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Cavity and circuit QED study light-matter interaction at its most fundamental level. Yet, this interaction is
most often neglected when considering the coupling of this system with an environment. In this paper, we show
how this simplification, which leads to the standard quantum optics master equation, is at the root of unphysical
effects. Including qubit relaxation and dephasing, and cavity relaxation, we derive a master equation that takes
into account the qubit-resonator coupling. Special attention is given to the ultrastrong coupling regime, where the
failure of the quantum optical master equation is manifest. In this situation, our model predicts an asymmetry in the
vacuum Rabi splitting that could be used to probe dephasing noise at unexplored frequencies. We also show how
fluctuations in the qubit frequency can cause sideband transitions, squeezing, and Casimir-like photon generation.
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I. INTRODUCTION

Elementary quantum mechanics teaches that a closed phys-
ical system always evolves in a reversible manner. However,
control and readout imply a coupling of the quantum system
to the outside world, making it subject to relaxation and
decoherence. These irreversible dynamics, well understood
from a theoretical viewpoint, have also been experimentally
tested. In cavity QED [1], macroscopic superpositions of
quantum states of light have been built and their destruction
due to their interaction with a reservoir has been observed
[2]. Using repeated quantum nondemolition (QND) measure-
ments, the birth and death of single photons in a cavity has
been studied [3,4]. Circuit QED, a solid-state realization of
cavity QED, also offers a detailed understanding of relaxation
and dephasing phenomena [5,6]. Spontaneous emission of a
qubit in a resonator has been characterized with respect to
the influence of far off-resonant modes [7]. Moreover, the
impact of measurement on qubit dephasing processes is well
understood [8,9], for instance in the cases of dispersive [10]
and bifurcation [11] readout.

Though both circuit and cavity QED allow to study dis-
sipation, solid-state devices allow much stronger light-matter
interaction rates. For example, current-current coupling of a
flux qubit to a Josephson junction in a resonator can boost the
strength up to the order of the resonator and qubit frequencies
[12], breaking the rotating-wave approximation (RWA). This
ultrastrong coupling regime has been achieved experimentally
with coplanar wave guides [13] and lumped LC resonators
[14]. In parallel to these experimental efforts, dynamics of
pure states have been theoretically studied [15–18]. A rigorous
model based on the Bloch-Redfield formalism, which de-
scribes photon losses has also been proposed by Hausinger and
Grifoni [19]. Finally, a non-Markovian model of dissipation
has been used to predict the emission spectrum of an atom-
resonator system in which the ultrastrong coupling strength
is modulated over time [20,21] and to study the sensitivity
of the system to noise in the qubit frequency [22]. In this
paper, we give a complete description of dissipation including
qubit relaxation and pure dephasing in the ultrastrong coupling
regime, focusing on the standard case where the baths can be
treated as Markovian.

Qubit-resonator coupling is at the heart of the problem
with dissipation in the ultrastrong coupling regime. When the
coupling between these two subsystems is small, interactions
with the environment are treated separately for the qubit and
the oscillator [1]. However, when the atom-field interaction
increases up to the breakdown of the RWA, this approach
leads to unphysical predictions. For example, and as will be
illustrated later in Fig. 1, relaxation baths bring the system out
of its ground state even at T = 0. Furthermore, in the presence
of a strong qubit-resonator coupling, transitions at widely
separated frequencies appear, breaking down the standard
white noise approximation. To avoid such annoyances, the
qubit-resonator coupling and colored baths must be included
in the treatment of dissipation.

The outline of this work is as follows. First, we present
the system Hamiltonian, along with a perturbative approach
that can diagonalize it approximately. Next, we discuss the
treatment of dissipation. In Sec. III A, we explain the standard
approach to describe dissipation in the Jaynes-Cummings
regime. We then show issues arising from the use of this
technique in the ultrastrong regime, and devote Sec. III B to
the presentation of a Lindbladian master equation that solves
them. In Sec. IV, we describe the implication of these results
in the strong coupling regime. Finally, in Sec. V, we study
physical consequences of the model obtained here in the
Bloch-Siegert regime, for which counter-rotating terms can
be treated in a perturbative fashion. We first show how the
vacuum Rabi splitting spectrum is affected by non-RWA terms
in the Hamiltonian and by the shape of the noise spectrum. We
also introduce a potential technique to exploit these effects to
study noise. We then present how the master equation helps
to understand an analog of the time-dependent Casimir effect
coming from pure qubit dephasing [23].

II. HAMILTONIANS DESCRIBING THE
QUBIT-RESONATOR SYSTEM

The Rabi Hamiltonian, describing the interaction of a two-
level atom with a single electromagnetic mode of a resonator,
takes the form (h̄ = 1) [24]

HR = ωra
†a + ωa

2
σz + gXσx, (1)
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FÉLIX BEAUDOIN, J. M. GAMBETTA, AND A. BLAIS PHYSICAL REVIEW A 84, 043832 (2011)

0

0.01

0.02

0.03

0.04

0.05

0.06

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

0.05

0.06

a
† a

s
a
† a

g
n
d

1
−
|g

0|
g
0
|2

g (MHz)

0

0.05

0.1

0 0.5 1

a
† a

t (μs)

FIG. 1. (Color online) Excess in the mean photon number due
to relaxation in the steady state of the ultrastrong qubit-resonator
system. Initially, the system is in its true ground state |̃g0〉, but,
under the standard master equation (14), relaxation unphysically
excites the system even at T = 0. The black line, which corresponds
to the left axis, represents the number of additional photons
introduced in steady state by dissipation. The red dots, associated
to the right axis, designate one minus the fidelity of the Rabi
ground state |̃g0〉 to the vacuum state |g0〉. The parameters are
ωa/2π = ωr/2π = 6 GHz, κ/2π = γ1/2π = 0.1 MHz, and no pure
dephasing. Inset: mean photon number as a function of time for
the system starting in its ground state with g/2π = 2 GHz. In both
the main plot and the inset, the blue dashed line indicates results
for the fidelity and the photon number as obtained with the master
equation presented in Sec. III B

where ωa is the qubit splitting, ωr the resonator frequency, g

the coupling strength, and X = a† + a. In most experimental
situations, g � ωa,ωr and the rotating-wave approximation
(RWA) can safely be made. This amounts to dropping the
fast-oscillating, or counter-rotating, terms ICR = aσ− + a†σ+
from HR . This approximation leads to the Jaynes-Cummings
Hamiltonian [25]

HJC = ωra
†a + ωa

2
σz + g(aσ+ + a†σ−). (2)

In opposition to the Rabi Hamiltonian, here the total number
of quanta Nq = (1 + σz)/2 + a†a is a good quantum number,
allowing exact diagonalization of HJC. The system enters
the ultrastrong coupling regime when g is so large with
respect to ωa , ωr that ICR leads to experimentally observable
consequences and the RWA cannot be safely made [13,14].
In this situation, since [Nq,ICR] �= 0, the total number of
excitations is not preserved, even though its parity is [15]. As
a result, even in the ground state, the expected mean number
of resonator and qubit excitations is nonzero.

Although the analytical spectrum of HR has recently been
found by Braak [26], it is defined in terms of the power series of
a transcendental function. An approximate, but more simple
form, can be found in the intermediate regime where g is
small with respect to � = ωa + ωr , with the system still being
in the ultrastrong coupling regime. This will be referred to
as the Bloch-Siegert regime. This is done using the unitary
transformation [14,19,27]

U = exp{�(aσ− − a†σ+) + ξ (a2 − a†2)σz}, (3)

where � = g/�, and ξ = g�/2ωr together with the
Campbell-Baker-Hausdorff relation

e−XHeX = H + [H,X] + 1

2!
[[H,X],X] + · · · (4)

To second order in �, this yields the Bloch-Siegert Hamilto-
nian

U †HRU � HBS = (ωr + μσz)a
†a + ω̃q

2
σz + gI+, (5)

where I+ = aσ+ + a†σ−, ω̃q = ωa + μ, and μ = g2/�. This
Hamiltonian is similar to the Jaynes-Cummings Hamiltonian,
but contains Bloch-Siegert shifts μ on qubit and resonator
frequencies.

