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We present a superconducting qubit for the circuit quantum electrodynamics architecture that has a

tunable qubit-resonator coupling strength g. This coupling can be tuned from zero to values that are

comparable with other superconducting qubits. At g ¼ 0, the qubit is in a decoherence-free subspace with

respect to spontaneous emission induced by the Purcell effect. Furthermore, we show that in this

decoherence-free subspace, the state of the qubit can still be measured by either a dispersive shift on

the resonance frequency of the resonator or by a cycling-type measurement.
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Decoherence is one of the major problems facing quan-
tum information processing. To overcome this problem the
theories of quantum error correction [1] and decoherence-
free subspaces (DFS) [2] have been developed. A DFS is a
subspace of a system which exploits symmetries in the
decoherence process to allow the system to be completely
decoupled from the environment. As an example, the
spontaneous decay of a multilevel atom to a common
bath can be cancelled by quantum interference for a par-
ticular state [3].

In parallel, superconducting qubits have emerged as
strong candidates for quantum information processing
[4]. These are systems which are designed using
Josephson junctions to make low loss nonlinear oscillators.
They are designed so that two levels (qubit) can be iso-
lated, controlled, and measured, properties which are usu-
ally mutually exclusive. With sweet-spot operations [5–7]
and material engineering [8], there has been tremendous
progress. This is evidenced by the recent demonstration of
two qubit quantum algorithms [9], high fidelity single qubit
gates [10], high fidelity two [11,12] and three [13,14] qubit
entangled states, and Bell violation [15].

Currently the most successful superconducting qubits
are the flux [6], phase [8], and transmon [7], as these qubits
are essentially immune to offset charge (charge noise) by
design. The transmon receives its charge noise immunity
by operating at a point in parameter space where the energy
level variation with offset charge, the charge dispersion, is
exponentially suppressed. This suppression has experi-
mentally been observed and results in this qubit being
approximately T1 limited (T2 � 2T1) in the circuit quan-
tum electrodynamics (QED) architecture [16]. In this
architecture, illustrated in Fig. 1(a), the qubits are coupled
to a coplanar waveguide resonator through a Jaynes-
Cummings Hamiltonian operated in the dispersive regime
[17]. This resonator acts as the channel to control, couple,
and readout the state of the qubit.

In circuit QED, an important mechanism for T1 has been
shown to be Purcell decay [18]. This is a fundamental
relaxation that arises when a qubit is coupled to a resonator.
It can be understood as dressing of the qubit by the reso-
nator field; the dressed qubit contains a photonic part
whose amplitude is proportional to the coupling strength
g divided by the detuning � between the qubit and reso-
nator. This photonic component relaxes at a rate given by
the resonator decay rate �. As a result, the dressed qubit
relaxes at a rate �Pur

1 ¼ �g2=�2. To overcome the Purcell
decay, one can either work at large detunings, use a Purcell
filter [19], or design a Purcell protected qubit.
In this Letterwe present a three island device that acts as a

qubit (two levels, arbitrary control, and measurement) and
has the ability to independently tune both the transition
frequency and coupling strength g while still exhibiting
exponential insensitivity to charge noise and maintaining
an anharmonicity equivalent to that of the transmon and
phase qubit. This tunable coupling qubit (TCQ), illustrated
in Fig. 1(b), can be tuned from a configuration where it is
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FIG. 1 (color online). (a) Schematic of the circuit QED archi-
tecture. (b) Schematic of the proposed three island device. The
islands are connected by SQUIDs and the arrows are used to
indicated the dipole and quadrupole moments of the device.
(c) Circuit model of the device. The variables are explained in
the text.
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totally Purcell protected from the resonator g ¼ 0 (in a
DFS) to a configuration which couples strongly to the
resonator, with values comparable to those realized for the
transmon. Furthermore, we show that in the DFS a strong
measurement can be performed. The TCQ only needs to be
moved from the DFS configuration for single and two-qubit
gates [20]. In the off position, all multiqubit coupling rates
are therefore zero. That is, in the circuit QED architecture
[see Fig. 1(a)] the TCQ-resonator coupling could be used to
induce a tunable coupling between non-nearest neighbor
TCQs [17]. This adds to the previous approaches which use
external circuit elements as tunable couplers [21–23].

