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Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon
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We provide a general method to find the Hamiltonian of a linear circuit in the presence of a nonlinearity.
Focusing on the case of a Josephson junction embedded in a transmission-line resonator, we solve for the
normal modes of the system by taking into account exactly the effect of the quadratic (i.e., inductive) part
of the Josephson potential. The nonlinearity is then found to lead to self and cross-Kerr effects, as well as
beam-splitter-type interactions between modes. By adjusting the parameters of the circuit, the Kerr coefficient K

can be made to reach values that are weak (K < κ), strong (K > κ), or even very strong (K � κ) with respect
to the photon-loss rate κ . In the latter case, the resonator + junction circuit corresponds to an in-line version of
the transmon. By replacing the single junction by a SQUID, the Kerr coefficient can be tuned in situ, allowing,
for example, the fast generation of Schrödinger cat states of microwave light. Finally, we explore the maximal
strength of qubit-resonator coupling that can be reached in this setting.
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I. INTRODUCTION

With their high-quality factors and large zero-point elec-
tric fields, superconducting transmission-line resonators are
versatile tools for the study of quantum mechanical effects in
solid-state devices. Resonators have, for example, been used to
study the strong-coupling regime of cavity QED in electrical
circuits [1,2], to probe the displacement of a nanomechanical
oscillator close to the standard quantum limit [3], to entangle
remote qubits [4–7], and to implement quantum algorithms
[8,9].

In the same way that Josephson junctions are used in
qubits for their nonlinearity, these junctions have also been
used experimentally to make nonlinear resonators. With their
Kerr-type nonlinearity K(a†a)2/2, these resonators have made
possible the realization of Josephson bifurcation amplifiers
(JBAs) to read out the state of superconducting qubits [10–12],
of linear Josephson parametric amplifiers (JPAs) [13–17], of
Josephson parametric converters (JPCs) between microwave
photons of different frequencies [18–20], and the squeezing
of microwave light [17]. In these experiments, the Kerr
nonlinearity is often required to be small with respect to the
photon decay rate κ . For example, the nonlinearity is limiting
the dynamic range of JPAs. Finally, as was theoretically
proposed [21] and experimentally realized [22], interrupting a
resonator with a Josephson junction can also be used to reach
the ultrastrong coupling regime of circuit QED.

In this paper, we give a unified description of this system in a
wide range of nonlinearity K/κ . We first treat the very general
problem of finding the normal modes of a continuous linear
circuit in which a Josephson junction is embedded. This is done
by treating exactly the effect of the quadratic (i.e., inductive)
part of the Josephson potential. The nonlinearity is then
reintroduced and is shown to lead to Kerr nonlinearities and
beam-splitter type interactions between modes. By adjusting
the parameters of the circuit, the nonlinearity K can be made to
reach values that are weak (K < κ), strong (K > κ), or even
very strong (K � κ) with respect to the photon-loss rate. In the
latter case, the resonator + junction circuit corresponds to an
in-line version of the transmon qubit. By replacing the junction

with a superconducting quantum interference device (SQUID),
the Kerr coefficient can be tuned in situ allowing, for example,
the fast generation of Schrödinger cat states of microwave
light. In light of these results, we also revisit the question first
asked in Ref. [23] concerning the maximal qubit-resonator
coupling strength that is possible in circuit QED. We find that
the toy model used there and consisting of lumped LC circuits
current biasing a Josephson junction can only be used in a
limited range of parameters to predict the coupling.

The paper is organized as follows. In Sec. II, we obtain
the normal modes of the transmission line including the effect
of the linearized Josephson junction potential. We then deter-
mine the equivalent lumped-element circuit model and rein-
troduce the Josephson junction’s nonlinearity. In Sec. III, the
three regimes of K/κ mentioned above are explored. Finally, in
Sec. IV we discuss the question of the maximal qubit-resonator
coupling strength that is possible in circuit QED

II. HAMILTONIAN OF THE NONLINEAR RESONATOR

In this section, we solve the general problem of a Josephson
junction embedded in a continuous linear circuit. For lumped
elements, the approach that we are following can be summa-
rized in a few lines. Indeed, as illustrated in Fig. 1, consider
for example a Josephson junction of Josephson energy EJ

and capacitance CJ in parallel with a LC oscillator. The
Hamiltonian of this circuit is simply

H = q2

2C ′ + δ2

2L
− EJ cos(2πδ/�0), (1)

where C ′ = C + CJ . By Taylor expansion of the cosine
potential, this can be rewritten in the form

H = q2

2C ′ + δ2

2L′ + UNL(δ), (2)

with the renormalized inductance 1/L′ = (1/L + 1/LJ )
and where we have introduced 1/LJ = (2π/�0)2EJ

the Josephson inductance. In this expression,
UNL(δ) = EJ

∑
n>1(−1)n+1(2πδ/�0)2n/(2n)! represents

the Josephson potential excluding the quadratic part ∝δ2.
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FIG. 1. (Color online) A LC circuit in parallel with a Josephson
junction can be equivalently represented by a LC, whose parameters
are renormalized by the junction capacitance CJ and the linear
Josephson inductance LJ , in parallel with a purely nonlinear element
represented by the spiderlike symbol.

As illustrated in Fig. 1, Eq. (2) is simply the Hamiltonian
of a linear LC circuit whose parameters L′ and C ′ are
renormalized by the presence of the junction and connected in
parallel with a purely nonlinear element. Using the notation of
Ref. [24], the latter is represented by a spiderlike symbol.
Expressing the conjugate operators q and δ in terms of
the oscillator operators a and a†, the nonlinear element
will contain Kerr-type terms of the form (a†a)2 and whose
coefficients can be calculated. We note that, in principle, the
nonlinear terms arising from the Josephson potential can be
treated to any order as a perturbation on the linear Hamiltonian.
This approach can thus be used in any parameter range.

In the rest of this section, this procedure will be followed for
a transmission-line resonator in which a Josephson junction
is embedded. There, the difficulty comes both from the
continuous nature of the system and because it supports
multiple modes. We first give the Lagrangian of the resonator
including the input and output boundary conditions and the
presence of the junction. The normal modes of the Lagrangian
where the Josephson potential has been linearized are found.
Working in this basis, the Hamiltonian is then obtained.
The method presented below is an extension of the work of
Wallquist et al. [25] that focused on the first mode of oscillation
of a resonator in the presence of a Josephson junction of large
Josephson energy (weakly nonlinear regime). The reader not
interested in the details of the derivation can jump to Sec. II D,
which contains the final form of the quantized Hamiltonian
taking into account the nonlinearity.

A. Lagrangian formulation and linearization

Figure 2(a) presents schematically a transmission-line
resonator with a Josephson junction inserted at position xJ

of the center conductor. The resonator, of total length 2�, is
terminated by the input and output capacitors Ci and Co. The
Lagrangian of the bare resonator takes the standard form

Lr =
∫ �

−�

[
C0(x)

2
ψ̇2(x,t) − [∂xψ(x,t)]2

2L0(x)

]
dx, (3)

where, in the flux representation, ψ(x,t) = ∫ t

−∞ V (x,t)dt ,
where V (x,t) is the voltage and C0(x) and L0(x) are the
capacitance and inductance per unit length [26]. For simplicity,
we will take the parameters of the resonator to be piecewise
constant. That is, the capacitance C0

μ and inductance L0
μ

per unit length to the left (μ = l) and right (μ = r) of
the junction, and the corresponding characteristic impedance
Zμ = (L0

μ/C0
μ)1/2 and group velocity vμ = (L0

μC0
μ)−1/2, are

not assumed to be identical. The generalization to arbitrary
C0(x) and L0(x) is simple [21].