Since HBS is block diagonal, its eigenstates can be found
exactly to be

|n,+〉 = − sin θn|e,n − 1〉 + cos θn|g,n〉 (6)

|n,−〉 = cos θn|e,n − 1〉 + sin θn|g,n〉, (7)

with the Bloch-Siegert mixing angle

θn = arctan

[
�BS

n −
√(

�BS
n

)2 + 4g2n

2g
√

n

]
, (8)

and where �BS
n = ωa − ωr + 2μn. To second order in � =

g/�, the excited eigenstates |ñ,±〉 of the Rabi Hamiltonian in
the bare basis are then given by

|ñ,±〉 = U |n,±〉, (9)

while the ground state takes the form

|g̃0〉 = U |g0〉 �
(

1 − �2

2

)
|g0〉 − �|e1〉 + ξ

√
2|g2〉. (10)

As mentioned before, the ground state is no longer the
simple HJC ground state |g0〉, but now contains qubit-resonator
excitations.

Unitary transformation Eq. (3) deserves further attention.
With the replacement σ± → α(∗), the term proportional to �

generates a displacement of the resonator field. Moreover, the
term proportional to ξ generates squeezing of the field, with
a qubit-state dependent squeezing parameter ξ . We can thus
expect the qubit-resonator state to display the properties of
displaced squeezed states, both transformations being qubit-
state dependent. With ξ = g�/2ωr , squeezing is expected to
be larger for ωr � ωa [28].

III. MASTER EQUATIONS

In this section, we introduce dissipation following two
approaches. First, we follow the standard approach where
the qubit-resonator coupling g is ignored when obtaining the
master equation [1]. This results in the standard quantum optics
master equation [25]. We then consider an approach taking
into account the non-negligible qubit-resonator coupling. In
both cases, the qubit and the resonator are assumed to be
weakly coupled to a bath of harmonic oscillators, with free
Hamiltonian

HB =
∑

l

νlb
†
l bl, (11)

where bl,b
†
l are ladder operators for bath mode l with frequency

νl and system-bath coupling

HSB =
∑

l

αl(c + c†)(bl + b
†
l ), (12)
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with αl a coupling strength to bath mode l. For the qubit
c → σ−, while for the resonator c → a. In the standard
approach, this will correspond to qubit and resonator damping,
respectively. Finally, dephasing is modeled classically as

Hdep = f (t)σz, (13)

where f (t) is a random function of t with zero mean value.
A quantum model for dephasing leads to similar results and is
presented in Appendix B2 for completeness. As will be seen in
Sec. V, though the master equations obtained in the quantum
and the classical cases have the same form, asymmetric noise
spectral densities are allowed in the quantum model, yielding
different predictions in the ultrastrong coupling regime.

A. Standard master equation

The standard approach is to assume that qubit and resonator
are independent when obtaining the dissipative part of the
master equation. The coupling is then reintroduced in an
ad hoc fashion in the Hamiltonian. This leads to the standard
master equation

dρ

dt
= −i[H,ρ] + Lstdρ, (14)

where, at T = 0,

Lstd• = κD[a]• + γ1D[σ−]• + γφ

2
D[σz]•, (15)

with D[O]ρ = 1
2 (2OρO† − ρO†O − O†Oρ). Here, κ is the

photon leakage rate for the resonator, γ1 the qubit relaxation
rate and γφ the qubit pure dephasing rate. This expression
is obtained in the Markov approximation, which assumes the
spectral density of all three baths to be white. In other words,
the environment-system coupling is evaluated at the relevant
frequency (ωr for κ , ωa for γ1 and ω → 0 for γφ) and then
assumed to have support at all frequencies.

For g/� small enough for the RWA to be safely performed,
this expression while not rigorous [29,30] can be used
to accurately describe many cavity QED and circuit QED
experiments [1,6]. Indeed, the terms D[a]• and D[σ−]• in Eq.
(15) correctly tend to bring the system to the ground state |g0〉
of the Jaynes-Cummings Hamiltonian.

In the ultrastrong coupling regime however, |g0〉 is no
longer the ground state and Eq. (14) will bring the ultrastrongly
coupled qubit-resonator system outside of its true ground state
|g̃0〉. Therefore, even at T = 0, in which case no energy should
be added to the system, relaxation will generate photons in
excess to those already present in the ground state. These
additional excitations are plotted in Fig. 1 as a function of g

as the black line. This curve closely follows the behavior of
the error one makes by approximating the Rabi ground state
by the vacuum state, which is represented by the red dots. It is
important to emphasize that these results are obtained for an
undriven system evolving simply under dissipative dynamics.
We also note that, in practice, preparing |g0〉 can be extremely
challenging, requiring for example tuning of the coupling
constant g in a time scale �1/g, this being typically in the
subnanosecond range. This is why the system is initialized in
|g̃0〉 in Fig. 1.

Moreover, because it assumes white noise, Eq. (15) incor-
rectly describes Purcell decay, which can be the factor limiting

coherence in superconducting qubits [7]. Additionally, Purcell
decay is probing the resonator bath at the qubit transition fre-
quency, something that is missing from the above description
but is central to the experiments reported in Refs. [31,32] For
the same reason and as discussed below, it also incorrectly
describes dressed dephasing [33,34].

B. Master equation in the dressed picture

We now take into account qubit-resonator coupling when
deriving the master equation. In this case, we cannot assign
a unique dissipation channel to each bath mentioned above.
Indeed, rather than transitions between eigenstates of the free
Hamiltonian H0 = ωra

†a + ωaσz/2, coupling to the baths
leads to transitions between the qubit-resonator entangled
eigenstates {|ñ,±〉,|g̃0〉}. To simplify the notation, these states
will be denoted below as |j 〉, j increasing with energy. These
states can be approximated analytically as explained in Sec. II
or found exactly numerically [17,35–38].

To obtain a master equation that takes into account the
coupling g, we first move to the frame that diagonalizes the
Rabi Hamiltonian for both the system and the system-bath
Hamiltonians. Neglecting high-frequency terms, the resulting
expressions involve transitions |j 〉 ↔ |k〉 between eigenstates
at a rate that depends on the noise spectral density at frequency
�kj = ωk − ωj . If their line width is small enough, these
transitions can be treated as due to independent baths. As
a result, these independent baths can each be treated in the
Markov approximation [39]. As shown in Appendixes A and
B, this leads at T = 0, to the Lindbladian

Ldr• = D
[ ∑

j

�j |j 〉〈j |
]

• +
∑
j,k �=j

�
jk

φ D[|j 〉〈k|]•

+
∑
j,k>j

(
�jk

κ + �jk
γ

)
D[|j 〉〈k|]•, (16)

where |j 〉 and |k〉 are eigenstates of the qubit-resonator
system. Temperature dependence is taken into account in
the appendixes but dropped here to simplify the discus-
sion. The first two terms in Eq. (16) are the contributions
from the bath described by Eq. (13) that caused only dephasing
in the standard master equation. Here, this σz bath causes
dephasing in the eigenstate basis with

�j =
√

γφ(0)

2
σ jj

z , (17)

where γφ(ω) is the rate corresponding to the dephasing noise
spectral density at frequency ω and where

σ jk
z = 〈j |σz|k〉. (18)

Since σz is not diagonal in the eigenbasis, it also causes
unwanted transitions at a rate

�
jk

φ = γφ(�kj )

2

∣∣σ jk
z

∣∣2
. (19)

This contribution will only be significant if the dephasing bath
has spectral weight at the potentially high frequency �kj or
if the qubit is operated away from a sweet spot, in which
case even low spectral weight can have a large impact [40].
Finally, the last two terms of Eq. (16) are contributions from the
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FIG. 2. (Color online) Transitions driven by noise. X and σx baths
can only generate transitions between states of different parity. The
σz bath can generate transitions between any pair of levels of same
parity.

resonator and qubit baths that caused energy relaxation in the
quantum optical master equation. They now cause transitions
between eigenstates at rates

�jk
κ = κ(�kj )|Xjk|2 (20)

�jk
γ = γ (�kj )

∣∣σ jk
x

∣∣2
, (21)

where

Xjk = 〈j |X|k〉 (22)

σ jk
x = 〈j |σx |k〉. (23)

Here, κ(ω) and γ (ω) are rates that are proportional to noise
spectra, respectively for resonator and qubit environments.

