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Improved qubit bifurcation readout in the straddling regime of circuit QED
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We study bifurcation measurement of a multilevel superconducting qubit using a nonlinear resonator biased
in the straddling regime, where the resonator frequency sits between two qubit transition frequencies. We find
that high-fidelity bifurcation measurements are possible because of the enhanced qubit-state-dependent pull of
the resonator frequency, the behavior of qubit-induced nonlinearities, and the reduced Purcell decay rate of the
qubit that can be realized in this regime. Numerical simulations find up to a threefold improvement in qubit
readout fidelity when operating in, rather than outside of, the straddling regime. High-fidelity measurements can
be obtained at much smaller qubit-resonator couplings than current typical experimental realizations, reducing
spectral crowding and potentially simplifying the implementation of multiqubit devices.
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I. INTRODUCTION

Circuit quantum electrodynamics (cQED), where super-
conducting qubits are coupled to transmission-line resonators,
constitute a promising architecture for the realization of a
quantum information processor [1,2]. Two criteria required for
quantum computation are the implementation, in a scalable
way, of a universal set of gates and the ability to faithfully
measure the qubit state [3]. In this system, single-qubit gates
can be performed by sending microwave signals through
the resonator close to the qubits’ transition frequency, while
two-qubit gates can be performed by tuning the qubits in and
out of resonance. The increasing fidelity of one-qubit [4] and
two-qubit [5-7] gates has allowed cQED to reach important
milestones, such as the implementation of two- and three-
qubit quantum algorithms [8—10] and the realization of more
complex multiqubit devices [11].

Qubit measurement in cQED is realized by driving the
resonator close to its natural resonance frequency and by
measuring the reflected or transmitted microwave signal.
Recently, high-fidelity single-shot measurements have been
achieved by using very large measurement drive powers
[12—14], by turning the resonator into a nonlinear active device
and using bifurcation to distinguish the qubit states [15-17],
or by using nearly quantum-limited amplifiers [18]. In these
realizations, increasing the qubit-resonator coupling leads to
larger variation of the resonator’s parameters with the qubit
state, resulting in a high measurement fidelity. In the same
way, increasing this coupling also typically reduces the gate
time of two-qubit operations. However, stronger coupling can
also reduce the on/off ratio of logical gates, causes spectral
crowding, and reduces the qubit lifetime through spontaneous
emission via the resonator, also known as the Purcell effect.

In this paper, we take a different approach and show that it is
possible to implement high-fidelity single-shot measurements
of a superconducting qubit using relatively small qubit-
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resonator coupling strengths—of the order of 10 MHz—than
in many recent experiments. To achieve this, we use the
weakly anharmonic multilevel structure relevant for most
superconducting qubits and take advantage of the so-called
straddling regime where the resonator frequency sits between
two qubit transitions [19]. This regime shows enhanced qubit-
state-dependent pull of the resonator frequency, enhanced
qubit-induced resonators, and a reduced Purcell decay rate.
We show that these three characteristics combine to improve
bifurcation measurements of the qubit state. In numerical
simulations of qubit readout, we find error probabilities three
times smaller inside with respect to outside of the straddling
regime. Even without thorough exploration of the available
parameter space, we find measurement fidelities of 98%.

The paper is organized as follows. In Sec. II, we first
introduce the Hamiltonians modeling a nonlinear resonator,
required for bifurcating measurements, coupled to a multilevel
qubit. Then, in Sec. III, we review the principle of bifurcation
measurements and highlight the important differences between
two-level and multilevel qubits in this respect. In Sec. IV, we
derive an effective dispersive Hamiltonian valid in the strad-
dling regime. Finally, in Sec. V we compare the parameters
calculated with our model to the parameters extracted from
exact diagonalization of the qubit-resonator Hamiltonian. We
then examine the specifics of bifurcation in the straddling
regime, extract measurement fidelities from numerical simula-
tions, and discuss other advantages of working in this regime.