As illustrated in Fig. 1(b), the essential idea behind the
TCQ is a three island version of the transmon. This device,
like the transmon, has a dipole moment between each
island. These dipoles can add in parallel, resulting in a
larger dipole moment, or in an antiparallel configuration,
creating a quadrupole moment. This device therefore sup-
ports two modes, with only the dipole moment coupling to
the resonator. That is, the mode corresponding to the
quadrupole moment is a DFS with respect to Purcell decay
and can be used for storing quantum information. Because
of the capacitance between the top and lower island CI,
these modes couple. The ratio of quadrupole to dipole
moment can be tuned by changing the energy of the upper
and lower islands.

The reduced circuit model representing this device is
shown in Fig. 1(c). The solid green lines represent the
components associated with the TCQ, with light green
indicating the upper ‘‘þ’’ and lower island ‘‘�’’ and the
dark green representing the center island. Each island is
connected by a Josephson junction of energy EJ� and

capacitance C� which is taken to include the Josephson
capacitance. The resonator is approximated by a parallel
LC circuit (blue dashed lines) with inductance Lr and
capacitance Cr. Cc represents the capacitive interaction
between the TCQ and the resonator. Finally, the dotted
red lines represent charge noise resulting from voltage
fluctuations Vg� that occur inside the device (Cg� represent

the capacitor coupling for these fluctuations). A similar
system was presented in Ref. [24] for the observation of
giant nonlinear Kerr effects in circuit QED.

The Hamiltonian of the TCQ is obtained following
Ref. [25] with the 3 degrees of freedom being the phase
across the junctions �þ ¼ ð�þ ���Þ=�0, �� ¼
2���=�0, and the flux across the resonator �r. Here
�0 ¼ h=2e is the flux quantum and�� are the node fluxes
defined in Fig. 1(c). We find H ¼ HT þHI þHR, where
HR ¼ @!ra

ya is the Hamiltonian of the resonator with

!r ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
LrC

0
r

p
and a the annihilation operator. HT is the

Hamiltonian for the TCQ and is given by

HT ¼
X

�
4EC�ðn��n0g�Þ2�

X

�
EJ� cosð��Þþ4EInþn�;

(1)

with charging energy EC� ¼ e2=2C0�, interaction

energy EI ¼ e2=C0
I, and dimensionless gate voltage

n0g� ¼ ng� þ ng�C
0�=C0

I, where ng� ¼ Cg�Vg�=2e. The

primes above the capacitances indicate renormalization
by the electrostatic interactions. Finally, the TCQ-
resonator interaction is represented by the Hamiltonian HI

HI ¼ 2e2Vrmsð�þnþ þ ��n�Þð�iay þ iaÞ; (2)

where ��¼CcC��=½C�þC�� þðCIþCcÞðC�þ þC��Þ�,
with C�� ¼ C� þ Cg� þ Cc, and Vrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@!r=2C

0
r

p
.

In the limit where the TCQ is isolated (Cc ¼ 0) and sym-
metric (dropping all � in capacitors), then ECþ ¼ EC� ¼
EC with EC ¼ e2ðCI þ C�Þ=2ðC2

� þ 2CIC�Þ and EI ¼
�2ECCI=ðCI þ C�Þ. EI can be tuned from zero to �2EC

bymodifyingCI, which is governedby the direct capacitance
between the upper and lower island. This can be made much
larger than the interaction energybetween two superconduct-
ing qubits that are coupled virtually by a resonator [17]. The
eigenenergies of the TCQHamiltonian are shown inFig. 2(a)
(solid lines) as a function of EI=EC for EJ� ¼ 50EC. The

system has a ‘‘V-like’’ structure with two levels in the first
excitedmanifold and three in the next. AsEI is increased, the
degeneracies in the manifolds are lifted and the TCQ be-
comes a multilevel atom with nonladderlike structure.
In the limit of large EJ�=EC� , the phases �� are re-

stricted to be around zero and we expand the cosines in HT

to fourth order [7]. As a result, we can model the system as
two coupled anharmonic oscillators with the Hamiltonian