The dressed Lindbladian Ldr• solves the problem stated in
Sec. III A. Indeed, at T = 0, rather than exciting the system,
dissipators accounting for relaxation in Eq. (16) lead to decay
to the true ground state. This is illustrated by the dashed blue
line in Fig. 1. Moreover, it is interesting to point out that,
in addition to the zero-frequency term responsible for pure
dephasing, the noise along σz can stimulate transitions between
the eigenstates |j 〉, leading to dephasing-induced generation
of photons and qubit excitations [41]. This is related to the
time-dependent Casimir effect, as will be discussed further in
Sec. V B.

Finally, Fig. 2 illustrates the allowed transitions given the
symmetry of the Rabi Hamiltonian, and in particular given
that it preserves the parity of the total number of excitation.
As further explained in Appendix A, for odd (parity-changing)
transition matrices, such as relaxation-related operators X and
σx , no decay is possible between states of same parity. On the
other hand, the even (parity-preserving) σz matrix associated
with dephasing can generate transitions only between pairs of
states of same parity.

IV. STRONG COUPLING REGIME

Before going to the ultrastrong coupling regime, in this
section we focus on the simpler strong coupling regime
described by the Jaynes-Cummings Hamiltonian. We first
consider the dispersive regime, a situation that is particularly
useful for qubit readout in circuit QED, and then move to
the Jaynes-Cummings Hamiltonian. The analysis done here
is in the spirit of the dressed-dephasing model [34], but also
encompasses qubit-resonator resonance [42].

A. The dispersive regime

As already mentioned above, due to the white noise ap-
proximation, the description provided by the standard master
equation of Sec. III A can break down even when the dispersive
approximation is valid. In this regime, achieved when |�| =
|ωa − ωr | � g, the Jaynes-Cummings Hamiltonian reduces to
the dispersive Hamilonian

Hdisp = (ωr + χσz + ζ )a†a + ωa + χ

2
σz + ζσz(a

†a)2, (24)

to fourth order in g. This diagonal Hamiltonian includes an
effective qubit-resonator dispersive coupling χ = g2/� and
a small nonlinearity ζ = g4/�3, which is usually neglected.
The coupling implies that the dispersive eigenstates display
some degree of mixing between qubit and resonator. Indeed,
to second order in g, these eigenstates, denoted |gn〉 and |en〉,
are

|e,n − 1〉 �
(

1 − g2n

2�2

)
|e,n − 1〉 − g

√
n

�
|g,n〉 (25)

|g,n〉 �
(

1 − g2n

2�2

)
|g,n〉 − g

√
n

�
|e,n − 1〉. (26)

Consequences of this mixing of qubit and resonator states
are Purcell decay [43] and the dressed-dephasing model
[33,34]. Purcell decay is the relaxation of the qubit by photon
emission out of the cavity. This is captured here by the rate �

jk
κ

evaluated between the dressed states |e,0〉 and |g0〉 yielding

�
e0,g0
κ = (g/�)2κ(ωa + χ ). In this expression, the standard

Lindbladian Eq. (15) rather evaluates cavity damping at the
cavity frequency ωr . This difference is important in several
circuit QED experiments [7,31,32].

The standard approach also does not capture correctly
dressed dephasing discussed in Refs. [33,34]. Essentially,
dressed dephasing captures how dephasing can produce
relaxation because of the finite qubit-photon mixing in the
dressed states [Eq. (25)]. Deriving the dressed-dephasing rate
from Eq. (15) yields a result proportional to the spectrum of
dephasing noise at zero frequency. Here and in Refs. [33,34],
we rather obtain the rate �

jk

φ involving the spectrum of
dephasing noise at the qubit-resonator detuning frequency.
Assuming a dephasing noise scaling as 1/f , the difference
between the two predictions can be quite large. In practice,
this means that one must be careful in interpreting results of
numerical simulations of the standard Lindbladian Eq. (14) as
it can include unrealistically large amounts of qubit flipping
induced by dephasing noise. It is worth pointing out however
that dressed dephasing can be relevant experimentally in some
circumstances [40].

In Refs. [33,34], the nonlinear term proportional to ζ is ne-
glected in the derivation of the master equation containing the
dressed-dephasing contribution. This approximation breaks
down when ζ > κ in which case the approach developed here
is appropriate. However, when ζ ∼ κ , the different resonator
transitions are not well separated and the environment cannot
be treated as independent baths. The approach of Refs. [33,34]
should then be used. The validity of the results obtained here
is further discussed in Appendix C.
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B. Dissipation in the Jaynes-Cummings model

In this section, we consider the situation where the
dispersive approximation does not hold but the RWA is
still valid. This is essentially generalizing the results of the
dressed-dephasing model [33,34]. Under the RWA, the ground
state is simply |g0〉. Excited eigenstates |n±〉 are given by
Eqs. (6) and (7), with the mixing angle θn defined by Eq. (8)
and μ = 0 such that �BS

n = ωa − ωr = �.
We first consider the matrices X and σx , whose elements

are involved in relaxation rates described by Eqs. (20) and
(21). To keep the discussion simple, we limit ourselves to the
subspace {|g0〉,|1−〉,|1+〉}. Complete results can be found
in Appendix D. Since the Jaynes-Cummings eigenstates have
a well-defined excitation number, only transitions involving
the loss or gain of one quantum are allowed, thus forbidding
transitions between |1+〉 and |1−〉. This yields

X =

⎛⎜⎝ 0 sin θ1 cos θ1

sin θ1 0 0

cos θ1 0 0

⎞⎟⎠ (27)

σx =

⎛⎜⎝ 0 cos θ1 − sin θ1

cos θ1 0 0

− sin θ1 0 0

⎞⎟⎠ . (28)

With the eigenstates changing character with θ1 between
mostly qubit-like or photon-like, the contribution of the two
decay channels X and σx follows. This can be visualized
geometrically as illustrated in Fig. 3(a). In particular, when the
qubit and the resonator are on resonance, their corresponding
relaxation noises have exactly the same weight. For example,
the matrix elements of X reduce to

Xg0;1,± = ± 1√
2

(29)

Xn,+;n+1,+ = Xn,−;n+1,− = 1
2 (

√
n + √

n + 1) (30)

Xn,+;n+1,− = Xn,−;n+1,+ = 1
2 (

√
n − √

n + 1), (31)

θ1θ1

(a) (b)

σ
1−

,1
−

z

σ 1+,1−z

σg0,1−
x

σg0,1+
x

Xg0,1+

Xg0,1−
|1 |1

|1+ |1+

|e0 |e0

|g1 |g1

σz|1

FIG. 3. (Color online) Matrix elements under the RWA in the
subspace {|g0〉,|1−〉,|1+〉}. (a) Relaxation matrix elements. Eigen-
states are a mixture of qubit and resonator states, with an angle θ1.
The fraction of the relaxation rate that comes from the qubit or the
resonator bath is determined by the projection of the eigenstate on
the qubit |e0〉 or resonator |g1〉 axis. (b) Dephasing matrix elements.
The dephasing Hamiltonian rotates state vectors around the |e0〉 axis.
Resulting vectors have a projection on the orthogonal eigenstate in
the same doublet. This generates transitions between |1,+〉 and |1,−〉
if θ1 > 0.

which exactly leads to the master equation presented in
Ref. [42] in the presence of resonator losses only.