II. MODEL

As mentioned above, many superconducting qubits have
a relatively small anharmonicity and are therefore described
by M-level systems with M > 2 rather than by two-level
systems [19-22]. We consider such a qubit coupled to a
Kerr nonlinear resonator (KNR), which could be realized, for
example, by an LC circuit with a Josephson junction [15] or
a stripline resonator with one [17] or many [23,24] embedded
Josephson junctions making it nonlinear. The qubit-resonator
system can be modeled with the many-level version of the
Jaynes-Cummings Hamiltonian,

H, = H, + H, + H, 2.1)
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where (. = 1)
M—1
Hy =Y ol =T, (2.2)
i=0
is the qubit Hamiltonian,
H, = w,alfa + gafafaa (2.3)
is the nonlinear resonator Hamiltonian [25], and
M=-2
Hy = gi(a M +alliy ) (2.4)
i=0

is the interaction Hamiltonian and where I1; ; = |i) (j|, with
{|i)} the qubit eigenstates. In these expressions, w; is the
frequency associated with the qubit eigenstate |i), w, is
the bare resonator frequency (at low powers), K is the Kerr
constant, and g; are the qubit-resonator coupling constants.
We have also introduced the short-hand notation

M-1
E xi I ;,
i=0

where x is a scalar taking different values x; associated with
the different qubit states |i). This notation is used throughout
this paper. Finally, in the qubit-resonator interaction term, we
have made the standard rotating-wave approximation and also
assumed that transition between states |i) <> |j) is suppressed
for [i — j| # 1[19].

Measurement of the qubit is realized by driving the
resonator with a tone of amplitude €, and frequency w,. This
is modeled by the drive Hamiltonian

I,

(2.5)

Hy = eqle™™al + &“'a), (2.6)
leading to the total Hamiltonian
H = H; + H,. (2.7)

Typical parameters for this system are in the gigahertz range
for the qubit and resonator transition frequencies. Couplings
gi can range from O up to many hundreds of megahertz in
the ultrastrong regime [26—28]. Finally, the nonlinearity K can
range from O up to many hundreds of megahertz [29], at which
point the nonlinear resonator essentially behaves as a qubit. In
this paper, we are interested in a regime where the couplings
g; are below a few hundreds of megahertz and the nonlinearity
K is limited to, at most, a few megahertz.

III. BASICS OF BIFURCATION MEASUREMENTS

The description of the KNR is simplified by introducing
the reduced detuning frequency Q2 = 2(w, — wy)/k [30]. As
illustrated in Fig. 1, the steady-state response of the KNR can
vary drastically whether the reduced detuning 2 is larger or
smaller (in absolute value) than a critical detuning Q¢ = V3.
For |2/ Q2¢| < 1, the resonator response is single valued, with,
as shown in Fig. 1(a), a response that is stiffened compared to
the usual Lorentzian line shape. Close to, but below, the critical
point, the resonator can then be used as a parametric amplifier
for small signals [23]. On the other hand, for |2/ Q¢| > 1
the resonator is in the so-called bifurcation amplification (BA)

PHYSICAL REVIEW A 86, 022326 (2012)

%=
==
Qo
&~
Qo L
M B
g 10
~
3
N
&g 0
S
N
-10
g 10
S
\:6 00150
3 0 Time [ns]
o Ground
N 10 C) Excited . . .
-3 -2 -1 0 1

Q/Qc

FIG. 1. (Color online) (a) Response (amplitude of the field) as a
function of the reduced detuning and for increasing drive amplitude
€4. The back-bending of the response reflects the choice K < 0, as is
usually the case in circuit QED. (b), (c), Stability diagram of a Kerr
nonlinear resonator in the absence (b) or presence (c) of a qubit. Inset:
Time-dependent envelope of a sample-and-hold readout. This figure
is presented for illustrative purposes, with typical, but unimportant
parameter values.

regime, where it is bistable for a range of drive amplitudes €.
If €, is ramped up starting from 0, the resonator’s response
will bifurcate from a low (L) to a high (H) oscillation
amplitude dynamical state at a critical amplitude €. If the
drive amplitude is then reduced, the resonator stays in state
H until the drive amplitude becomes lower than a second
threshold, €, . The associated stability diagram is illustrated in
Fig. 1(b).

As already experimentally demonstrated, in the BA regime,
the KNR can be used as a sample-and-hold detector of a
qubit[16,17,31,32]. Indeed, as for most quantum-information-
related tasks, qubit readout is realized in the dispersive
regime where |g;| < |, — wiy1,:|. In this situation, the
system Hamiltonian H; is well approximated by the effective
Hamiltonian [33]

K

Hp ~ (v, + I'Ig)aTa + EaTaTaa + I,. (3.1
As can be seen from the coefficient of a’a, in this regime,
the presence of the qubit results in a shift of the resonator
frequency by a qubit-state-dependent quantity S;. This disper-
sive cavity pull, whose value S; is discussed below, results in
different thresholds €, ; and €y ; depending on the qubit states.
This is schematized for the first two qubit states {|0), |1)} by
the red and blue lines in Fig. 1(c).

022326-2



IMPROVED QUBIT BIFURCATION READOUT IN THE ...