HTeff
¼HþþH�þHc, where H�¼@½!�þ��ðby�b��

1Þ=2�by�b� and Hc ¼ @Jðbþby� þ byþb�Þ, with

!�¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8EJ�EC�

p
=@�EC�=@, ��¼�EC�=@, and J ¼

EIðEJþEJ�=ECþEC�Þ1=4=
ffiffiffi
2

p
@. This Hamiltonian can

be approximately diagonalized, with small para-

meter ��=ð ~!þ � ~!�Þ, using the transformation D ¼
exp½�ðbþby� � byþb�Þ� with � ¼ tan�1ð2J=�Þ=2þ 	 and
� ¼ !þ �!� � ð�þ � ��Þ=2. Here, 	 ¼ �=2 for � < 0
and 	 ¼ � for � > 0. Doing this we find

~HTeff
¼ @

X

�

�
~!� þ

~��
2

ð~by� ~b� � 1Þ
�
~by� ~b�

þ ~�c
~byþ ~bþ ~by�b�; (3)
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FIG. 2 (color online). (a) Eigenenergies of the TCQ
Hamiltonian as a function of EI=EC for EJ� ¼ 50EC. Solid lines

are from numerical diagonalization and dashed lines are from the
coupled anharmonic oscillator model. (b) Charge dispersion
j"qðmÞj as a function of the ratio EJ=EC for EI ¼ �EC (solid

lines) and EI ¼ 0 (dashed lines).
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where ~!� ¼ !� þ ð~�� � ��Þ=2þ ð�þ þ ��ÞJ2=2
2 �

=2� �=2, ~�� ¼ ð�þ þ ��Þð1þ �2=
2Þ=4� �ð�þ �
��Þ=2
, and ~�c ¼ 2J2ð�þ þ ��Þ=
2, with 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ �2

p
and the tilde indicating the diagonalized frame.

The coupling has induced a conditional anharmonicity ~�c. It
is this anharmonicity that makes this system dif-
ferent from two coupled qubits as it ensures that E11 �
E01 þ E10. The superscript ij refers to i excitations in the
dark mode (‘‘þ’’) and j excitations in the bright mode
(‘‘�’’). The choice of these nameswill bemade clear below.
The dotted lines in Fig. 2(a) are the predictions from this
effective model, which agree well with the full numerics.
Thus, from the effective model, the anharmonicities are all
around EC when jJj> j�j. The TCQ has not lost any an-
harmonicity in comparison to the transmon or phase qubit,
and, with simple pulse shaping techniques, arbitrary control
of the lowest three levels is possible [26]. In terms of the
bare states, the qubit is formed by the space fj0i¼ j00i;
j1i¼ j ~10i¼ ðj10i�j01iÞ= ffiffiffi

2
p g, and jmi ¼ j ~01i ¼ ðj10iþ

j01iÞ= ffiffiffi
2

p
is used for qubit measurement (see below).

With charge fluctuations being a leading sources of noise
in superconducting circuits, we must ensure that quantum
information in the TCQ is not destroyed by charge noise.
Following Ref. [7], the dephasing time T� for the qubit (q)

and level m will scale as 1=j"qðmÞj, where "qðmÞ is the peak-
to-peak value for the charge dispersion of the qubit (0� 1)
and measurement (0�m) transition, respectively. The dis-
persion in the energy levels arises from the gate charges n0g�
and the fact the potential is periodic. Since the coupled
anharmonic oscillator model does not capture the full
Josephson potential, charge dispersion is investigated nu-
merically. We expect, as the transmon, this will exponen-
tially decrease with EJ=EC, as in this limit the effects of
tunneling from one minima to the next becomes exponen-
tially suppressed. This is confirmed in Fig. 2(b) which
shows j"qðmÞj=EqðmÞ (the numerical maximum and mini-

mum of the energy level over n0g�) as a function of EJ=EC

for EI ¼ EC and EI ¼ 0 (transmon limit). Here EqðmÞ is the
qubit (measurement) energy. This confirms that the TCQ
has the same charge noise immunity as the transmon.