Under the RWA, σ
jk
z can only be nonzero for states that

involve the same total excitation number (i.e., are in the same
Jaynes-Cummings doublet). The resulting matrix elements are

σg0;g0
z = −1 (32)

σn±;n±
z = ∓ cos(2θn) (33)

σn∓;n±
z = −2 cos θn sin θn. (34)

Generalizing the dressed-dephasing model, the above formulas
show that the dephasing bath induces transitions between
states in the same JC doublet. As illustrated in Fig. 3(b),
this happens only if there is some mixing between the qubit
and the resonator. In particular, in resonance, σn±;n±

z = 0 and
σn∓;n±

z = 1. Then, dephasing processes for states that do not
involve |g0〉 are entirely due to transitions within the doublets,
which are caused by dephasing noise at the doublet splitting
frequencies 2g

√
n. Since these are very high frequencies and

dephasing is often caused by a 1/f bath [44], transition
rates within doublets are expected to be small. Therefore, in
resonance, states that do not contain |g0〉 should be largely
immune to pure phase-destroying processes.

V. ULTRASTRONG COUPLING REGIME

Here, we take the ratio g/� to be sufficient to break the
RWA, but still much smaller than unity. In this situation, the
transition matrix elements given in Eqs. (18), (22), and (23)
can be evaluated using the Bloch-Siegert eigenstates Eqs. (6)
and (7), as done in Appendix D. In this section, we use these
results to study two distinctive phenomena occurring in the
ultrastrong coupling regime: i) asymmetry of the vacuum
Rabi splitting spectrum; ii) sideband transitions and photon
generation caused by qubit frequency modulations.

A. Asymmetry of the vacuum Rabi splitting spectrum

Vacuum Rabi splitting is observed by measuring trans-
mission (Im〈a〉 and/or Re〈a〉) of the resonator under weak
rf excitation [6,45]. In the presence of the rf drive, the
Hamiltonian becomes

Hdrvn(t) = HR + ε aeiνt + ε∗ a†e−iωd t , (35)

with ε the amplitude of the drive and ωd its frequency.
Assuming g � �, we find in Appendix F under the three-level
approximation that Im〈a〉 in steady-state and at the Bloch-
Siegert-shifted qubit-resonator resonance (�BS = 0) is given
by

Im〈a〉s = − ε �1/2

�2
1 + (�BS + g)2

− ε �2/2

�2
2 + (�BS − g)2

, (36)

where

�1 = 1
2 (γ− + γ

↑
φ + γ −

φ ) (37)

�2 = 1
2 (γ+ + γ

↓
φ + γ +

φ ). (38)

The various rates entering these expressions are illustrated in
Fig. 4(a) and can be found in Appendix F. As in the stan-
dard case, the transmission is composed of two Lorentzians
separated by 2g [1]. However, here two distinct rates �1 and
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FIG. 4. (Color online) Vacuum Rabi splitting. (a) Transition
rates involved in the perturbative calculation in the three-level
approximation. (b) Schematic plot of Im〈a〉s as a function of ωd .
In general, the result is not symmetric.

�2 dictate the width and height of these peaks. As a result,
the vacuum Rabi splitting spectrum can be asymmetric, even
when the qubit and the resonator are in resonance. Asymmetry
in the presence of counter-rotating terms has also been pointed
out considering only cavity decay in the Fourier transform of
〈σz(t)〉 [19] and qubit fluorescence [46].

Here, three situations can lead to asymmetry:
(i) Relaxation noise spectra are not equal at the frequen-

cies corresponding to the two transitions |1̃±〉 → |g̃0〉. This
situation will be referred to as the nonwhite relaxation noise
case.

(ii) The pure qubit dephasing noise spectrum is not equal at
frequencies �1±,1∓. Since classical noise spectra are always
symmetric in frequency [47], we call this situation the quantum
dephasing noise case.

(iii) Keeping counter-rotating terms such that � �= 0, the
matrix elements of X and σx for transitions |1̃±〉 → |g̃0〉 and
|1̃±〉 → |1̃∓〉 are not equal, as shown in Appendix D. This is
the ultrastrong case.

To characterize the asymmetry as the coupling g is in-
creased, the noise spectra must be known. We now make some
hypotheses on that noise and consider their consequences.
We first isolate the influence of counter-rotating terms by
choosing white relaxation noise and no pure dephasing. In
these conditions, the second-order terms in g cancel out and
the asymmetry η = �1 − �2 increases linearly with g

ηus = �

2
(κ + γ1). (39)

For the parameters realized in Ref. [13], g/2π = 636 MHz,
ωr/2π = 5.357 GHz, and κ/2π = 3.7 MHz, and taking
γ1/2π = 0.1 MHz yields η/2π ∼ 0.11 MHz and in turn an
asymmetry of ∼6% in the transmission peak amplitudes. As a
result, in the ultrastrong regime, the height of the transmission

peaks in a vacuum Rabi splitting experiment cannot be used
to tune the qubit and the resonator exactly in resonance.

In general however, noise is not white. Though the ohmic
model which leads to constant relaxation rates κ(ω) and γ (ω)
is usually valid, the transition rates γ

↑/↓
φ coming from the

dephasing bath can be asymmetric. This yields a contribution
ηφ to the total asymmetry η = ηus + ηφ , where ηus is given in
Eq. (39) and

ηφ = 1 − 4�2

8
[γφ(�1−,1+) − γφ(�1+,1−)]. (40)

As discussed in Appendix B2, noise at negative frequencies
will only appear for nonzero effective bath temperatures (i.e.,
the rates respect detailed balance). With �1±,1∓ = ±2g, we
therefore obtain

γφ(−2g) = exp

(
− 2g

kBT

)
γφ(2g), (41)

and have

ηφ � 1 − 4�2

8

[
exp

(
− 2g

kBT

)
− 1

]
γφ(2g). (42)

We now distinguish two limits. If kBT � 2g, ηφ → 0 and
we retrieve the classical noise limit. The asymmetry is then
entirely due to the ultrastrong coupling. It is possible to
isolate this ultrastrong signature by increasing the effective
temperature of the bath, for example in circuit QED, by
injecting noise in ωa with an external flux line. In the opposite
scenario, if kBT � 2g, the asymmetry ηφ becomes important.
In particular, if T → 0

ηφ � 1 − 4�2

8
γφ(2g). (43)

Knowing the ultrastrong contribution to asymmetry, either by
calculating it using Eq. (39) or by measuring it experimentally,
it is possible to isolate the effect of quantum dephasing
noise by taking ηφ = η − ηus. This asymmetry is thus a
probe for dephasing noise at the vacuum Rabi splitting
frequency. The ultrastrong coupling regime widens the range
of accessible values of g. As a result, the noise spectrum
entering the rate γφ(ω) could realistically be investigated to
frequencies up to ∼2 GHz, where data is lacking [48] and
where a crossover from 1/f to ohmic behavior is expected to
happen [49].

B. Qubit frequency modulations: sidebands and
photon generation

In this section, we focus on the effect of the term f (t)σz

of the classical dephasing model Eq. (13). We first consider
the case where f (t) is a controlled modulation of the qubit
frequency (for example, using an external flux) before turning
to the situation where f (t) represents incoherent noise. Both
cases will be related to the dynamical Casimir effect [50,51].

For g � �,�, we apply on H = HR + f (t)σz the disper-
sive transformation [52], here generalized to take into account
the counter-rotating terms [37]

UD = exp{λ(a†σ− − aσ+) + �(aσ− − σ+a†)}. (44)
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To second order in g, we find

HD(t) � H ′
0 + χ ′(t)a†aσz + f (t)σz − 2f (t)(λI+ + �ICR)

− 2f (t)λ�σz(a
2 + a†2), (45)

where χ ′(t) = −2(λ2 + �2)f (t) and H ′
0 = [ωr + (χ +

μ)σz]a†a + [ωa + χ + μ]σz/2 the free but Lamb and Bloch-
Siegert-shifted Hamiltonian.