Starting from 0, increasing the drive amplitude €; until
€0 < €g < €y, will result in a high amplitude of the cavity
field if the qubit is in its ground state and a low amplitude if it
is in its excited state. This range is represented by the shaded
(gray) area in Fig. 1(c). If the drive amplitude is then reduced
below €y o, but stays above €; 1,9 [see inset in Fig. 1(c)],
both resulting states are stable and the qubit state has been
mapped into the dynamical state of the resonator. Since these
dynamical states are stable, it is possible to accumulate the
output signal for a time longer than the qubit relaxation time
T,. The measurement fidelity can then be optimized by varying
the sampling time ¢, the height of the plateau §¢,,, and the
steepness of the ramp up o [16,17,31,32].

In practice, the readout fidelity is limited by qubit relaxation
during or before the sample phase [17], when the resonator
has not bifurcated yet. The speed at which the sampling
can be made is limited by the resonator’s decay rate «.
Indeed, ramping up the drive much faster than 1/« will
produce large ringing oscillations in the field amplitude, which
can result in false positives or negatives. This results in a
reduced measurement fidelity. Increasing « therefore implies
smaller transients and hence faster measurement. However,
increasing x too much can also yield a lower measurement
fidelity. Indeed, in the limit where « is much larger than
the difference between the qubit-state-dependent resonator
pulls x = S; — So, both qubit states are indisthinguishable.
Moreover, increasing k also increases the qubit’s Purcell decay
rate y, ~ kg?/(wit1 — o; — o,)* [34,35], which ultimately
limits the qubit relaxation time 7). Ideally, one would like
to increase both x and «, without increasing the Purcell rate.

A. Two-level systems

The qubit-state-dependent resonator shift S; discussed
above depends on the coupling g; and the qubit-resonator
detuning A; , = w;4| — w; — w,. For atwo-level qubit, it takes
the simple form [1]

8

b
AO,r

corresponding to symmetric displacement of the cavity fre-
quency around its bare frequency w,. The difference between
the pulled resonator frequency for qubit states |0) and |1) is
therefore x = S| — So = Zg(%/ Ag,,. This cavity pull can be
of the order of a few tens of megahertz, while staying in the
dispersive regime, with typical values gy /2w ~ 100-200 MHz
and Ag /2w ~ 1-2 GHz. Such couplings have been achieved
with transmons and flux qubits [36,37]. For a two-level qubit,
increasing the coupling g( increases y, but also increases y,
by the same amount. For Purcell-limited qubits, this negates
the gain of this strategy.

Sty ==+ (3.2)

B. Multilevel systems

For multilevel systems, the shifts are changed by the
presence of additional levels, and the symmetry around the
bare resonator frequency is broken. Indeed, the frequency shift
is given by Ref. [19]

gi2—1 gi2

gMLS — 22l ) 3.3
! Aifl,r Ai,r ( )
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FIG. 2. (Color online) (a) Absolute and transition frequencies of
the first three eigenstates of a qubit with negative anharmonicity such
as the transmon. (b) Example of a frequency diagram where the
resonator frequency (dashed lines) is outside of a straddling regime.
(c) Example of an energy diagram where the resonator frequency
[middle solid (black) line] is inside of a straddling regime. Typical
transition frequencies (wjg, w>1) are in the gigahertz range, with
anharmonicity in the few hundreds of megahertz range.

As illustrated in Fig. 2(b), in most experiments [8,17,30] the
qubits are biased such that the resonator frequency sits above,
or below, all of the qubit transition frequencies. This results
in a pull of the resonator frequency x = ZgS/AO,, — g%/AL,,
reduced compared to that of a purely two-level system. In the
limit where the multilevel system tends toward an harmonic
oscillator, Ay, — Ao, and g; — ﬁgo such that this pull
vanishes. The reduction in the pull can be compensated with
larger couplings g;, achieved, for example, with transmons
[20]. However, as stated above, increasing the qubit-resonator
coupling also increases the resonator-mediated Purcell decay
[35] and dressed dephasing [38—40]. This dependence on x and
g; of both resonator-mediated qubit decay and measurement
speed ultimately limits the achievable measurement fidelity.

One way to increase the dispersive shifts x without
increasing the coupling is to work in the so-called straddling
regime [19]. In this regime, illustrated in Fig. 2(c), the
detunings A;, and A, are of opposite signs. As a result,
instead of canceling each other, the two terms in Eq. (3.3)
add up, yielding a significantly enhanced value of . Since
this improvement is obtained without increasing g;, it does
not increase the Purcell rate. Moreover, as we show in the next
section, this regime also increases qubit-induced nonlinearities
[13], something that we exploit below to improve bifurcation
readouts.