We now investigate how the two modes of the
TCQ couple to the resonator. We start by using the anhar-
monic oscillator model with the rotating-wave approxi-
mation on Eq. (2). Doing this we find ~HIeff ¼
@
P

�~g�ða~by� þ ay ~b�Þ, where ~g�¼g�cosð�Þ�g� sinð�Þ
and g�¼ ffiffiffi

2
p

e2��VrmsðEJ�=8EC�Þ1=4=@. One of these cou-
pling strengths can be set to zero for an appropriately
chosen �, or maximized to a value similar to that of a
transmon. For J negative, it is ~gþ which can be set to
zero; hence, the choice of name ‘‘dark’’ for the ‘‘þ’’ state
and ‘‘bright’’ for the ‘‘�’’ state. We have numerically
confirmed that this model approximately predicts the ma-
trix elements of the charge operators found in HI, and
hence the coupling rates, for the first three manifolds (six
levels). Using these six levels we can use perturbation

theory to find an effective description of the situation
where both the bright and dark modes of the TCQ have a
dispersive interaction with the resonator, j��j � j~g�j
with �� ¼ ~!� �!r. To second order in ~g�=��, we
find that the resonator-TCQ interaction induces both a
Lamb shift on the TCQ and a TCQ state dependent pull
on the resonator. The qubit ð0� 1Þ transition frequency
becomes !q ¼ ~!þ þ ~g2þ=�þ and the 0�m transition

frequency becomes !m ¼ ~!� þ ~g2�=��. For states k ¼
0; 1; m the resonator frequency is !r þ �k with resonator

pull �0 ¼ �~g2�=�� � ~g2þ=�þ, �1¼ð~�þ��þÞ~g2þ=
�þð~�þþ�þÞ� ~g2�=ð~�cþ��Þ, and �m¼ð~�����Þ~g2�=
��ð~��þ��Þ� ~g2þ=ð~�cþ�þÞ. All states j0i, j1i, and jmi
correspond to different resonator frequencies and can thus
be measured by probing transmission of the resonator.
Purcell decay can be evaluated using the same perturba-

tion theory by evaluating �Pur
1 ¼ �jh�1jaj�0ij2, where the bar

indicates first order correction to the TCQ levels from the
resonator-TCQ interaction. This yields �Pur

1 ¼ �~g2þ=�2þ.
Thus, by setting ~gþ to zero the Purcell effect is canceled to
second order. However, the difference between the resona-
tor pull for the j0i and j1i state is nonzero and given by

� ¼ ~�c~g
2�=��ð�� þ ~�cÞ. This has the same functional

form as for the transmon (when jJj> j�j) and is detectable
with current microwave electronics. Furthermore, signal-
to-noise (SNR) arguments from Ref. [27] carry over to this
system and we find SNR ¼ 4n
�Tm. Here, 
 is the effi-
ciency of collecting photons emitted by the resonator, n is
the number of photons in the resonator which should not
exceed ncrit ¼ �2�=4~g2� [27], and Tm is the measure-
ment time. Taking realistic values Tm ¼ 1 
s, �=2� ¼
10 MHz, and 
 ¼ 1=20 gives a SNR around 13n.
However, much higher values can be obtained by using
the following protocol: Set !m ¼ !r and have Cc large
enough to ensure that j!q �!rj � j~g�j, then the 0�m