We first focus on the case of a classical modulation
f (t) = εz cos ωdt of the qubit transition frequency. For εz �
ωd , the oscillating terms proportional to σz and a†aσz can
be dropped under the RWA. Depending on the choice of
modulation frequency ωd , it is possible to select different
terms in HD(t) while dropping others. First, for ωd = �, we
have HD(t) � H ′

0 − εzλI+ corresponding to a red sideband
transition. For ωd = �, we rather find HD(t) � H ′

0 − �εzICR

corresponding to a blue sideband transition. Interestingly,
these sideband rates are in first rather than second order
in g/ωd . This is to be contrasted to the usual second-order
results obtained in circuit QED [53–55] and could be used
to speed up two-qubit gates. Finally, modulating at twice
the resonator frequency, ωd = 2ωr , the Hamiltonian reduces
to HD(t) = H ′

0 − 2εzλ�σz(a†2 + a2)/2, corresponding to a
pumped parametric oscillator [25]. Rather than modulating
the resonator frequency [56], here it is the qubit that acts as
a moving boundary condition. In Ref. [41] this Hamiltonian
was also linked to the dynamical Casimir effect.

We now move to the situation where f (t) is a ran-
dom function representing a classical dephasing bath whose
spectral content may contain one or more of the above-
mentioned relevant frequencies. If the spectral content extends
to very high frequencies, it may act on the system through a
combination of the above blue and red sideband transitions
and photon-pair production, bringing it to an excited state,
which may display some degree of squeezing. While this
discussion is only valid in the dispersive regime, we can extend
these results to arbitrary ratios g/�. Indeed, in general the
σz bath can drive any transition between Rabi eigenstates
of same parity, as illustrated in Fig. 2. If the corresponding
frequencies are present in f (t), combinations of qubit and
resonator excitations are produced. In the simplest case where
relaxation is neglected and the dephasing bath is white, this
leads to a photon creation rate β. As shown in Appendix E, to
second order in g,

β = 2γφ�2 T (θ2), (46)

where we have defined T (θ2) = 1 + 2 cos2 θ2 sin2 θ2. This
expression is compared to exact numerics in the inset of
Fig. 5. It analytically explains the �2 dependence of the photon
creation rate observed numerically by Werlang et al. [23] for
the special case of ωa = ωr . In this work, the authors have
used the standard Lindladian Eq. (15), assuming white noise
and corresponding to the full line in Fig. 5. If the noise causing
dephasing has a 1/f spectrum, the standard Lindbladian
therefore greatly exaggerates this effect. If noise decreases
at higher frequencies, photon generation has a smaller rate,
but should also saturate, as illustrated by the dotted lines in
Fig. 5. This is again a clear demonstration of the breakdown
of the standard approach to treating dissipation in the presence
of the counter-rotating terms.
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FIG. 5. Photon generation due to dephasing with the Lindbladian
Eq. (16). Full line: white noise. Dotted line: white noise with a cut-
off frequency increasing from bottom to top. For the bottom dotted
line the cutoff is such that only transitions up to ˜|i,±〉 for i = 2 are
driven. For the top curve, transitions from |̃g0〉 through i = 8 are
driven. Inset: photon generation rate β as a function of g for white
noise. Points: numerical results. Line: perturbation theory Eq. (46).
The parameters are ωa/2π = ωr/2π = 6 GHz, g/2π = 1 GHz, and
γφ/2π = 1 MHz.

Finally, since the master equation is exactly the same in the
quantum treatment of dephasing shown in Appendix B2, the
above results remain valid in that case. However, the quantum
approach explicitly incorporates temperature in a way that
respects detailed balance. This implies that, at T = 0, γφ(ω) =
0 for ω < 0. Since, as shown in Appendix E, this Casimir-
like photon generation needs negative frequencies, a quantum
dephasing bath could not generate excitations in the system at
T = 0. In this model, photon production through dephasing is
thus intrinsically a thermal effect.

VI. CONCLUSION

We have shown the importance of treating the qubit-
resonator system as a whole when studying its interaction
with the environment. In particular, we have shown that the
description offered by the standard master equation can break
down, for example producing spurious qubit flipping or photon
generation, even at zero temperature. To cure these unphysical
problems, we have included the qubit-resonator coupling in
the derivation of the master equation. The rates entering the
modified master equation then depend on the spectrum of noise
evaluated at the dressed transition frequencies. These rates
have been obtained analytically for a qubit-resonator coupling
g that is large enough for individual qubit and/or resonator
transitions to be resolved, and for the dispersive (|ωa − ωr | �
g) to the Bloch-Siegert (ωa + ωr � g) regime. Even when
including the counter-rotating terms in the qubit-resonator
coupling, the results obtained here can be used beyond these
regimes by relying on simple numerical diagonalization of the
Rabi Hamiltonian. Results in the ultrastrong coupling regime
(g ∼ ωa, ωr ) have been presented.

In our model, noise that caused pure dephasing in the
standard master equation can now cause transitions in the
system. In this sense, the master equation developed here
can be viewed as an extension of the dressed-dephasing
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model [33,34]. In the Bloch-Siegert regime, we find that
the vacuum Rabi splitting spectrum can be asymmetric. This
asymmetry can be used as a probe of the dephasing noise
spectral density at currently unexplored frequencies ∼1 GHz
and above. Additionally, modulations of the qubit transition
frequency can be used to generate red and blue sidebands, or
as a parametric oscillator inducing squeezing. Finally, while
this means that noise in σz can generate photons [23,57,58],
our model reasonably shows that these spurious excitations
cannot be generated at zero temperature.
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APPENDIX A: DISSIPATORS FOR X AND σx BATHS

In this Appendix, we derive in the dressed basis the
Lindbladian corresponding to coupling to the X and σx baths.
We take an arbitrary qubit-resonator system with the only
assumption that the total excitation number has a well-defined
parity. As stated in Sec. III, we assume that the system
is coupled to two independent baths of quantum harmonic
oscillators with an interaction of the form given by Eq. (12).
Focusing here on only one bath, we find that in the interaction
picture with respect to the free system and bath Hamiltonians,
the coupling takes the form

HSB(t) =
∑

l

αle
iHSt (c + c†)e−iHSt (ble

−iνl t + b
†
l eiνl t ). (A1)

Expressing the system Hamiltonian in the dressed basis

HS =
∑

j

Ej |j 〉〈j |, (A2)

we have

HSB(t) =
∑
jkl

αlCjk|j 〉〈k|(ble
−iνl t + b

†
l eiνl t )ei�jk t (A3)

where Cjk = 〈j |(c + c†)|k〉 and �jk = Ej − Ek . We now split

the sum in three parts

HSB(t) =
∑
l,j

αlCjj |j 〉〈j |(ble
−iνl t + b

†
l eiνl t )

+
{ ∑

l

∑
j,k>j

+
∑

l

∑
j,k<j

}
αlCjk|j 〉〈k|

× (ble
−i(νl−�jk)t + b

†
l ei(νl+�jk )t ). (A4)

Since Ckj = C∗
jk , this becomes

HSB(t) =
∑

j

∑
l

αlCjj |j 〉〈j |(ble
−iνl t + b

†
l eiνl t )

+
∑
j,k>j

∑
l

αlCjk|j 〉〈k|b†l ei(νl+�jk )t + H.c. (A5)

We now introduce the operator � = (−1)a
†a+σ+σ− , whose

eigenvalues label the parity of the total excitation number in the
qubit-resonator system. Since [HR,�] = 0, system eigenstates
|j 〉 have a well-defined parity. As c and c† change the excitation
number by one, c + c† flips the parity when applied on a state.
Therefore, Cjj = 0, which simplifies the Hamiltonian to

HSB(t) = s(t)B†(t) + s†(t)B(t), (A6)

where

s(t) =
∑
j,k>j

Cjk|j 〉〈k|ei�jk t (A7)

B(t) =
∑

l

αlble
−iνl t . (A8)

This formulation makes it easy to write the Born master
equation for the system. Indeed, following the standard
procedure, we find [39]

ρ̇I (t) =
∫ t

0
dt ′[s(t ′)ρI (t ′)s(t) − s(t)s(t ′)ρI (t ′)]〈B†(t)B†(t ′)〉 +

∫ t

0
dt ′[s†(t ′)ρI (t ′)s†(t) − s†(t)s†(t ′)ρI (t ′)]〈B(t)B(t ′)〉

+
∫ t

0
dt ′[s†(t ′)ρI (t ′)s(t) − s(t)s†(t ′)ρI (t ′)]〈B†(t)B(t ′)〉 +

∫ t

0
dt ′[s(t ′)ρI (t ′)s†(t) − s†(t)s(t ′)ρI (t ′)]〈B(t)B†(t ′)〉 + H.c.