IV. DISPERSIVE MODEL IN THE STRADDLING REGIME

Following the approach of Ref. [33], we use a polaron
transformation [41-43] followed by a dispersive transforma-
tion [38,44] to approximately diagonalize the Hamiltonian of
Eq. (2.7). Doing the transformations in this order (polaron
followed by dispersive) allows us to correctly model the
ac-Stark shift caused by a drive detuned from the resonator
frequency [33]. However, since we are interested in the
straddling regime, one more transformation must be done in
order to diagonalize an effective two-photon process that is
important only in the straddling regime. This is done in the
Appendix and yields the effective diagonal Hamiltonian

H =T, + [0.(a) + swla'a, 4.1)
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where /(@) is the Kerr-shifted resonator frequency

w.(@) = o, + 2K |al?, 4.2)
with @ = (I1,) the resonator mean field, and
o) = w; + Silal® + Kilal* + Li@) (4.3)

are the renormalized effective qubit frequencies. There, we
have defined

Si = —-(Xi — Xi1), (4.4a)
Ki = =Si(Ai* +Ai-1])

— 168Xl A > = XilAi1 )

+ 16Xl Aim1 > — X1 A=)

—XxP 4+ x2,, (4.4b)

the linear and quadratic ac-Stark shift coefficients with A; =
—gi/Aiqand X; = —g;A; and where A; ; = wi1] — 0; — Wy
is the detuning between the qubit transition i and the drive
d. The last line of K; comes from the diagonalization of an
effective two-photon transition process that is large only in
the straddling regime. This contributes the last two terms of
K; with X2 = —g@ AP, AP = —¢® /(Ai1.4 + Aig), and
where

2 = A (Aigra — Aig). (4.5)

We note that, compared with the results of Ref. [13], the
detunings A; are defined with respect to the drive frequency,
and not the resonator frequency. In addition, in Ref. [13], the
dispersive transformation was done with respect to the field
operator a rather than to the classical field «. Because of this
choice, the quadratic term S; in Ref. [13] contains a correction
which accounts for a specific choice of ordering for the ladder
operators in the quartic term. Here, since it is the classical
field that is considered, there are no such corrections (i.e.,
aa® = a*a).
Finally, in Eq. (4.3) we have also defined the Lamb shift

g’
Li(a) = 0 : (4.6)
o/, (o) — o (@) — w)(a)
where o]’ is given by
o = o + Silal* + K" jal*. 4.7)

Using this definition, the cavity pull ITgq, in the effective
Hamiltonian, Eq. (4.1) can be expressed in a compact way
using S;(a) = —[L;+1(@) — L;()]. We note that while the
ac-Stark shift coefficients S; and K; depend on the qubit-drive
detuning, the Lamb shift L; depends on the detuning between
the ac-Stark shifted qubit and the Kerr-shifted resonator [33].
Finally, the steady-state qubit-state-dependent cavity field «;
is given by the solution of

—€g = (a),

In Fig. 3, we compare the above analytical expressions for
S; and K; to numerical results. These quantities are found
numerically by fitting a quadratic polynomial to the resonator
frequency for the qubit state |i) and in the presence of n

4
—wq — i%)ai + Koo + <Si + gKi|Oli|2>Oli-
4.8)
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FIG. 3. (Color online) (a), (b), Linear and (c), (d), quadratic
ac-Stark shifts for the ground [solid (black) lines] and the excited
[dashed (green) lines] states of a transmon qubit [19] with charging
energy Ec =300 MHz, Josephson energy E; =25 GHz, and
coupling at zero flux g0/2mw = 15 MHz tuned such that w;y/27 =
6 GHz. This yields (wg,w,w;,w3)/2m ~ (0,6,11.7,16.9,21.8) GHz
and (g10,821,832,843)/2m = (13.5,18.5,21.8,24.1) MHz at the op-
erating point. (a) and (c) correspond to the analytical equations,
Eq. (4.4), while (b) and (d) are extracted numerically as described
in the text. (e) Purcell decay rate y,; = «g?/ Aﬁ, assuming « /2w =
5 MHz and w, = w,; for i = 0 [solid (black) line], i = 1 [dashed
(green) line] and i = 2 [dotted (blue) line]. The solid (black) line,
corresponding to the |1) — |0) transition, is the relevant one for qubit
operation. The shaded area corresponds to the straddling regime.
The solid vertical (black) line and the dashed vertical (gray) line
correspond to the two operating points A (w, /2w = 5720 MHz) and
B (wy/2m = 6044 MHz) discussed in Secs. IV and V.