(a)

(b)

FIG. 2. (Color online) (a) Discretized representation of a
transmission-line resonator capacitively coupled to input and output
ports and with a Josephson junction interrupting the center conductor
at position xJ . (b) Lumped element representation of the transmission
line + junction. The normal modes of the resonator, dressed by the
junction’s capacitance and linear inductance, are represented by
LC circuits biasing the junction’s nonlinear inductance (spiderlike
symbol).

The input (α = i) and output (α = o) capacitances Cα are
modeled by

Lrα = Cα

2
[ψ̇(xα,t) − Vα(t)]2. (4)

In this expression, Vα(t) is the voltage bias at the port α of
the resonator and xi = −�, xo = +�. Finally, the junction is
modeled both by its capacitance CJ and Josephson energy EJ .
In practice, CJ will be a small perturbation on the resonator’s
total capacitance. Dropping this capacitance would, however,
be akin to dropping the plasma mode of the junction. The
contribution of the junction to the Lagrangian is then

LJ = CJ

2
δ̇2 + EJ cos(2πδ/�0), (5)

where δ = ψ(x+
J ,t) − ψ(x−

J ,t) is the phase bias of the junc-
tion. The junction can be replaced by a SQUID or any other
weak link with minimal modification to the theory.

In the same way as for the lumped circuit example above,
we expand the cosine potential of the junction such that the
total Lagrangian takes the form

L = L′
r + Li + Lo − UNL(δ) ≡ LL − UNL(δ). (6)

The first term L′
r is the resonator Lagrangian including the

quadratic contributions of LJ and the potential UNL(δ) has
been defined as above. We now show how to find the normal
modes of the linearized Lagrangian LL.

B. Normal modes decomposition

In this section, we are interested in finding the orthogonal
basis of normal modes of oscillations of the linear resonator +
junction circuit. This is done by solving the Euler-Lagrange

013814-2



JOSEPHSON-JUNCTION-EMBEDDED TRANSMISSION-LINE . . . PHYSICAL REVIEW A 86, 013814 (2012)

equation of motions,∑
ν=x,t

∂ν

(
∂LL

∂[∂νψ(x,t)]

)
− ∂LL

∂ψ(x,t)
= 0. (7)

In particular, at the resonator ports x = ±� and the junction’s
position x = xJ , Eq. (7) determines the boundary conditions
that strongly influence the resonator mode basis.

Away from the junction and the resonator ports, Eq. (7)
obeys the standard wave equation

ψ̈(x,t) = v2
μ∂xxψ(x,t), (8)

whose solutions are left and right movers with the dispersion
relation ωμ = kμvμ. Since we are looking for modes of the
whole resonator, we impose ωl = ωr , or equivalently that the
wave vectors obey Snell-Descartes’ law krvr = klvl . The field
ψ(x,t) can be decomposed in terms of these traveling modes
as

ψ(x,t) =
∑
m

ψm(t)um(x), (9)

with ψm(t) oscillating at the mode frequency ωm = kmvl . In
this expression, km is the wave vector of the left resonator that
we use as a reference and um(x) the mode envelope which
we now specify using the boundary conditions found from the
equation of motion Eq. (7).

Indeed, at x = ±�, because of the input and output
capacitances, the field must satisfy

ψ̈(−�,t) − 1

CiL
0
l

∂xψ(x,t)|x=−� = V̇i ,

(10)

ψ̈(�,t) + 1

CoL0
r

∂xψ(x,t)|x=� = V̇o.

These equations have homogeneous (V̇i,o = 0) and particular
(V̇i,o �= 0) solutions. Moreover, the current on either side of
the junction is equal, which imposes

1

L0
l

∂xψ(x,t)|x=x−
J

= 1

L0
r

∂xψ(x,t)|x=x+
J

= CJ δ̈ + δ/LJ .

(11)

Without linearization, the last term of this expression would
contain the full Josephson current Ic sin(2πδ/�0).

These constraints can be satisfied by choosing

um(x) = Am

{
sin

[
km(x + �) − ϕi

m

] −� � x � x−
J ,

Bm sin
[
k′
m(x − �) + ϕo

m

]
x+

J � x � �,

(12)

with k′
mvr = kmvl . The normalization constants Am, relative

amplitudes Bm, phases ϕα
m, and wave vectors km are still to be

specified.
First, ϕα

m answers to the homogeneous solution of Eq. (10),
leading to tan ϕα

m = |Zα(ωm)/Z0
l | with Zα(ω) = (iωCα)−1.

Moreover, the first equality of Eq. (11) fixes the relative
amplitude Bm of the modes to be

Bm = Z0
r

Z0
l

cos
[
km(xJ + �) − ϕi

m

]
cos

[
k′
m(xJ − �) + ϕo

m

] . (13)

This corresponds to the impedance mismatch between the two
resonator sections at frequency ωm. Second, an eigenvalue

-1

 0

 1

-1 -0.5  0  0.5  1

FIG. 3. (Color online) Typical example of the first three normal
mode envelopes of a resonator with a Josephson junction at xJ = 0.

equation for the wave vector km is found by inserting the
envelope function Eq. (12) in the constraint Eq. (11). This
yields(

Z0
r

Z0
l

tan

[
km

vl

vr

(xJ − �) + ϕo
m

]
− tan

[
km(xJ + �) − ϕi

m

])
×

[
−(km�)2 CJ

C0
l �

+ L0
l �

LJ

]
= km�, (14)

a transcendental equation whose solutions are found numeri-
cally.

Third, the remaining parameter to be set is the normalization
Am. This is done by noting that the um(x) obey the inner
product [27]

〈um · un〉 ≡
∫ �

−�

dx C0(x)um(x)un(x) + Cium(−�)un(−�)

+Coum(�)un(�) + CJ 
um
un

= C�δmn. (15)

In this expression, 
um = um(x+
J ) − um(x−

J ) is an impor-
tant parameter corresponding to the mode amplitude dif-
ference across the junction. The total capacitance C� ≡∫ �

−�
C0(x)dx + Ci + Co + CJ is here used to fix the normal-

ization constant |Am|.
Last, from the expressions Eqs. (14) and (15), it is useful

to define the inner product of envelope derivatives as they are
found to obey a similar orthonormality condition

〈∂xum · ∂xun〉 ≡
∫ �

−�

dx

L0(x)
∂xum(x)∂xun(x)

+ 1

LJ


um
un

= δnm

Lm

. (16)

Here, we have defined the mode inductance L−1
m ≡ C�ω2

m

corresponding to the effective inductance of the resonator
mode m taking into account the inductance provided by the
Josephson junction.

The first three mode envelopes um(x) are shown in Fig. 3
for a junction symmetrically located at xJ = 0. Because they
have a finite slope there, the odd modes phase bias the junction,
which results in a kink 
um,odd �= 0 in the mode envelope. On
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the other hand, the even modes do not feel the presence of the
junction at this location and are unperturbed, 
um,even = 0. As
first proposed in Ref. [21], this kink can be used to strongly
phase bias a qubit and to reach the ultrastrong coupling regime
of circuit QED.

