field$B;(n) are chosen as independent ran-
dom variables drawn from a uniform probability distribution

the evolution is explicitly unitary. B, B,
To compare the two operations, we compute the trace dis- Op>m o5+ 5. (23
Bx Bn
tance[26]
D(U,V)=Tr{J(U-V)T(U-V)} (200  Taking B,/By~B,/B,~1, we obtain that fort,=2, the

geometric gate will be less affected by noise than its dynamic

with respect to the noiseles?,(¢) gate. We reached the counterpart. For the charge qub, and B, are fixed, re-
same conclusions when the average fiddlR®y] was used Spectively, by the charging ener@y and Josephson energy
numerically to compare noisy and noiseless gates. The trade; - To encode efficiently information in the charge degree of
distance D(U,V) takes values between 0 and 4, with freedom, the inequalitfc>E; must be satisfied17]. The
D(U,V)=0 only for U andV equal. Thus, if the nonadia- bound obtained wit8,/B,~B,/B,~1 is, therefore, a lower
batic gate is to be more tolerant to noise than its dynami®ound on 6. Since 6,>2, the nonadiabatic geometric

counterpart then gate is never useful in practice. In particular, with the ener-
B ~ gies used in Fig. 2, we obtaif,=2.57 as a lower bound.
D(R’Z*A( 0/2),R,(0))<D(R,(6),R,(8)) (21 More generally, since the logical states of a qubit are the

eigenstates ofr,, B, should be larger thaB, for the logical
should hold. The tilde is used here to denote noisy logidasis to be the “good” basis. We, therefore, expect this lower
gates. bound to hold for most quantum computer architectures.
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We also obtained the analogs of the above results Eqsa)
(22) and(23) when the noise is alongonly and also found (D(ﬁAAR )>
the geometric gate more sensitive to noise than the dynami LA
cal one. 0.12

The effect of decoherence on the AA phase gate was alst
studied numerically by Nazit al. for nonunitary evolutions 008
[28]. They reach the same conclusion on the sensitivity to ,
noise of the AA phase gate. Since they can deal with more
general noise than we do here, their approach is more generi ©
than ours but is entirely numerical. Our objective here was to
include only the kind of noise, to which geometric gates
were previously suggested to be tolerant: unitary random
noise about the path.

The approach used here to quantify the effect of fluctua-
tions can be used for Berry's phase gates as well. We con
sider the pulse sequence used in the NMR experiment of Ref
[7] and simplified in Ref[28]. The system Hamiltonian now ~
takes the form <D(RZ'R2)>

0.03

b)

w
H= Eaz+ 7l(cos¢ oxtsingoy). (24)

0.02
The sequence of operations used in R&f.starts with the 001
field along thez axis (w,;=0). The parameteh is assumed 0
fixed throughout. The field is first adiabatically tilted in the
x-z plane by increasingv; at =0 up to some maximal
value wqnmax. The field now makes an angl® one
=arccosf/ A%+ wlz max) With respect to thez axis. With
w1 kept constante is then adiabatically swept froghi=0 to 3<0
¢=2m. To obtain a purely geometric operation, the dynamic g\, 4. Trace distance as a function @&nd maximum ampli-
phase is refocused by repeating the above operations in rgde of the noise averaged over 600 realizations of the noise. Noise
verse between a pair of faB () rotations. The final rela- s alongx andz and is in units of the maximal value of the effective
tive phase is then purely geometric and has the vatue field in the z direction B,=4E,. (a) Averaged trace distance be-
=47(1—CcoSOng [7]. tween a noisy AA-phase gate and the corresponding noiseless dy-
To study the effect of noise for this sequence, we agaimamicR, gate. The inset shows a path with random noise obtained
use the composition propertft9) and a Trotter decomposi- from the numerical calculation. The path is not closed and the evo-
tion for Eq. (24). In the same way as above, we then obtainlution is not cyclic.(b) Similar to(a) but for the noisy dynamic gate
in the case of noise along y, andz and assuming that the R;. In both cases, the noise correlation time is takenAds
R,() rotations are noiseless, =h/(4E.y) with y=300. The charging and Josephson energies are
taken as in Fig. 2.