photons, w,;(n) = E; ,+1 — E;,. The energy E;, is found
numerically by diagonalizing the undriven qubit-resonator
Hamiltonian H; and taking K = 0. We then associate E; , with
the energy of the eigenstate closest to the bare qubit-resonator
state |i,n). The parameters, given in the caption to Fig. 3,
are typical to transmon qubits [19] but with a smaller than
typical coupling, g;o/2m = 13.5 MHz. We show the analytical
[Figs. 3(a) and 3(c)] and numerical [Figs. 3(b) and 3(d)] values
of S; [Figs. 3(a) and 3(b)] and K; [Figs. 3(c) and 3(d)] for
the ground state i = 0 [solid (black) lines] and first qubit
excited states i = 1 [dashed (green) lines]. We find quantitative
agreement, except at the qubit-resonator resonances and at the
two-photon resonances (identified by divergences). We finally
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show in Fig. 3(e) the Purcell decay rate y,; of level i assuming
o, = wy and k /2w = 5 MHz.

Two operating points, designated A and B and identified by
the solid vertical (black) lines and vertical dashed (gray) lines,
respectively, are illustrated in Fig. 3. These particular points
have been chosen because, while A lies in the straddling regime
and B is outside of that regime, the cavity pull |x| = |S; — So|
is identical in both cases. In the next section, we show that
working in the straddling regime is advantageous for qubit
readout. Since the cavity pull is the same at both A and B,
improvement in the measurement will be due to qubit-induced
nonlinearities K; or variation in the Purcell decay rate.

The qubit-induced nonlinearities K; are plotted in Figs. 3(c)
and 3(d). Comparing Figs. 3(a) and 3(c), we note a major
difference between the operating points A and B. At B, the
sign of K; is opposite to that of S; for both i = 0 [solid (black)
lines] and i = 1 [dashed (green) lines]. This sign difference
corresponds to a cavity pull that is decreasing when the number
of photons increases. On the other hand, at point A, the sign
of Ky is the same as that of Sy. Therefore, we expect that the
cavity pull at point A will not decrease as much as at point B
with increasing photon number [13]. Moreover, we can see in
Fig. 3(e) that the Purcell rate for the transition |1) — |0) [solid
(black) line] is much larger at point B than at point A.

One would expect that these two effects—a cavity pull
that reduces less with an increasing number of photon and a
reduced Purcell decay rate—lead to better qubit measurement
at operating point A than at B. In the next section, we show
numerically that this expectation holds for a Kerr resonator
operated close to its bifurcation point. This is done by first
calculating the steady-state photon number associated with
both qubit states. We then simulate the complete dynamics cor-
responding to a qubit under measurement with the microwave
pulse typically used in bifurcating readouts [17,31,45] and
which is designed to make the resonator latch in its H state
for one of the qubit state. From these simulations, we extract
the expected measurement fidelity and show that better results
are indeed obtained at operating point A than at B.

V. IMPROVING BIFURCATION MEASUREMENTS IN THE
STRADDLING REGIME

Bifurcation measurements rely on the critical drive ampli-
tude ey ;—at which the resonator bifurcate to its high state
H—being different for each qubit state i. As illustrated in
the inset in Fig. 1(c), in bifurcation measurements the mea-
surement drive amplitude €, is increased to a value between
these two critical amplitudes. However, the bifurcation process
being probabilistic, the resonator can still bifurcate from the
L to the H state even if the drive amplitude is (slightly) lower
than €. This yields errors in the measurement and a reduced
measurement fidelity. We therefore expect the measurement
fidelity to increase with Aey = |egy o — €p.1| and so, in other
words, with cavity pull. In addition, one expects that a larger
separation of the thresholds protects the measurement better
against ringing in the resonator’s response, which, close to
€y, may lead to unwanted bifurcation. For these reasons, we
expect that operating point A, at which the cavity pull should
remain larger on a wider range of measurement power, to be
better for measurement than point B.
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FIG. 4. (Color online) Numerically computed average number of
photons n; for aqubitinitialized in state |i) with (a)i = Oand (b)i = 1
without qubit relaxation or dephasing. The evolution is computed
according to Eq. (5.1). Qubit parameters are given in the caption to
Fig. 3. Resonator parameters are (x, K)/27 = (5, —0.4) MHz and the
resonator frequency is adjusted to keep the resonator-drive detuning
(w, — wy)/27 = 15 MHz such that the reduced detuning 2/ Q¢ ~
3.5, well in the bifurcation regime. Dashed lines represent the two
operating points A and B (see caption to Fig. 3). Filled circles indicate
the bifurcation thresholds €y ; (red for i = 0, blue fori = 1).