C. Hamiltonian of the linearized circuit

Using the normal mode decomposition Eq. (9) and the
orthogonality of the mode envelopes [Eqs. (15) and (16)],
the Lagrangian of the linearized circuit can be expressed as

LL =
∑
m

[
1

2
C�ψ̇2

m − ψ2
m

2Lm

− ψ̇m

∑
α=i,o

CαVαum(xα)

]
.

(17)

This immediately leads to the Hamiltonian

HL =
∑
m

(qm − qg,m)2

2C�

+ ψ2
m

2Lm

, (18)

corresponding to a sum of harmonic oscillators. Here,
qm = δL/δψ̇m is the charge conjugate to ψm and qg,m =∑

α um(xα)CαVα is a gate charge associated with the voltage
bias at port α.

As will become clear when reintroducing the nonlinearity,
for modes having 
um �= 0, it is advantageous to work with
the rescaled conjugate variables φm = ψm
um and ρm =
qm/
um. In this language, the above Hamiltonian takes the
form

H = H◦ +
∑
m•

[
(ρm − ρg,m)2

2C ′
m

+ φ2
m

2L′
m

]
, (19)

with C ′
m = C�/
u2

m, L′
m = Lm
u2

m, and ρg,m = qg,m/
um.
The symbol • restricts the sum to modes that are affected
by the junction and ◦ to those that are unaffected by
it: H◦ = ∑

m◦(qm − qg,m)2/(2C�) + ψ2
m/(2Lm). As for the

simple lumped-element example presented above, the presence
of the junction renormalizes the parameters C ′

m and L′
m of the

(effective) oscillators.
To better understand the role played by the junction in

the different modes m, it is instructive to define the effective
resonator capacitor C̃m and inductor L̃m for mode m (for which

um �= 0) in the following way:

C̃m ≡
∫ �

−�

dx C0(x)u2
m(x) + Ciu

2
m(−�) + Cou

2
m(�),

1/L̃m ≡
∫ �

−�

dx

L0(x)
[∂xum(x)]2 . (20)

To these two quantities are respectively associated with
the electrostatic and magnetic energy stored only in the
resonator and not in the junction. The capacitive and inductive
participation ratio of the junction can then be defined as
ηc,m ≡ CJ /C ′

m and ηl,m ≡ L′
m/LJ , respectively. As it should,

from Eqs. (15) and (16) the participation ratio of the junction
and of the resonator for a given mode m sum to unity:

ηc,m + C̃m

C�

= 1, ηl,m + Lm

L̃m

= 1. (21)

Both ratios are such that ηc(l),m → 0 in the limit where
the junction becomes a short. Moreover, with CJ � C� in
practice, the participation of the junction to the electrostatic
energy is small, ηc,m ≈ 0.

It is important to understand that the participation ratio
of the junction ηl,m can be quite different from one mode
to the other. As mentioned above in relation to Fig. 3, some
modes do not feel the presence of the junction. Because of this
variation in participation ratio, the mode frequencies are not
uniformly spread, ωm �= m × ω1. This inharmonicity can be
tuned by changing the position of the junction in the resonator
or by changing EJ . The latter can be done in situ by replacing
the junction with a SQUID. As is discussed below, for some
applications, this inharmonicity can be advantageous.

D. Reintroducing the nonlinearity

Now that we have the exact modes of the linearized circuits,
we reintroduce the nonlinear potential UNL(δ). In terms of the
mode decomposition Eq. (9), this takes the form

UNL(δ) =
∑
i>1

(−1)i+1

2i!

(
2π

�0

)2i

EJ

(∑
m

ψm
um

)2i

. (22)

Using the rescaled variables defined in Eq. (19), we can get
rid of the explicit dependance on 
um to write the total
Hamiltonian in the simple form

H = H◦ +
∑
m•

[
(ρm − ρg,m)2

2C ′
m

+ φ2
m

2L′
m

]
+ UNL

(∑
m•

φm

)
.

(23)

In essence, the system can be modeled by the simple lumped-
element circuit presented in Fig. 2(b). This circuit is composed
of a discrete set of parallel LC oscillators biasing together
a purely nonlinear Josephson inductance. For the remainder
of this article, we focus only on the modes affected by the
junction.

We now quantize the Hamiltonian and introduce the
creation (a†

m) and annihilation (am) operators of excitations
in mode m:

φ̂m =
√

h̄

2C ′
mωm

(a†
m + am),

(24)

ρ̂m = i

√
h̄C ′

mωm

2
(a†

m − am).

The above Hamiltonian now takes the form

Ĥ = ĤL + ĤNL, (25)

with

ĤL =
∑
m

h̄ωma†
mam, (26)

and

ĤNL =
∑
i>1

(−1)i+1

2i!

(
2π

�0

)2i

×EJ

[∑
m

√
h̄

2C ′
mωm

(a†
m + am)

]2i

. (27)
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While higher-order contributions can easily be taken into ac-
count, for simplicity, here we assume small phase fluctuations
and consider only the first contribution to the nonlinear term.
This yields

Ĥ ≈
∑
m

h̄ω′
ma†

mam −
∑
m,n

h̄
Kmn

2
a†

mama†
nan

−
∑
m�=n

h̄ζmmn(a†
nam + a†

man)

−
∑

l �=m�=n

h̄ζlmn(a†
l al + 1/2)(a†

man + a†
nam), (28)

where we have neglected terms rotating at frequencies faster
than |ωm − ωn|. The nonlinear terms induce a frequency shift
ω′

m = ωm − ∑
n Kmn on the mode frequencies, as well as Kerr

Knn, cross-Kerr Kmn, and beam-splitter-like ζlmn interactions
with amplitudes

Kmm = E′
C,mηl,m/h̄, (29)

Kmn = 2
√

KmmKnn, ∀ m �= n (30)

ζlmn = (1 − δlm/2)
(
K2

llKmmKnn

)1/4
. (31)

We express these quantities in terms of the charging energy
E′

C,m = e2/(2C ′
m) and the inductive participation ratio ηl,m.

It should not come as a surprise that, in the same way as
for the transmon qubit [28], the self-Kerr coefficient (i.e.,
the anharmonicity) is related to the charging energy. Here,
however, this nonlinearity is “diluted” by the finite inductance
of the transmission line which leads to a nonunity participation
ratio ηl,m of the junction to a given mode m. We come back to
the analogies of this system to the transmon below.

Finally, as already pointed out, the Hamiltonian of Eq. (28)
includes only the first contribution ∝δ̂4 of the nonlinearity. This
expansion is thus valid for weak nonlinearities with respect to
the mode frequencies, Kmm/ωm � 1. However, as discussed
in the next section, this does not prevent the nonlinearity to be
strong with respect to the photon damping rate κ .

III. THREE REGIMES OF NONLINEARITY

In this section, we explore analytically and numerically
three regimes of nonlinearity. Comparing to the resonator
photon-loss rate κ , we define the weak K < κ , strong K > κ ,
and very strong K � κ regimes. Here, we choose the junction
location along the length of the resonator to optimize various
quantities. It is interesting to point out that this choice is not
possible with a λ/4-type resonator where the junction is, by
default, at the end of the resonator. The advantage of this
additional design flexibility is illustrated in Fig. 4. There, we
plot the frequency ω1 and Kerr nonlinearity K11 of the first
mode of a resonator as a function of junction position xJ and
Josephson energy EJ . The parameters can be found in the
caption of the figure. By appropriate choice of xJ , EJ and,
as we discuss below, the total length 2� of the resonator, it is
possible to reach the three regimes mentioned above.