(A9)

From this point, we make assumptions that are standard
in the Born-Markov treatment of dissipation [39], except
for the following considerations. In each term of the Born
master equation, we find oscillating exponentials of the form
exp[i(�jk − �j ′k′)t]. Since k > j and k′ > j ′, the argument
of these exponentials will be zero for j = j ′ and k = k′, or
for pairs of different transitions in the system occurring at the
same frequency. As discussed in Appendix C, in practice we
are often interested only in a subset of the energy levels of the
system for which all transitions have different frequencies. In
that case, we can neglect all fast oscillating terms to obtain the
following master equation in the Schrödinger picture

ρ̇(t) = −i[H ′
S,ρ(t)] +

∑
j,k>j

�jkn(�kj ,T )D[|k〉〈j |])ρ(t)

+
∑
j,k>j

�jk(1 + n(�kj ,T ))D[|j 〉〈k|]ρ(t), (A10)

with �jk = 2πd(�kj )α2(�kj )|Cjk|2 and where we have in-
troduced the density of states d(ν) of the bath. We have also
defined the Lamb-shifted system Hamiltonian

H ′
S(t) = HS −

∑
jk

|Cjk|2{Ljk|k〉〈k| + L′
jk(|k〉〈k| − |j 〉〈j |)}.

(A11)
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L′
jk are Lamb shifts caused by coupling to the environment

and are given by

Ljk = P

2π

∫ ∞

0
dν

�(ν)

ν + �jk

(A12)

L′
jk = P

2π

∫ ∞

0
dν

�(ν)n(ν,T )

ν + �jk

, (A13)

and P is Cauchy’s principal value. The function �(ν) is a
relaxation rate. In the case of photon loss, c → a and we
replace �(ν) by κ(ν). In the case of qubit relaxation, c → σ−
and we replace �(ν) by γ (ν). In the main body of this paper,
we neglect these Lamb shifts.

APPENDIX B: DISSIPATORS FOR THE σz BATH

1. Classical model

In this section, we derive the dephasing part of Eq. (16).
For this, we introduce a stochastic function f (t) modulating
the qubit frequency

Hdep = f (t)σz, (B1)

where the mean value of f (t) vanishes. Following Appendix A,
we express the Hamiltonian in the dressed basis and move to
the interaction picture with respect to Eq. (B1) to get

Hdep(t) = f (t)
∑
jk

|j 〉〈k|〈j |σz|k〉ei�jk t . (B2)

Following closely Ref. [34], we express f (t) in terms of its
Fourier decomposition

f (t) =
∫ ∞

−∞
dω f (ω)eiωt , (B3)

to obtain

Hdep(t) =
∑
jk

σ jk
z |j 〉〈k|f−�jk

(t), (B4)

where we have defined

f�jk
(t) =

∫ �jk+Bjk

�jk−Bjk

dω f (ω)ei(ω−�jk)t . (B5)

In writing this expression, we have considered that the main
contribution to dephasing comes from a small frequency
interval 2Bjk around �jk . For this approximation to be
valid, we must have Bjk � �jk . Using the Wiener-Khintchin
theorem [59]

E[f (ω)f (−ω′)] = δ(ω − ω′)Sf (ω), (B6)

where E[x] is the classical mean value of x and Sf (ω) the
spectral density of f (t), we then write

f (ω) = √
Sf (ω)ξ (ω), (B7)

with ξ (v) such that E[ξ (ω)] = 0 and E[ξ (ω)ξ (ω′)] = δ(ω −
ω′) (i.e., white noise). We now take Sf (ω) to be approximately
constant over each individual Bjk and consider that these bands
do not overlap, allowing us to write

f�jk
(t) = √

Sf (�jk)
∫ Bjk

−Bjk

dω ξ (ω + �jk)eiωt . (B8)

Assuming the dephasing timescale to be much slower than
1/Bjk , we can take Bjk → ∞ and get

f�jk
(t) = √

Sf (�jk)ξ�jk
(t), (B9)

finally leading to

Hdep(t) =
∑
jk

σ jk
z |j 〉〈k|ξ−�jk

(t)
√

Sf (−�jk). (B10)

If the transition frequencies �jk are well separated, we can
treat each term of the above summation as an independent
noise. This last form for H dep(t) then yields the following
terms in the master equation∑

jk

j �= k

1

2
γφ(−�jk)

∣∣σ jk
z

∣∣2D[|j 〉〈k|]

+ 1

2
γφ(0)D

[ ∑
j

�jj |j 〉〈j |
]
, (B11)

with γφ(−�jk) = 2Sf (−�jk).

2. Quantum model

To model pure dephasing in a quantum way, we introduce
a quantum bath [39]

HB =
∑

j

νj b
†
j bj . (B12)

The interaction of the system with this bath is given by

HSB =
∑
jk

αjkb
†
j bkσ+σ−, (B13)

where bj is the ladder operator for bath mode j , with frequency
νj , and αjk is a coupling constant. This interaction corresponds
to the transfer of an energy quantum from one bath mode to
the other through virtual excitation of the qubit. We now move
to the dressed interaction picture with respect to HS + HB

HI (t) =
∑
jk

αjkb
†
j bkei(νj −νk )teiHS tσ−σ+e−iHS t . (B14)

Using the closure relation of the system, we get

HI (t) =
∑
jkmn

αjkb
†
j bkei(νj −νk)tZmn|m〉〈n|ei�mnt , (B15)

where we have defined the parity-preserving overlap matrix

Zmn = 〈m|σ+σ−|n〉. (B16)

In Appendix A, to obtain Eq. (A10) for the coupling to the
X and σx baths, we exploited the fact that all bath operators
interacting with the system had zero mean value in thermal
equilibrium [39]. This is not the case with the above interaction
Hamiltonian, since terms for which j = k have a nonzero
thermal mean value. To solve this problem, we include these
terms in the system part of the total Hamiltonian, defining an
effective shifted Hamiltonian

H ′
S = HS +

∑
jmn

αjjb
†
j bj zmn(t), (B17)
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where

zmn(t) = Zmn|m〉〈n|ei�mnt . (B18)

Assuming the bath is in thermal equilibrium, we get

H ′
S = HS +

∑
jmn

αjjnj (T )zmn(t). (B19)

We can now write the interaction Hamiltonian as

HI (t) = B(t)s(t), (B20)

with

B(t) =
∑
j,k �=j

αjkb
†
j bkei(νj −νk )t (B21)

s(t) =
∑
mn

zmn(t). (B22)

This allows to use the Born master equation

ρ̇I (t) =−
∫ t

0
dt ′{[s(t)s(t ′)ρI (t ′)−s(t ′)ρI (t ′)s(t)]〈B(t)B(t ′)〉β

+ [ρI (t ′)s(t ′)s(t) − s(t)ρI (t ′)s(t ′)]〈B(t ′)B(t)〉β},
(B23)

where β indicates that the mean value is taken in a thermal
state. The above correlators take the form

〈B(t)B(t ′)〉 =
∑
j,k �=j

α2
jknj (T )[(1 + nk(T )]ei(νj −νk )τ

(B24)
〈B(t ′)B(t)〉 =

∑
j,k �=j

α2
jknj (T )[(1 + nk(T )]e−i(νj −νk )τ ,

where τ = t − t ′ and where we have taken the system-bath
coupling constant to be real and symmetric under the exchange
of modes j and k. The Born master equation becomes

ρ̇I (t) = −
∑

mnm′n′

{
[zmn(t)zm′n′(t)ρI (t − τ )

− zm′n′(t)ρI (t − τ )zmn(t)]

×
∫ t

0
dτ e−i�m′n′ τ 〈B(t)B(t − τ )〉

+ [ρI (t − τ )zm′n′(t)zmn(t) − zmn(t)ρI (t − τ )zm′n′(t)]