Below, we first calculate the steady-state response of the
resonator in Sec. VA. We then compute the measurement
fidelity for a pulsed measurement in Sec. V B. Finally, we
discuss other advantages of working in the straddling regime
in Sec. VC.

A. Steady-state response

We simulate the evolution of the state p starting with the
resonator in the vacuum and with the qubit either in the
eigenstate |0) or |1). We first focus on a drive of constant
amplitude €4, without intrinsic qubit relaxation or dephasing.
By looking at the resonator’s steady-state response, with
this simulation, we want to show that the distance between
the bifurcation thresholds €y ¢ and €y, is indeed larger at
operating point A than at B. The evolution is governed by the
master equation

p =—i[H,p]+«Dlalp, (5.1

with the Linblad-form dissipator Dla] = %(Za,oaT —atap —
pa’a). After a time long compared with 1/, we compute the
average number of photons n; for the qubit initially in state
i €{0,1}.

This quantity is plotted in Fig. 4 as a function of the drive
frequency w, and amplitude €, for the qubit initially in its
ground [Fig. 4(a)] or excited [Fig. 4(b)] state. In both cases, two
regions, corresponding, respectively, to the resonator being in
the L state (dark blue; n; < 10 photons) or in the H state
(light red; n; ~ 50 photons), can be identified. The border
between these two regions (white) corresponds to the critical
drive amplitude €p;, at which the photon population goes
sharply from n; ~ 15 to n; ~ 50. Comparing these results
to the dispersive shifts illustrated in Fig. 3, we can see that
sharp changes in S; and K; translate into sharp changes in
the bifurcation amplitudes €y ;. For example, both Sy and S;
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[Fig. 3(a)] change sign at w,; /27 = 6 GHz, which translates to
a sharp change in both €y ; around that frequency. Moreover,
S; changes sign at w, /27 &~ 5.7 GHz, while S| does not. As
a result, as shown in Fig. 4, only €y changes significantly
at that frequency. Finally, variations in K; are also visible, for
example, as the feature in €y ¢ at w, /27 ~ 5.85 GHz, corre-
sponding to the change of sign in K at that same frequency.
Operating points A and B are illustrated in Fig. 4 by the
solid horizontal (black) lines and dashed horizontal (gray)
lines, respectively. The thresholds ey ; at these two points
are identified by filled circles (red for €y ¢ and blue for €y 1).
As expected from the above arguments, the separation Aey =
|€w.0 — €m.1]1s larger at A than at B. For the chosen parameters,
we find Aegy/2m ~ 10 MHz at A, while we find Aey /21 ~
5 MHz at B. We note that €y > €y at point A, while
€y.1 < €y at point B. This simply changes which resonator
state—of L and H—is associated with each qubit state.

B. Pulsed measurement fidelity

In order to quantify by how much an actual measurement
can be improved by working at operating point A—inside
the straddling regime—rather than at point B—outside of
the straddling regime—we numerically simulated a bifurca-
tion measurement with a sample-and-hold-shaped pulse as
illustrated in the inset in Fig. 1(c). We recall that, to our
knowledge, all experiments with bifurcation measurements
have been made outside of the straddling regime so far.

To be more realistic, we performed numerical integration of
the master equation, Eq. (5.1) including qubit dissipation mod-
eled using the Lindblad-form term y Zﬁgz D[%HL,‘J,,]]p.
Here, y is the decay rate of the first qubit transition and the
factor g;/go is included to take into account the variation of
the qubit decay rate with increasing i [33]. Pure dephasing
is not included since recent devices tend to have very low
pure dephasing rates [20,21]. Including this effect would
possibly affect the QND character of the readout due to dressed
dephasing [38—40], but the extent of this effect has yet to be
measured experimentally.

At the end of the hold time, the Q function of the resonator
O(a) = (o |p| @) /7 is computed. A typical Q function near
the bifurcation threshold €y is represented in Fig. 5. It shows
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FIG. 5. (Color online) Typical Q function Q(«) of a resonator
when driven close to its bifurcation threshold €.
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FIG. 6. (Color online) Error probability for the outcome of a
bifurcation measurement versus sampling time #,. The measurement
pulsed is illustrated in the inset in Fig. 1(c). Solid (black) lines
correspond to operating point A, in the straddling regime, and dashed
(gray) lines correspond to operating point B, outside of the straddling
regime. Parameters are the same as in Fig. 4. Simulations are realized
for a qubit with intrinsic relaxation times (a) 71 = oo, (b) 73 = 800ns,
and (¢) 77 = 300 ns. (b), (c), Vertical dashed (red) lines indicate the
minimum of the curves for the two operating points. Solid (green) bars
indicate the gain in measurement time (horizontal) or measurement
fidelity (vertical) between the two operating points.