While the position can be chosen only at fabrication time,
EJ can be tuned in situ by replacing the single junction with
a SQUID with junctions of energy EJ1 and EJ2 and using
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FIG. 4. (Color online) (a) Frequency ω1 and (b) Kerr nonlinearity
K11 of the first mode as a function of xJ and EJ . The black lines
indicate the contour of constant K11/κ = 1 and 10, with κλ/2/2π =
1.5 MHz. The dashed white lines indicate xJ /� = 0.5, 0.75, and 0.95.
These positions are used below. The resonator has a total length 2� =
1.2 cm, characteristic impedance Z0 = 50� and input and output
capacitors Ci = Co = 10 fF. In the absence of the junction, it has a
fundamental λ/2 mode of oscillation at ωλ/2/2π = 4.95 GHz. Unless
otherwise stated, the numerical calculations in this section have been
realized with this set of parameters.

an external flux �x . In this situation, the Josephson potential
ĤJ = −EJ cos(2πδ̂/�0) is replaced with [29]

ĤJ = −EJ�

[
cos

(
π�x

�0

)
cos

(
2πδ̂

�0

)

+ d sin

(
π�x

�0

)
sin

(
2πδ̂

�0

)]
= −EJ (�x) cos[2π (δ̂ − δ0)/�0], (32)

where

EJ (�x) = EJ� cos

(
π�x

�0

) √
1 + d2 tan2

(
π�x

�0

)
, (33)

with EJ� = Ej1 + Ej2, d = |Ej1 − Ej2|/EJ� the asymme-
try parameter, and tan δ0 = d tan(π�x/�0). Below, we drop
the phase δ0, which can be eliminated by a gauge transforma-
tion.

Finally, we note the region of large Kerr nonlinearity when
the junction is placed close to the end of the resonator [bottom
right corner of Fig. 4(b)]. As is discussed in Sec. IV, in this
situation the junction and the small segment of resonator to its
right essentially behave as a transmon qubit, the nonlinearity
being related to the anharmonicity of the transmon.

A. K < κ: JBAs, JPAs, and JPCs

The regime of weak nonlinearity K < κ is realized by
working at large EJ such that the participation ratio ηl,m of the
junction, and in turn the Kerr nonlinearity Eq. (29), is small.
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This regime has been well studied experimentally, starting with
the pioneering experiments in the late 1980s of Yurke et al.with
JPAs [13,14]. Since then, weakly nonlinear resonators have
been used as a JPAs [15–17], as JBA [11,12,24], as JPC
[18–20], and to squeeze microwave light [17]. While in this
section we do not present new ways to exploit this regime,
we hope that these results, which can be used to predict
the important high-level system parameters (frequencies,
nonlinearities, . . .) from basic device parameters (resonator
length, xJ , EJ , . . .), will prove useful in practice.

We first briefly comment on the use of this device as a
JBA and then move to the JPA and JPC. In the JBA mode,
the resonator is driven by a tone of frequency ωd = ωm + 


detuned by 
 from a given mode m. The inharmonicity helps
in suppressing the population of the other modes, for example
if

∣∣ωm − ωn�=m

∣∣ �= 2ωd for the other modes n of the resonator.
In this situation, the unwanted modes can be dropped and the
Hamiltonian of Eq. (28) takes the simplified form

H(1) = h̄ω′
ma†

mam − Kmm

2
(a†

mam)2

+ h̄
(
εeiωd ta†

m + εe−iωd t am

)
, (34)

where we have added the drive. Figure 5 presents the
frequencies, inharmonicity, and Kerr amplitude as a function
of the junction position (in the range 0 to �) for a large junction
EJ /h = 636 GHz. As can be seen in Fig. 5(b), the detunings
to undesirable transitions involving two drive photons can be
optimized by moving the junction along the length of the
resonator.

We now turn to the JPA and JPC modes of operation. Here,
we assume that a SQUID rather than a single junction is
present. Modulating the flux allows for degenerate amplifica-
tion, as well as nondegenerate amplification and conversion.
Indeed, in the presence of a small time-dependant flux �rf (t),
the Josephson potential Eq. (32) gains a rf contribution

Ĥrf
J ≈ ϕrf(t)

2
EJ�[sin(ϕx/2) cos(2πδ̂/�0)

− d cos(ϕx/2) sin(2πδ̂/�0)], (35)

where we use the notation ϕ = 2π�/�0. Taking ϕrf(t) =
ϕrf cos(ωdt) this can be rewritten, to second order in δ̂, as

Ĥrf
J = −

∑
m

h̄(gme−iωd t + H.c)(a†
m + am)

−
∑
m,n

h̄

2
(gmne

−iωd t + H.c)(a†
m + am)(a†

n + an), (36)

where the amplitude of the one and two-photon processes are

gm =
(

2π

�0

)
dEJ� cos(ϕx/2)√

8h̄C ′
mωm

ϕrf, (37)

gmn =
(

2π

�0

)2
EJ� sin(ϕx/2)

4
√

C ′
mC ′

nωmωn

ϕrf . (38)

For asymmetric Josephson junctions (d �= 0), both processes
are possible. Interestingly, using Eq. (16), it is possible to
express gmn in terms of the rate of change of the mode
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FIG. 5. (Color online) (a) Frequencies, (b) detunings from two-
photon processes, and (c) self-Kerr coefficients Kmm of the first four
normal modes of a nonlinear resonator as a function of the Josephson
junction position, starting from the center (xJ = 0) to the right
edge (xJ = �) of the resonator. Because of the shape of the
mode envelopes um(x), moving the junction away from the center
increases the nonlinearity on the higher resonator modes and thus
the inharmonicity. The dashed vertical line indicates at xJ = �/2
corresponds to the junction location chosen in Fig. 6. The parameters
are given in the text.

frequencies with respect to the external flux as

gmn = 1

h̄

√
∂ωm

∂�x

∂ωn

∂�x

�rf . (39)

This relationship, valid for d ∼ 0 and �x �= �0/2, was
experimentally verified in Ref. [20].

We now focus on the symmetric (d = 0) case in the
presence of a nonzero dc component ϕx �= 0. For ωd ≈
ωj ± ωi , where i,j label two modes of the resonator, the
Hamiltonian Eq. (28) including flux driving can be simplified
to

H(2) =
∑

m,n={i,j}

[
h̄ωma†

mam + h̄Kmn

2
a†

mama†
nan

− h̄

2
(gmne

−iωd + H.c)(a†
m + am)(a†

n + an)

]
. (40)

Because of the repeating indices in the sum, the exchange
rate between modes is gmn. For ωd ≈ 2ωm, the last term
reduces to ∝(a† 2

m + a2
m), corresponding to degenerate para-

metric amplification [15]. In the nondegenerate mode, with
the drive frequency ωd ≈ ωm + ωn, this term rather reduces
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to ∝a
†
ma

†
n + aman, which can be used for phase-preserving

amplification. Finally, for ωd = ωm − ωn, we find a beam-
splitter-like interaction a

†
man + ama

†
n between modes. Conver-

sion of microwave photons between two modes in this JPC
mode of operation has already been observed [20]. As noted by
these authors, the fidelity of photon frequency conversion will
suffer from the nonlinearity Kmn. Moreover, when operated
as a JPA, the nonlinearity will limit the dynamic range of the
amplifier and, as discussed in more detail in the Appendix,
the number of photons that can be present in the resonator
before the junction’s critical current is reached. The objective
is thus to increase the coupling gmn while keeping Kmn small.
The added design flexibility provided by the choice of the
junction’s position xJ helps in this regard. As can be seen in
Fig. 4, the dependance of the mode frequency with respect to
EJ (or �x) can be increased by moving the junction along
the resonator length without increasing the Kerr nonlinearities
significantly.