×
∫ t

0
dτ e−i�m′n′ τ 〈B(t − τ )B(t)〉

}
, (B25)

Replacing ρI (t − τ ) by ρI (t) and extending the upper bound-
ary of the integrals over time to infinity (i.e., doing the Markov
approximation) we get∫ t

0
dτ e−i�m′n′ τ 〈B(t)B(t − τ )〉 � 1

2
γm′n′(T ) − iLm′n′

(B26)∫ t

0
dτ e−i�m′n′ τ 〈B(t − τ )B(t)〉 � 1

2
γm′n′ ′(T ) − iLm′n′ ′,

with

γmn = 2π

∫ ∞

0
dνα2(ν,ν + �mn)d(ν)d(ν + �mn)

× n(ν,T )[1 + n(ν + �mn,T )], (B27)

and

Lmn = P

∫ ∞

0
dνdν ′ α

2(ν,ν ′)d(ν)d(ν ′)
ν ′ − ν − �mn

n(ν,T )[1 + n(ν ′,T )],

(B28)

As in Appendix A, we assume that all relevant transitions
in the system have different frequencies. This allows to drop
fast rotating terms. Conditions in which the present approach
might be inaccurate are explained in Appendix C.

Knowing that

Zmn = δmn + σmn
z

2
, (B29)

we obtain the following master equation in the Schrödinger
picture

ρ̇(t) = −i[H ′′
S ,ρ(t)] + γφ(0)

2
D

[ ∑
m

σmm
z |m〉〈m|

]
ρ(t)

+
∑

m,n�=m

γφ(�nm)

2

∣∣σmn
z

∣∣2D[|m〉〈n|]ρ(t), (B30)

with γφ(�nm) = γnm/2, and where we have defined the Lamb-
shifted Hamiltonian

H ′′
S = H ′

S +
∑
mn

|Zmn|2 Lmn|n〉〈n|. (B31)

Equation (B30) is exactly the master equation found for a
classical bath if we neglect Lamb shifts, which can be done at
low temperature and system-bath coupling.

Finally, since the above master equation has been obtained
for a bath in thermal equilibrium, the rates must obey detailed
balance [47]

γφ(−ω) = exp

(
− ω

kBT

)
γφ(ω). (B32)

APPENDIX C: CONDITIONS UNDER WHICH THE
MASTER EQUATION DEVELOPED HERE IS APPLICABLE

Here, we discuss conditions under which all relevant
transitions have different frequencies and the above master
equation can safely be applied. As stated in Sec. IV A, in the
dispersive regime, if ζ ∼ κ , resonator transitions overlap. On
the other hand, if the ratio g/� is large enough to have ζ � κ ,
this degeneracy is lifted, at least for low excitation numbers.
Indeed, for high excitation numbers, some transitions might
accidentally have the same frequency.

We now define a critical excitation number ñcrit under which
all transitions occur at different frequencies and thus can be
treated independently, given a sufficient ratio g/�. We limit
ourselves to the Bloch-Siegert regime, under which g � �

and the counter-rotating terms are treated in a perturbative
way. In this case, the energy levels are

En,± � nωr ± 1
2

√(
�BS

n

)2 + 4g2n, (C1)

and thus display a nonlinearity scaling in
√

n. In addition,
and as illustrated in Fig. 6, the bath operators only couple
states in the same doublet, or one or two doublets away
from each other. Moreover, as explained in Sec. III B, parity
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FIG. 6. (Color online) (a) Types of transitions allowed in the
Bloch-Siegert regime (g � �). Red: transitions driven by the (even)
σz bath. Black: transitions induced by the (odd) X and σx baths.
(b) Exact energy levels of the Rabi Hamiltonian with increasing
coupling strength, obtained numerically. Crossings between levels
in the spectrum lead to pairs of transitions with equal frequency.
However, since in each of these pairs, one transition is even and the
other is odd, they belong to different baths and these overlaps are not
relevant for the master equation. Parameters are ωr/2π = ωa/2π =
6 GHz.

selection rules apply so X and σx baths can drive only
transitions between adjacent doublets (Type 1), while σz noise
can induce transitions inside a doublet (Type 0) or between
second-nearest-neighbour doublets (Type 2). This allows us
to find a distinct ñcrit for individual baths by looking at every
possible combination of transitions and finding when some
possibly overlap.

We first consider transitions driven by X and σx baths,
which are of Type 1. At low n, these essentially occur at
distinct frequencies because of the

√
n nonlinearity. However,

as n increases,
√

n becomes comparable to
√

n + 1 and these
transitions become closer. When the frequency difference
between two transitions becomes of the order of nκ , their
typical line width, our model breaks down. We get an order
of magnitude estimate of this critical n with the condition
(En+1,+ − En,+) − (En+1,− − En,−) ∼ nκ . Dropping terms of
order higher than g2 and assuming g � κ and g � |�| (i.e.,
such that the system is out of the dispersive regime) we get

ñ
(1)
crit �

[
g

κ

(
1 + �

2�

)]2/3

. (C2)

Typically, this means we can have hundreds of excitations
before the nonlinearity disappears and the model breaks down
for odd baths. As a result, this limitation is not relevant in
practice.

We now turn to σz-driven transitions. Type 2 transitions
will start to overlap in similar conditions as above, but with
higher n, since they involve more widely separated energy
levels. Thus, these transitions do not set ñcrit. Because of
the

√
n dependence of the nonlinearity, all Type 0 transitions

have different frequencies. However, Type 0 and 2 transitions
can overlap. These overlaps depend on parameters g, ωr , ωa ,
and n in a nontrivial way, but a critical n for which this
starts to be possible can be established with the condition

En+1,− − En−1,+ = En,+ − En,−, which leads to a compli-
cated expression for ñcrit. Yet, we can get an estimate for this
critical number with the criterion En,+ − En,− ∼ ωr , which
leads to

ñ
(0−2)

crit = ω2
r − �2

4(g2 + μ�)
. (C3)

In resonance with ωa/2π = ωr/2π = 6 GHz and for g/2π =
1 GHz, ñ

(0−2)
crit = 9, enough to accurately describe many

experiments such as spectroscopy.
Finally, we emphasize that over ñ

(0−2)
crit , we can only say

that some pairs of transitions might overlap. If the involved
levels do not play a leading role in the dynamics of the system
under study, the master equation presented here should still
give sensible results in practice.

APPENDIX D: TRANSITION MATRIX ELEMENTS

In this Appendix, we evaluate the overlap matrix element
between eigenstates |j 〉 and |k〉 of the Rabi Hamiltonian for
an arbitrary operator O. This is done using the perturbation
theory presented in Sec. II to second order in g such that

Ojk � 〈j |U †OU |k〉, (D1)

where |j 〉 is the eigenstate in the Bloch-Siegert basis, Eq. (9).
Using Eqs. (6) and (7) with the unitary transformation Eq. (3),
we calculate the transition matrix elements Eqs. (18), (22) and
(23). For O = X, we obtain

Xg0;1− = (1 + l) sin θ1 − l cos θ1

Xg0;1+ = (1 + l) cos θ1 + l sin θ1

Xn+;n+1,+ = [
√

n(1 − l) sin θn + l cos θn] sin θn+1

+√
n + 1(1 + l) cos θn cos θn+1

Xn+;n+1,− = −[
√

n(1 − l) sin θn + l cos θn] cos θn+1

+√
n + 1(1 + l) cos θn sin θn+1

Xn−;n+1,+ = [−√
n(1 − l) cos θn + l sin θn] sin θn+1

+√
n + 1(1 + l) sin θn cos θn+1

Xn+;n+1,− = −[−√
n(1 − l) cos θn + l sin θn] cos θn+1

+√
n + 1(1 + l) sin θn sin θn+1, (D2)

where l = 2ξ + l2/2; ξ = g�/2ωr is defined below Eq.
(3) We note that Xij = Xji . All other matrix elements
are zero to second order. Similarly, for O = σx we
find