transition will vacuum Rabi split the cavity transmission if
the qubit state is j0i, whereas for the qubit state j1i the
transmission will be at bare resonator frequency. In this
situation, the heterodyne power �jhaij2 in steady state will
be ��2ð~g2� þ �2=16Þ=ð~g2� þ �2=16þ �2Þ2 [28] for j0i and
4�2=� for j1i with � the cavity drive amplitude at drive
frequency !r. Taking SNR ¼ 
Tm�ðjhai0j2 � jhai1j2Þ, we
find values as large as 1000 for ~g�=2� ¼ 100 MHz,
�=2� ¼ 10 MHz, and � ¼ ~g�. This is similar to a
cycling-type measurement and is quantum nondemolition
(after wait time �). In practice, there will be limitations on
size of � due to the finite anharmonicity of the TCQ.
To achieve tuning of ~gþ we modify the original circuit

and replace the Josephson junctions by SQUIDs with

Josephson energy Eð1Þ
J� and Eð2Þ

J� [see Fig. 1(b)]. The only

change in the above theory is the replacement EJ� !
Emax
J� cosð��x�=�0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2tan2ð��x=�0Þ

p
, with Emax

J� ¼
Eð1Þ
J� þ Eð2Þ

J� , d ¼ ðEð1Þ
J� � Eð2Þ

J�Þ=Emax
J� , and �x� is the exter-

nal flux applied to each SQUID which we assume to be
independent (this is not required but simplifies the
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discussion). This independent control makes it possible to
change EJ� independently, which in turn allows indepen-

dent control on ~gþ and !q. To illustrate this we consider

the symmetric case and plot in Fig. 3 the normalized
coupling strength ~gþ@=2e2Vrms� [3(a)] and ~!q [3(b)] as

a function of the ratio EJþ=EC. Here, EI ¼ �EC and EJ� is

numerically solved to ensure that only the coupling rate
[dark (blue)] and frequency [light (red)] vary, respectively,
for both the full numerical (solid) and effective model
(dashed). In the full numerical model, we use ~gþ ¼
2e2Vrmsh1jð�þnþ þ ��n�Þj0i=@. The independent con-
trol is clearly observed. While the numerical investigation
presented here is restricted to the symmetric case, inde-
pendent tunable ~gþ (from zero to large values) and !q still

occurs for nonsymmetric devices.
With this extra control channel there is the possibility

of additional qubit decoherence from flux fluctuations.
An estimate for flux induced relaxation is �flux

1 ¼
P

�jh0j@H=@�x�j1ij2M2�SI�ð!qÞ=@2, where M� is the

mutual inductance between the bias line and the TCQ,
and SI�ð!qÞ is the spectrum of current noise in the bias

line which takes the form SI�ð!qÞ � @!q=R at low

temperatures [29]. Taking M ¼ 200�0=A, R ¼ 50�,
Emax
J� =h ¼ 20 GHz, EC=h ¼ EI=h ¼ 0:35 GHz, and d ¼

10%, we find T1 � 1 s. To estimate dephasing we assume
1=f noise and use T� � j@!q=@�x�j�1=A� [30], where

A� is the flux noise at 1 Hz which, for similar super-

conducting devices, has been measured to be

10�6�0=
ffiffiffiffiffiffi
Hz

p
[31]. This yields T� � 20 
s at �x� ¼

��0=4. These values are consistent with the T1 and T�

predictions for the transmon from flux noise [7]. The
additional flux lines thus give independent control of
both the coupling and transition frequency while not add-
ing any extra noise with respect to the transmon.

In conclusion we have presented a new device for quan-
tum information processing with superconducting circuits.

It is an extension of the transmon and uses quantum
interference to achieve independent control of both the
qubit-resonator coupling strength and transition frequency.
Furthermore, it can be tuned to a decoherence-free sub-
space with respect to relaxation induced by the Purcell
effect, while still allowing efficient readout of its quantum
state. It also offers the possibility of implementing a
cycling-type measurement.
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