With this in mind, we now compare our theoretical findings
to the experimental setting of Ref. [20]. There, a λ/4 resonator,
therefore with the SQUID necessarily located at one end of
the resonator, was used to realize the JPC Hamiltonian. The
necessary inharmonicity was realized by varying the charac-
teristic impedance of the resonator along its length. In this way,
a mode detuning (ω3 − ω2) − 2(ω2 − ω1) = 2π × 240 MHz
was obtained.1 By biasing the SQUID at �x = 0.37�0, the
JPC coupling was g12/2π ∼ 20 MHz for a flux modulation
amplitude �rf = 0.02�0, while the Kerr coefficients were
kept relatively small with K11/2π ∼ 0.5 MHz and K22/2π ∼
4.0 MHz.

Figure 6 presents the same parameters (mode frequencies
ωm, inharmonicity, Kerr coefficients Kmm, and parametric cou-
plings gmn) as a function of the external flux �x . In opposition
to Ref. [20], here we consider a λ/2 resonator with a symmetric
SQUID located at xJ = �/2. This location is also indicated by
vertical dashed lines in Figs. 4 and 5. We first note that, through
most of the �x range, the detunings to undesired transitions
are kept at more than 250 MHz, similar to Ref. [20]. Moreover,
because of the larger flux dependance of the mode frequencies
[see Eq. (39)], for the same small rf amplitude �rf =
0.02�0, we find JPC coupling strengths {g12,g13,g23}/2π ∼
{76,54,86} MHz that are about four times as large. Even
with these larger values, the unwanted Kerr nonlinearity
remain small at {K11,K22,K33}/2π ∼ {0.21,1.3,0.35} MHz.
This increase in coupling strength over nonlinearity should
lead to higher fidelities in photon frequency conversion. We
note that these parameters have only been manually optimized
and a more thorough optimization should lead to better results.
Finally, depending on the flux-noise level, it might be more
advantageous to work at smaller dc flux bias, where the
susceptibility to flux noise is reduced, and increase the rf
modulation �rf to keep the coupling strength constant.

1It is important to note that we take m = 1 to be the fundamental
mode, while the authors of Ref. [20] use m = 0.

(a)

(b)
(c)
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FIG. 6. (Color online) (a) Frequencies, (b) detunings from high-
order photon processes, and (c) self-Kerr effects Kmm and Rabi
frequencies gmn for �rf = 0.02�0 of the first three normal modes of
a nonlinear resonator with a large Josephson junction, as a function
of the external flux �x . The SQUID is placed at position xJ = �/2.
Parameters are given in the text. The vertical dashed line present at
�x = 0.37�0 corresponds to the operating point of the JPC used in
Ref. [20].

B. K > κ: Photon blockade and cat-state generation

In this section, we assume that the drive frequency is chosen
such that the JPA and JPC terms can be dropped and that a
single mode approximation is valid. Similarly to Eq. (34), but
dropping the mode index m and the drive, the Hamiltonian
reduces to

Ĥ = h̄ωra
†a − h̄

K

2
(a†a)2. (41)

As already illustrated in Fig. 4 this regime of strong non-
linearity K > κ can easily be reached. Moreover, because
the Josephson energy is flux-tunable, the Kerr nonlinearity
can itself be tuned. Below, we show how to exploit this large
nonlinearity, and its tunability, to observe photon blockade [30]
and to generate cat states [31].

For the numerical examples, we use a SQUID of total
Josephson energy EJ�/2π = 622 GHz interrupting the res-
onator at xJ = 3�/4. These parameters are chosen such that
there is a maximum variation of K in a narrow range of flux
�x . Indeed, the participation ratio, and hence K , change more
rapidly with flux near the end of the resonator, as can be seen in
Fig. 4(b). This narrow range should allow for fast-flux tuning to
and from operating points with widely different nonlinearities.
However, given the dependance of the Kerr effect with the
Josephson energy, the extremal points are always near �x = 0
and �x = �0/2, the latter corresponding to the point of largest
susceptibility to flux noise. To reduce this susceptibility, we
work with an asymmetric SQUID of asymmetry parameter
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FIG. 7. (Color online) (a) Frequency ωr , radiative relaxation
rate κ , and self-Kerr coefficient K of the first mode as a function
of external flux. (b) Pulse shape of the external flux and Kerr
coefficient as a function of time for Schrödinger cat state generation.
(c) Density plot of the numerically obtained resonator Wigner
function immediately after the flux pulse acting on an initially
coherent state |α = 2〉. The device parameters are given in text.

d = 5%. In this case, the point �x = �0/2 also corresponds
to a sweet spot for flux noise. As can be seen in Fig. 7(a),
with these parameters the Kerr coefficient can be modulated
over four orders of magnitude, from K(�x = 0)/2π = 2 ×
10−3 MHz to K(�x = �0/2)/2π = 20 MHz, over a range of
�0/2. At its maximum, the participation ratio of the junction
reaches ηl = 0.6.

In order to comfortably reach the strong nonlinear regime
K/κ > 1, the coupling capacitances are reduced with respect
to the previous section to Ci = Co = 2.5 fF. This corresponds
to a very reasonable photon relaxation rate κ/2π ≈ 0.1 MHz,
or equivalently to Tκ = 1/κ ≈ 1.6 μs. With these choices of
parameters, the resonator can be brought continuously from
the linear regime with K/κ ≈ 1/200 to the strongly nonlinear
regime with K/κ ≈ 200 by increasing the flux threading the
SQUID loop by half a flux quantum.

In addition to changing the nonlinearity, flux tuning the
Josephson energy also changes the mode frequency. This is
illustrated by the solid black line in Fig. 7(a). Dephasing due
to flux noise due to the finite |∂ω/∂�x | can be evaluated to
exceed 10 μs throughout the flux range [28]. In practice, the
decoherence time should thus be limited by relaxation with
T2 ≈ 2/κ = 3.2 μs. Finally, the red dotted line in Fig. 7(a)
shows a very weak variation of κ over the whole flux range.
Indeed, while the decay rate from the input (left) port decreases
with frequency due to the Ohmic nature of the bath, the
reduction is compensated by the enhancement of the decay
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FIG. 8. (Color online) (a) Density plot of the average number
of photons as a function of time and external flux in the presence
of an external drive of amplitude ε/2π = 2 MHz and of frequency
ωd = ωr − K/2. (b) Line cuts for the values of flux indicated by I
and II in panel (a) and corresponding, respectively, to K/κ ∼ 1/25
and ∼200.

rate from the output (right) port as the mode amplitude at the
port increases with decreasing frequency [32].