two well-separated smooth peaks corresponding to the L
and H states of the resonator. The switching probability is
extracted from the weight of the peak that is the farthest
away from the origin. From the switching probabilities, the
worst-case error probability,

max
li.jrefon
j#i

P(jli), (5.2)

Perror =

can be computed, where P(j|i) is the probability of assigning
the measurement to the qubit state | j), given that the qubit was
initially in |7). This numerical procedure was previously tested
against experimental single-shot bifurcation measurement of
a transmon qubit [17] and an identical measurement fidelity
was found, within a margin of 2% [46].

We show in Fig. 6 the worst-case error probability as a
function of the sampling time ¢, for three qubit relaxation times
T,. These results have been obtained by minimizing the error
probability with respect to o and d¢, [see inset in Fig. 1(c)
for definitions]. Comparing Figs. 6(a)-6(c), we see that the
P.ror increases as the qubit relaxation time decreases, which
is expected because of the increased odds of the qubit relaxing
before the resonator switches from L to H.

We now compare the results inside [solid (black) lines;
operating point A] and outside [dashed (gray) lines; operating
point B] of the straddling regime. We first observe that for
short sampling times #, the error probability is always lower
for operating point A than B. Since the low-photon cavity pulls
x were chosen to be the same for both points, this improvement
is due to both the sign and the amplitude of the Kerr terms K;
and to the reduced Purcell decay as explained in Sec. IV. The
situation is, however, reversed for larger ¢, where point B is
superior. As illustrated in Fig. 4, this is because the resonator
switches at a lower power for the ground state than for the
excited state at point A, while the opposite is true for point B.
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This implies that qubit relaxation induces resonator switching
(i.e., false positives) at point A but not at point B. We note that
the situation would be reversed for a qubit with a positive
anharmonicity such as the low-impedance flux qubit [22],
increasing further the advantage of working in the straddling
regime.

Overall, we find that operating within the straddling regime
always allows us to reach lower error probabilities with a
sampling time #; always as short as, or shorter than, outside
of the straddling regime. When operating in the straddling
regime, the error probability is up to 3 times lower than outside.
Finally, the absolute improvement is better for qubits with
shorter lifetimes, but as expected, the best fidelity is found for
qubits with longer lifetimes.

C. Other advantages

The above improvement in readout fidelity has been
obtained by working with a qubit-resonator coupling g that
is more than an order of magnitude smaller than current
experimental realizations. Lower coupling, however, leads
to slower two-qubit gates when these rely on qubit-qubit
interactions mediated by the same resonator mode that is
used for readout. This problem can be sidestepped by either
taking advantage of different modes for readout and two-qubit
gates [47] or, as recently experimentally realized, using direct
capacitive coupling between the qubits [48,49].

With the above problem avoided, working with weaker
coupling g can be advantageous in other ways than the more
efficient readout studied here. For example, it allows us to
greatly reduce the Purcell decay by biasing the qubit away
from a resonator resonance when it is not being measured.
With a reduction in the coupling by a factor of 10, a reduction
in the Purcell decay rate by a factor of 100 can be obtained for
the same detuning and cavity damping [see solid (black) line
in Fig. 3(e)]. At the time of measurement, the qubit-resonator
detuning can be adjusted so as to reach the straddling regime.
This can be done by changing the flux in the qubit loop
or by using a tunable resonator (or both) [50]. Moving in
and out of the straddling regime in this way necessarily
means going through a qubit-resonator crossing. With a large
coupling g, the associated (and unwanted) Landau-Zener-
Stueckelberg transitions can be correspondingly large [51].
This probability is greatly reduced, however, when working
with small couplings. Indeed, assuming a frequency-tuning
speed of v =27 - 1 GHz/1 ns, one finds the probability of
unwanted transition P = 1 — e~27%/% = 0.7% for a coupling
g/2m = 13.5 MHz, while the same probability is ~10% for
g/2m = 50 MHz and ~30% for g/2m = 100 MHz.