4 T TS
‘DBerry ~ _T + _¢
(DR™().Re(7))) 37 Bmax Nt N, tions. The possibilityf8] to find a point of operation, where

(25)  conditional phase shifts are insensitive, to linear order, to
noise inw,(B,) may however, in very special cases, be an

where T is the time taken to tilt the field in the-z plane  advantage of Berry-phase gates for coupled qubits.
andT 4 is the time for thep sweep. As in Eq(22), the larger The overall results of this section can be understood intu-
Nr and N, are the smaller is the noise correlation time.itively rather simply. To implement logical gates that use
Agreement of this result with numerical calculatiofteot  geometric phasegadiabatic or ngt one needs to apply a
shown is excellent. The adiabaticity constraint means thatsequence of unitary transformations that take the Bloch vec-
Tt andT, must be large and, therefore, that for all practicaltor around a closed path. In the presence of noise in the
purposes, the Berry’'s phase gate is worse than its dynamiontrol fields, that sequence does not take the Bloch vector
equivalent. The conclusion is the same for all the differentaround a closed path anymore. Since all that counts is the
types of noise tested numerically. For the tilt, these are overall phase of the unitary transformation, this phase will be
noise along« only and uncorrelated noise alomg@ndz For  more affected in the long sequences of unitary transforma-
the ¢ sweep, we took identical noise alongandy, and tions necessary for geometric gates than in the shorter se-
tested its effect with and without uncorrelated noise aleng quences necessary for purely dynamical gates. We may point
Because of the adiabatic constraint, the Berry’s phase gate @it that if the noise has a special symmetry that makes it area
also worse than the AA phase gate. This is the conclusiopreserving then this symmetry might allow quantum error
reached as well in Ref28] in the case of nonunitary evolu- correction[2], decoherence-free subspad@s4], or bang-
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bang techniquefs] to be used with more success than geo-present work, however, we focused our attention on the type
metric gates. of noise, to which the geometric logical gates were previ-
ously assumed to be tolerant.
IV. CONCLUSION The use of the AA phase for quantum computation pur-
) poses, therefore, seems to be of little practical interest. It is,
In summary, we have considered the AA phase as a toQiowever, of fundamental interest to observe this phase and a

for quantum computation. This phase solves many of th@jirect observation with the symmetric superconducting
problems of the Berry’s phase gate. Namely, it can be implecharge qubit seems possible.

mented faster, does not require refocusing of a dynamic com-
ponent, and involves control over only two effective fields in
the one-qubit Hamiltonian. We showed how the AA phase of
one qubit can be monitored by a second qubit without extra
dynamical phase. As an example, details of the implementa- We thank S. Lacelle, D. Poulin, H. Touchette, and A.M.
tion of the AA phase with a symmetric charge qubit wereZagoskin for helpful discussions and A. Maassen van den
given. Application of these ideas to other quantum computeBrink for comments on the manuscript and useful discus-
architectures is a simple generalization. sions. This work was partially supported by the Natural Sci-

When the effect of noise in the control parameters is takeences and Engineering Research Council of Canada
into account, it appears that practical implementations ofNSERQ, the Intelligent Materials and Systems Institute
logical gates based on geometric phase ideas, both adiabati®/S|, Sherbrookg the Fonds pour les Chercheurs et I'Aide
and nonadiabatic, are more sensitive to noise than purelg la Recherche(FCAR, Quéeg, D-Wave Systems Inc.
dynamic ones, contrary to what was previously claimed. WgVancouve), the Canadian Institute for Advanced Research,
have checked how noise affects the overall unitary transforand the Tier | Canada Research Chair prog&mM.S.T).
mations that, in the noiseless case, implement purely ged?art of this work was done while A.-M.S.T was at the Insti-
metric logical gates. The analytical results were confirmedute for Theoretical Physics, Santa Barbara, with support by
numerically and for a wide range of noise symmetries. Thighe National Science Foundation under Grant No. PHY94-
is in agreement with the recent work of R¢28]. In the  07194.
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