Using these parameters, we show in Fig. 8(a) the result
of a simulation of the mean photon number 〈a†a〉(t) under
irradiation with a continuous tone of amplitude ε/2π = 2 MHz
and frequency ωd (�x) = ωr (�x) − K(�x)/2 as a function
of time and for various values of the external flux �x . For
small K/κ ∼ 1/25, corresponding to line cut labeled I in
panels (a) and (b), the mean photon number simply exhibits
ringing toward its steady-state value. Since the drive is resonant
with the |0〉 ↔ |1〉 Fock state transition frequency, for a large
nonlinearity K/κ ∼ 200, corresponding to the line cut labeled
II, the mean photon number rather shows Rabi oscillations
with amplitude bounded by 〈a†a〉 = 1. To confirm that these
can be interpreted as Rabi oscillations, the probability P1(t) =
|〈1|ψ(t)〉|2 is also shown as a blue dashed line in Fig. 8(b). This
change of behavior from ringing to Rabi oscillations is also
known as photon blockade, where a single photon at a time
can enter the resonator because of the large photon-photon
interaction K [30]. In this regime, the resonator essentially
behaves as a qubit with a low anharmonicity K/ωr ∼ 0.5%.
Leakage to higher Fock states can be minimized by pulse
shaping [33]. We note that photon blockade was already
observed in circuit QED using a linear resonator and with
a qubit providing the nonlinearity, in both the dispersive [34]
and the resonant [35] regimes.

013814-8



JOSEPHSON-JUNCTION-EMBEDDED TRANSMISSION-LINE . . . PHYSICAL REVIEW A 86, 013814 (2012)

We now turn to cat-state generation. With the resonator
initially prepared in a coherent state |α〉, evolution under
Hamiltonian Eq. (41) for a time τ = π/K will generate a
superposition of coherent states with opposite phases [31]

|ψcat(α)〉 = 1√
2

(eiπ/4| − iα〉 + e−iπ/4|iα〉). (42)

Here, we suggest to use the tunability of the Kerr coefficient,
with an on/off ratio of about 104 for the parameters used here,
to prepare with high-fidelity this cat state.

To prepare this state, we first set the external flux to
�x = 0.3�0, where the resonator is essentially linear. A
coherent state |α〉 in the resonator is prepared using a tone of
frequency ωr for the appropriate amount of time. As illustrated
in Fig. 7(b), a flux pulse �x(t) then modulates the nonlinearity
K from its small initial value at �x = 0.3�0 to its maximum
at �x = 0.5�0 and back. By choosing the timing such that the
total accumulated phase is

∫ τ

0 K(t)dt = π , the field evolves
to a cat state. Working with an asymmetric SQUID, the high
nonlinearity point where the system spends the most time is a
flux sweet spot, minimizing the effect of flux noise. Moreover,
because of the the large nonlinearity K/2π ∼ 20 MHz, the flux
excursion is very short with the required phase having been
accumulated after a time τ = 33 ns for the present parameters.
As the resonator is back to a small nonlinearity after the
protocol, the cat state is preserved (up to phase rotations and
damping).

Figure 7(c) shows the Wigner function of a cat state
prepared using the flux excursion presented in panel (b) and
with an initial coherent state |α = 2〉. The fidelity F (α) =
〈ψcat(α)|ρnum|ψcat(α)〉 of the numerically obtained state ρnum

to the desired cat state |ψcat(α)〉 is found to be F (2) ≈ 93.5%
for α = 2 and F (

√
2) ≈ 97% for α = √

2, suggesting that
photon loss is the main cause of error.

C. K � κ: In-line transmon

By increasing further the participation ratio of the junction,
the resonator can be made even more nonlinear. This can easily
be achieved by shortening the length of the resonator such that
its bare fundamental frequency (in the absence of the junction)
lies comfortably above the junction’s plasma frequency. In
this situation, the first mode of the circuit is essentially the
junction’s plasma mode, dressed by the resonator. Focusing on
this mode, it is useful to write the Hamiltonian in its lumped
representation of Eq. (23)

H ≈ 4ECn2 + EL

2
φ2 − EJ cos φ, (43)

where n = q1/2e is the Cooper-pair number operator, conju-
gate to the phase φ across the junction. The circuit is described
by the charging energy EC = (e
u1)2/(2C�) and the linear
inductive energy EL = (�0/2π )2/(L̃1
u2

1); the Josephson
energy EJ is unchanged. By taking the one-mode limit and
by introducing the inductive energy EL, we have been able to
resum the cosine potential in Eq. (23). In this effective model
L̃1
u2

1 plays the role of the inductance of the dressed plasma
mode.

With the presence of the inductive φ2 term, Eq. (43)
corresponds to the Hamiltonian of the fluxonium qubit [36,37].
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FIG. 9. (Color online) ω1/ωp (full red line) and K11/EC,T (green
dashed line) vs total resonator length 2�. For very short lengths,
the circuit essentially behaves as a transmon of frequency h̄ωp =√

8EC,T EJ and anharmonicity EC,T = e2/[2(2�C0/4 + CJ )].

The analogy should, however, not be pushed too far: The
above Hamiltonian is an effective model valid only around
the frequency of the mode of interest. Indeed, while in the
fluxonium, a large inductance is shunting the junction, there
is no such inductive shunt here. As a result, the protection
against low-frequency charge noise provided to the fluxonium
by the inductance [37] is not present here. In other words,
one should be careful about reaching conclusions about low-
frequency physics with an effective model valid only around
the (relatively large) plasma frequency of the junction.

As a result, despite the presence of the φ2 term, this
system is closer to the transmon [28] than to the fluxonium
and, as in Ref. [23], we refer to this qubit as an in-
line transmon. As alluded to before, rather than helping,
the resonator’s inductance dilutes the Josephson inductance,
reducing the anharmonicity. Indeed, the transition frequency
for the two lowest-lying states of the Hamiltonian Eq. (43)
can be approximated by h̄ω01 ≈ √

8EC(EL + EJ ) and the
anharmonicity α = ω21 − ω10 ≈ −ECηl,1. In comparison, the
transmon transition frequency given by the plasma frequency
h̄ωp = √

8ECEJ and its anharmonicity is given by α = −EC .
For a given charging energy, the anharmonicity of the in-
line transmon is smaller than that of the transmon by the
participation ratio ηl,1.

As illustrated in Fig. 9, the participation ratio, and thus
anharmonicity, is increased by shortening the length of the
resonator. In the limit where this length goes to zero, the
first mode has a wave vector k → 0, corresponding to an
envelope that is constant throughout both resonator sections
but oscillating out of phase. In this situation, the kink at the
junction tends toward 
u1 → 2. The participation ratio ηl,1

then tends to unity, such that EL → 0, α → −EC,T and ω1 →
ωp, with EC,T = e2/[2(2�C0/4 + CJ )] the charging energy of
an equivalent transmon [28]. For this purely plasma mode,
the in-line transmon reduces to the standard lumped-element
transmon.