Lower coupling strengths can also help to reduce spectral
crowding in the presence of multiple qubits coupled to a single
resonator. Indeed, even if the qubit-qubit interaction mediated
by virtual excitations of the resonator is not actively used
for logical gates, it is always present and can lead to errors.
The rate of this interaction can be reduced by increasing the
qubit-qubit detuning by an amount that is large with respect to
the coupling g. With large g and multiple qubits, the available
spectral range (typically from ~4 to 15 GHz) is rapidly
occupied and only a few qubits can be coupled to the same
resonator without having to deal with unwanted two-qubit
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gates. Using the straddling regime to increase the measurement
fidelity with smaller coupling addresses this problem and does
not require advanced circuit designs [11].

VI. CONCLUSION

We have studied the measurement of a multilevel super-
conducting qubit using bifurcation of a KNR and exploiting
the straddling regime. The method is applicable to any qubit
with a weakly anharmonic multilevel structure with only
nearest-level transitions but could be generalized to more
complex structures and couplings. As we have shown, working
in the straddling regimes allows larger qubit-state-dependent
pulls of the resonator frequency for a given coupling or,
equivalently, the same pull for smaller couplings. While
outside of the straddling regime, the resonator frequency shift
is reduced at higher photon numbers [38], we show that, inside
the straddling regime, it is possible to find operating points
where this reduction is minimized. We also show that the
Purcell decay rate can be much lower for a given cavity pull
inside the straddling regime. Combined, these two effects lead
to an increased fidelity for bifurcation measurements and we
find an error probability up to 3 times smaller inside than
outside of the straddling regime for a sampling time that can
be more than 250 ns shorter. We find measurement fidelities
1 — Perror higher than 98% with a qubit-resonator coupling as
small as 13.5 MHz with realistic system parameters.

The method presented in this paper also has the advantage
of reducing spectral crowding in multiple-qubit systems. It
does that without requiring complex circuits and allows us to
effectively remove Purcell decay when the qubits are not being
measured.
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APPENDIX: DISPERSIVE TRANSFORMATION OF
THE TWO-PHOTON TERMS

In this Appendix, we follow Ref. [33] to diagonalize
Hamiltonian (2.7) as well as a two-photon transition term that
can be large only in the straddling regime. To do so, we first
apply a polaron transformation [41-43],

M—1

P=>"I;D() (A1)
i=0
where D(«) is a displacement transformation [52],
D(a) = explaa’ — a*al, (A2)

that displaces the resonator field operator a — a + «;. The
result of the polaron transformation on a is therefore a —
a + I1,, where I1, is defined according to Eq. (2.5). We follow
this polaron transformation by a dispersive transformation of
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the classical detuned drive on the qubit

M—2
D¢ = exp |:Z E T iy1 — éini+1,i:| )

i=0

(A3)

where £ is a classical analog of the operator A;a’ in the
dispersive transformation [38,44]. Applying these two trans-
formations on Hamiltonian (2.7) and choosing «; according to
Eq. (4.8) and

—&8il;
f=——— (A4)
Wijt1,i — W4
yields the Hamiltonian [33]
M-1
H' = Z /Tl ; + H; + a);(a)aTa
i=0

M-3
+ Z el e i g i +he, (A5
=0

where the dispersive transformation has been performed to
fourth order and gl@, given by Eq. (4.5), is an effective coupling
due to two-photon transitions. In the above Hamiltonian, we
have defined the ac-Stark shifted qubit frequencies
o! = w; + Silal? + K jalt,

; (A6)
where @ = (I1,), «; is given by the solution of Eq. (4.8), S;

is given by Eq. (4.4a), KEI) is given by the first three lines of
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Eq. (4.4b), and the Kerr-shifted resonator frequency

wl(@) = o, + 2K |al*. (A7)

We note that the second line of H” is not diagonal. In
Ref. [33], this term was dropped, assuming that gfz) was small
and that |2w,; — w; 42 + w;| was large enough to do a rotating-
wave approximation. Here, however, since we are interrested
in the straddling regime, the same cannot be done. Indeed,
if, for example, the drive frequency is w; = (w2 — w1)/2 +
(w1 — wp)/2, which falls directly in the middle of a straddling
regime, the second line of H” is resonant and a two-photon
transition from |0) to |1) is driven. Moreover, since A4 4 and
A, 4 have the same sign, the coupling gi(z) can be large. We can,
however, approximately diagonalize this term using a second
transformation of the form

M-3
D? = exp [Z £ M40 — s}”nm,,} . (AB)
i=0

Applying this transformation to Eq. (A5) and choosing

O
8 Uit
Ait1,a + Aig
yields a correction to the Kerr shift, giving Eq. (4.4b).
Applying a final dispersive transformation on H” in order to
diagonalize the quantum interaction H; yields the diagonalized
Hamiltonian, (4.1).
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