In the same way as the transmon, the in-line transmon can
be operated in a parameter regime where it is protected against
charge noise. However, because of the finite inductance, the
protection here improves with the ratio (EJ + EL)/EC rather
than EJ /EC , as it does for the transmon [37]. In practice,
however, EL � EJ and the extra factor of EL should not lead
to a significant increase in charge noise protection. However,
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FIG. 10. (Color online) In-line transmon (right) capacitively
coupled to a low-Q resonator (left). The in-line transmon can be
coherently controlled, for example, using the right (green) control
port and the low-Q resonator measured in reflection using the left
(red) readout port.

with respect to the transmon, this qubit could benefit from
lower surface losses. Indeed, with its finger capacitor and
the associated large electric field, the transmon suffers from
surfaces losses [38]. Here, the capacitive shunt is provided by
the resonator which does not have (or has less) sharp edges
and has a smaller surface area. It is also possible to further
decrease the electric field intensity by increasing the gap
between the center conductor of the resonator and the ground
planes. With quality factors above 106 having been achieved
with aluminum resonators [39] and Josephson junctions having
been demonstrated to be very coherent [38], we can expect
in-line transmons to have long coherence times.

Finally, in the same way as the transmon, its in-line version
can be measured by coupling it to a linear (or nonlinear
[12]) resonator of typically lower quality factor. This is
schematically illustrated in Fig. 10. The readout resonator
(left) is capacitively coupled to the short in-line transmon
(right). The former can be measured in reflection through
the readout port (left, red) and the latter controlled using
the control port (right, green). A high-Q resonator could
be used to mediate entanglement between in-line transmons
(not shown) [40]. Finally, we note that, using this setup and
since the participation ratio changes with external flux, the
presence of the inductive term in Eq. (43) could be observed by
spectroscopic measurements of the in-line transmon transition
frequencies with respect to flux.

IV. HOW STRONG CAN THE COUPLING BE?

The in-line transmon was also suggested in Ref. [23] as a
way to reach the ultrastrong coupling regime of circuit QED,
the coupling essentially being between the dressed plasma
mode of the junction and a dressed mode of the resonator.
In light of the results obtained in this article, we revisit here
this idea. More particularly, we are interested in understanding
when the interaction between the plasma mode and a resonator
mode can be approximated by the Rabi-like Hamiltonian

HRabi = h̄ωra
†a + h̄ωpb†b + h̄K

2
(b†b)2

+ h̄g(a† + a)(b† + b), (44)

where a is an operator of the dressed resonator mode and b

an operator of the dressed plasma mode. In other words, we
would like to describe the system using a single resonator
mode and require the plasma mode to preserve a relatively
large anharmonicity K . In Ref. [23], this last requirement was
not made and we therefore arrive at different conclusions here.

0

(b)

0

(d)(c)

(a)

FIG. 11. (Color online) (a) Effective circuit of a junction coupled
to the current fluctuations of an oscillator as suggested by Devoret
et al. [23]. Close to the resonance and with CJ � C such that the
λ/2 mode approximation is valid, this lumped circuit is a good
representation of the circuit shown in panel (b). (c) Effective circuit
for a junction coupled to the voltage fluctuations of an oscillator.
(d) For the physical implementation with a transmission-line res-
onator to be equivalent to (c) around resonance, it is required that
if �q � 2� for the λ/2 mode approximation to be valid. As stated
in the text, the effective circuits of panels (a) and (c) are a valid
representation of the circuits of panel (b) and (d) only around their
resonance frequency.

The circuit analyzed in Ref. [23] is presented in Fig. 11(a).
As illustrated in panel (b), in the absence of the junction,
this is a lumped element representation of a λ/2 mode of the
resonator with maximums of the voltage at the two ports and
a maximum of the current in the center. In the presence of the
junction, in what limit is this lumped-element representation
of the continuous circuit valid?

Before answering this question, it is instructive to write the
Hamiltonian corresponding to this circuit. Using the conjugate
variables {ψr,ρr} and {φ,q} illustrated in Fig. 11(a), we have

Hλ/2 = ρ2
r

2C
+ (ψr − φ/2)2

2L
+ q2

2CJ

− EJ cos

(
2π

�0
φ

)
=

[
ρ2

r

2C
+ ψ2

r

2L

]
+

[
q2

2CJ

+ φ2

8L
− EJ cos

(
2π

�0
φ

)]
+ ψrφ

2L
, (45)

the three terms corresponding to the resonator, qubit, and
coupling Hamiltonians, respectively. In the same way as in
the previous section, we find that the qubit is renormalized by
the resonator’s inductance and its Hamiltonian takes the form
of Eq. (43) with EC = e2/2CJ and EL = (�0/2π )2/4L.

For EJ ,EL � EC , this in-line transmon is well described
by a weakly anharmonic oscillator of plasma frequency h̄ωp =√

8EC(EJ + EL) and anharmonicity −ECEJ /(EJ + EL). In
this limit, it is useful to introduce the annihilation (creation)
operator b(†) of the qubit such that φ = √

h̄/(2CJ ωp)(b† + b).
Also writing ψr = √

h̄/(2Cωr )(a† + a), the qubit-resonator
coupling in Eq. (45) takes the form

Hqr = h̄g(a† + a)(b† + b). (46)
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As in Ref. [23], it is instructive to write the coupling strength
g in units of the qubit frequency ωp:

g

ωp

= ωr

2ωp

√
Zvac

8παZr

[
EC

8(EJ + EL)

]1/4

, (47)

where Zr = √
L/C and α = Zvac/(2RK ) is the fine structure

constant expressed in terms of the vacuum impedance Zvac =
1/ε0c ≈ 377� and the quantum of resistance RK = h/e2.
Since Zr < Zvac, and given the dependence in 1/

√
α, this

scheme appears to allow for a coupling ratio g/ωp > 1
comfortably in the ultrastrong regime.

We now discuss the constraints on the circuits for the
conclusion reached above to be valid. We first note from
Eq. (47) that reaching the ultrastrong coupling regime requires
EJ + EL � EC [23]. This is inconsistent with the assumption
first made when writing the coupling Hamiltonian in the
form of Eq. (46). More importantly, the representation of
the resonator in Fig. 11(a), and thus the model Hamiltonian
Eq. (45), is valid only for a λ/2 mode: We are here assuming
a λ/2 mode despite the presence of the junction. Indeed,
Eq. (46) assumes only an inductive coupling between the
resonator and the qubit. As we have shown above, the resonator
mode is dressed by the junction which then sees a phase
drop proportional to 
um. This kink 
um results in a charge
coupling to the resonator mode while simultaneously reducing
the inductive coupling Eq. (47).

This kink can be minimized if the junction capacitance CJ

is reasonably large with respect to the resonator capacitance
2�C0, CJ � 2�C0. This minimizes the charge coupling to the
advantage of the inductive coupling. This conclusion is also
reached when solving numerically the eigenvalue equation
Eq. (14) requiring k1 ≈ π/(2�) for ωp > ωλ/2 [or k2 ≈ π/(2�)
if ωp < ωλ/2]. For example, satisfying CJ � 2�C0 with the
typical resonators parameters given in the beginning of Sec. III
requires CJ ∼ 4 pF. This translates into a very weak charging
energy EC/h ∼ 5 MHz and correspondingly to a small
anharmonicity. For the qubit to be in resonance with the
λ/2 mode at ωp/2π = 5 GHz also requires (EJ + EL)/EC ∼
1.25 × 105. With these numbers, we find g/ωp ∼ 0.2 from
Eq. (47), a value consistent with numerical calculations. Due
to the large junction capacitance involved, it can be difficult in
practice to reach the ultrastrong coupling regime with the setup
of Fig. 11(b) and, more generally, realize the Rabi Hamiltonian
Eq. (44) as an increase in the coupling is done at the expense
of a reduction of the anharmonicity.

To increase the anharmonicity at roughly constant g/ωp, a
possibility is to slide the qubit away from the center of the λ/2
mode. In this way, the junction can also be phase biased. As
illustrated in Fig. 11(d), the largest phase bias can be achieved
at the end of the λ/2 mode where the amplitude of the mode
envelope is maximal. In the limit where the length of the
transmission line �q on one side of the junction is small �q �
2�, the system approximately corresponds to a λ/2 resonator
coupled by the junction to an island of capacitance Cs = �qC

0

with negligible inductance. In this setup, the amplitude of the
mode envelope at the location of the junction u(�) ≈ √

2 is
only slightly modified by the presence of the junction.

Starting from the total Lagrangian Eq. (6), neglecting the
inductance on the right-hand-side of the junction and focusing

on the λ/2 mode, the effective Hamiltonian of the circuit is
found to be

H = ρr

2C ′
r

+ ψ2
r

2L′
r

+ q2

2Cq

−EJ cos

[
2π

�0
(φ − ψr )

]
− CJ

CqC ′
r

ρrq, (48)

where the effective capacitance and inductance of the resonator
are C ′

r = (2�C0 + CJ )/2 and 1/L′
r = C ′

rωr , respectively,
while the qubit capacitance is Cq = CJ + Cs . A lumped
element representation of this effective Hamiltonian is shown
in Fig. 11(c). In Eq. (48), ψr = √

2ψ1, where ψ1 is defined
in Eq. (9). This Hamiltonian essentially corresponds to a
transmon, of charging energy EC = e2/(2Cq) and plasma
frequency h̄ωp = √

8ECEJ , coupled to a LC oscillator
through both phase and charge. In the practical limit where
CJ � Cs � 2�C0, the charge interaction is negligible. As
stated in Sec. III C, the effective circuit of Fig. 11(c) is a
valid representation of Eq. (48) only around the resonance
frequency.

We now evaluate the strength of the dominating coupling.
As done above, we work in the limit EJ /EC � 1 which here
allows us to expand the cosine potential of the junction. Again,
by introducing the creation and annihilation of the qubit (b)
and the resonator (a), we find a coupling Hamiltonian of the
same form as Eq. (46) with

g

ωp

=
√

2πZ′
rα

Zvac

(
EJ

2EC

)1/4

, (49)

where Z′
r = √

L′
r/C ′

r = 2
√

Lr/(2�C0) is the characteristic
impedance of the renormalized resonator mode. While Eq. (47)
was proportional to 1/

√
α, here the ratio g/ωp is proportional

to
√

α. Combined with the small characteristic impedance
Zr < Zvac, this dependence makes it difficult to reach the ul-
trastrong coupling regime in this setting. Indeed, with the same
resonator parameters as above but now with EJ /EC ∼ 100 and
Zr ∼ 15�, we find g/ωp ∼ 0.15. However, in contrast to the
scheme of Fig. 11(b), the anharmonicity here is much higher
with EC/h ∼ 300 MHz.

For completeness, we now compare the effective model
of Eq. (48) with numerical simulations of the full system.
Figure 12 presents the normal mode frequencies ωm, Kerr
coefficients Kmm, and participation ratios ηl,m as a function of
external flux through a SQUID placed near the extremity of a
λ/2 resonator. The parameters can be found in the caption
of Fig. 12. In panel (a), the solid lines correspond to the
normal mode frequencies ω1 and ω2, while the dashed line
corresponds to ωr and the dotted line to ωp. These last two
quantities are evaluated from the effective model Eq. (48) and,
as expected, agree well with the numerics away from the region
of resonance (dashed vertical line). On resonance, an avoided
crossing is observed and from which we extract g/ωp = 0.12,
again in good agreement with the effective model.

Simultaneously, both the nonlinear Kerr effect and the
participation ratio shift from one mode to the other while
crossing the resonance, denoting the change of character of
the excitations from photon to plasmon (and vice versa). At
�x = �0/2, the participation ratio of the first mode reaches its
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FIG. 12. (Color online) (a) Frequencies, (b) nonlinear Kerr
coefficient, and (c) participation ratios of the first two normal modes
of the resonator for a junction located near the end of the resonator. We
have assumed a SQUID of total Josephson energy EJ�/2π = 19 GHz
and asymmetry d = 5% placed at a distance �q = 260 μm from
the right extremity of a resonator with bare fundamental frequency
ωr/2π = 4.95 GHz. This corresponds to a charging energy of the
island of EC/2π ≈ 400 MHz [blue dotted line in panel b].

maximum close to unity while the Kerr nonlinearity reaches
K11 ≈ EC/h as expected for a transmon. The fact that both
K and the participation ratio are not at their maximum value
near �x = 0 is caused by a residual dressing with the second
resonator harmonic close to 10 GHz (not shown).

These coupling strengths should be contrasted with those
obtained using phase-biased flux qubits [21] to lumped [41]
and distributed [22] resonators where ratios g/ωq ∼ 0.12
have been reported experimentally. In this setup, it should
be possible to comfortably reach even larger coupling ratios
while maintaining large anharmonicities [21,42].

V. CONCLUSION

We have presented a general approach to find the normal
modes of a linear circuit in which a Josephson junction is
embedded. To do so, we included the linear contribution
of the junction as a renormalization of the linear circuit
parameters. The junction nonlinearity is then reintroduced
and leads to Kerr-type nonlinearities and beam-splitter-like
interactions between modes. This description is most practical
for nonlinearities that are weak with respect to the mode

frequencies, but can still be large with respect to the photon
damping rate. Indeed, we have discussed ways to reach the
regimes of weak (K < κ), strong (K > κ), and very strong
(K � κ) nonlinearity with respect to damping. These results
can be used to optimize JBAs, JPAs, and JPCs. We have also
suggested an approach to generate high-fidelity cat states by
tuning rapidly the nonlinearity of the circuit. In the regime
of strong nonlinearity, the system behaves as an in-line
transmon. This qubit could benefit from lower surface losses
than the transmon. Finally, we have explored the possibility to
reach the ultrastrong coupling regime of circuit QED with the
in-line transmon.

Note added in proof. Recently, we became aware of the
related work [43,44].
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APPENDIX: CRITICAL PHOTON NUMBER

A small Josephson energy typically corresponds to large
nonlinearities. It, however, also implies a small critical current
Ic = 2πEJ /�0, close to which the junction will switch to
the resistive state. Populating the nonlinear resonator with
large amplitude fields should thus eventually make the junction
switch. This maximal amplitude of the field can be phrased,
roughly, in terms of a critical photon number by requiring that
〈nm|ĤL|nm〉 < EJ , where |nm〉 is a Fock state of mode m. A
lower bound for this photon occupation can then be expressed
as

nc
m >

EJ

h̄ωm

= √
ηl,m

√
EJ

8E′
C,m

= ηl,m

√
EJ

8h̄Kmm

. (A1)

As it should, this result is similar to what is found for
the number of levels ∼√

EJ /8EC in the potential well of
a transmon qubit, the presence of ηl,m reflecting here the
reduced participation ratio of the junction. Of course, for
transmons, exceeding the critical photon number does not lead
to switching because the junction is voltage and not current
biased.

For the parameter regimes studied here, where the ratio
EJ /E′

C,m ∼ 102–105, the number of accessible states is
always much larger than unity with nc

1 ∼ 10 in the strong
nonlinear regime and nc

m � 102 in the weakly nonlinear
regime.
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