σg0;1−
x = r2

0 cos θ1 − s0 sin θ1

σg0;1+
x = −r2

0 sin θ1 − s0 cos θ1

σn+;n+1,+
x = −(

r2
n sin θn+1 + sn+1 cos θn+1

)
cos θn

+ (sn sin θn+1 + tn cos θn+1) sin θn

σ n+;n+1,−
x = −( − r2

n cos θn+1 + sn+1 sin θn+1
)

cos θn

+ (−sn cos θn+1 + tn sin θn+1) sin θn

σ n−;n+1,+
x = −(

r2
n sin θn+1 + sn+1 cos θn+1

)
sin θn

− (sn sin θn+1 + tn cos θn+1) cos θn

σ n−;n+1,−
x = −(−r2

n cos θn+1 + sn+1 sin θn+1
)

sin θn

− (−sn cos θn+1 + tn sin θn+1) cos θn, (D3)
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with r2
n = 1 − �2(n + 1/2), sn = �

√
n, and tn =

2ξ
√

n(n + 1). Finally, O = σz yields

σg0;g0
z = 2�2 − 1

σg0;2+
z = 2� sin θ2

σg0;2−
z = −2� cos θ2

σn+;n+
z = [2�2(n − 1) − 1] cos(2θn) + 4�2 cos2 θn

σ n+;n−
z = 2(2�2n − 1) sin θn cos θn

σ n−;n−
z = −[2�2(n − 1) − 1] cos(2θn) + 4�2 sin2 θn

σ n+;n+2,+
z = 2�

√
n + 1 cos θn sin θn+2

σn+;n+2,−
z = −2�

√
n + 1 cos θn cos θn+2

σn−;n+2,+
z = 2�

√
n + 1 sin θn sin θn+2

σn−;n+2,−
z = −2�

√
n + 1 sin θn cos θn+2. (D4)

APPENDIX E: PHOTON CREATION RATE UNDER
WHITE σz NOISE

In this section, we derive the photon creation rate Eq. (46)
caused by white noise fluctuations in the qubit transition
frequency. To simplify the discussion, we consider only
transitions to |2̃,±〉, the first accessible doublet.

The photon creation rate is given by

β = d

dt
〈a†a〉 = Tr[ρ̇(t)a†a]. (E1)

We take the initial state to be |g̃0〉. To obtain a constant rate,
we limit ourselves to very small times t , such that β � β(0).
As illustrated in Fig. 5, this will not cause any problem for
white noise, for which 〈a†a〉 is found numerically to increase
linearly at all times. Since ρ̇(0) = −i[HR,ρ(0)] + Ldrρ(0) and
ρ(0) commutes with HR , we obtain

β � Tr[a†aLdr|g̃0〉〈g̃0|]. (E2)

As shown in Eq. (16),Ldr has a component responsible for pure
dephasing and another that induces transitions. Since ρ(0) is
an eigenstate, the dephasing term cancels out. We thus get,
after moving to the Bloch-Siegert basis

β � −(
�φ2−,g0 + �

2+,g0
φ

)〈g0|(a†a)BS|g0〉 + �
2−,g0
φ

×〈2−|(a†a)BS|2−〉 + �
2+,g0
φ 〈2 + |(a†a)BS|2+〉. (E3)

With

(a†a)BS = a†a − �(aσ− + a†σ+) − 2ξ (a2 + a†2)σz

−�2
(
a†a + 1

2

)
σz + 1

2�2, (E4)

and using Eq. (19) for the transition rates as well as Eq. (D4)
for the corresponding transition matrix elements, we obtain

β � 2�2[T2−(θ2)γφ(−ω2−) + T2+(θ2)γφ(−ω2+)], (E5)

where

T2− = (1 + sin2 θ2) cos2 θ2 (E6)

T2+ = (1 + cos2 θ2) sin2 θ2, (E7)

and ω2± = E2± − Eg0.

Equation (E5) clearly shows that the spectrum at large
negative frequencies must be important in the σz bath for
the photon generation rate to be significant. However, in our
model, this bath respects detailed balance. Indeed, γφ(−ω) =
exp(−ω/kBT )γφ(ω) such that γφ(−ω) → 0 for ω � kBT ,
meaning that these contributions should be very small for low
temperatures.

Finally, when γ (−ω2−) = γ (−ω2+) ≡ γφ , which is the
case for white noise, Eq. (E5) reduces to the simpler Eq. (46).

APPENDIX F: VACUUM RABI SPLITTING

As outlined in Sec. V A, here we calculate 〈a〉s under weak
cavity driving. We will assume that dephasing noise at high
negative frequencies is weak, such that transitions from the
ground state to the |2̃,±〉 doublet are negligible as shown in
Appendix E. Together with the weak driving assumption, this
means that only the first three levels of the system are relevant.

For simplicity, we first move to the Bloch-Siegert basis
defined by Eq. (3) to get

H BS
drvn(t) = U †H (t)U = HBS + ε aBSeiνt + H.c. (F1)

It is also useful to move to a rotating frame with

V (t) = e−iωd [(a†a)BS+σ BS
z /2]t , (F2)

to obtain the time-independent Hamiltonian

H BS
drvn = �BS

r a†a + �BS
a

2
σz + gI+ + ε(aBS + a†BS), (F3)

with

�BS
r = ωr − ωd − μ �BS

a = ωa − ωd + μ. (F4)

The Heisenberg equation of motion for an arbitrary operator
Ô is

d

dt
〈Ô〉 = i〈[Hdrvn,Ô]〉 + 〈LdrÔ〉, (F5)

where in the subspace {|g̃0〉,|1̃−〉,|1̃+〉}
LO

dr• =
∑
σ=±

(
�g0,1σ

κ + �g0,1σ
γ

)
DO[|g̃0〉〈1̃σ |]•

+�
1−,1+
φ DO[|1̃−〉〈1̃+|]• + �

1+,1−
φ DO[|1̃+〉〈1̃−|]•

+DO[�g0,g0|g̃0〉〈g̃0| + �1−,1−|1̃−〉〈1̃−|
+�1+,1+|1̃+〉〈1̃+|]•, (F6)

where DO[Q̂]Ô = (2Q̂†ÔQ̂ − Q̂†Q̂Ô − ÔQ̂†Q̂)/2. Rates
are defined in Sec. III B.

We are interested in obtaining the mean value of a and
σ−. Since mean value does not depend on the frame, we will
simplify calculations by working in the Bloch-Siegert picture.
To do so, we first calculate the effect of the dissipators on aBS

and σ BS
− , knowing that

DO[Q̂BS]ÔBS = (DO[Q̂]Ô)BS. (F7)

This means that we can treat the states and operators in the
effective Jaynes-Cummings Hamiltonian basis and then use the
unitary U defined in Eq. (3) to move back to the Bloch-Siegert

043832-12



DISSIPATION AND ULTRASTRONG COUPLING IN. . . PHYSICAL REVIEW A 84, 043832 (2011)

frame, which takes the non-RWA terms in consideration. In
the three-level approximation, we have

a = cos θ1|g0〉〈1 + | + sin θ1|g0〉〈1 − | (F8)

σ− = − sin θ1|g0〉〈1 + | + cos θ1|g0〉〈1 − |, (F9)

resulting in the dissipators

DO[|g0〉〈1+|]a = − 1
2 cos θ1(a cos θ1 − σ− sin θ1)

DO[|g0〉〈1−|]a = − 1
2 sin θ1(a sin θ1 + σ− cos θ1)

DO[|1−〉〈1+|]a = − 1
2 cos θ1(a cos θ1 − σ− sin θ1)

DO[|1+〉〈1−|]a = − 1
2 sin θ1(a sin θ1+σ− cos θ1)

DO[|g0〉〈1+|]σ− = + 1
2 sin θ1(a cos θ1 − σ− sin θ1)

DO[|g0〉〈1−|]σ− = − 1
2 cos θ1(a sin θ1 + σ− cos θ1)

DO[|1−〉〈1+|]σ− = + 1
2 sin θ1(a cos θ1 − σ− sin θ1)

DO[|1+〉〈1−|]σ− = − 1
2 cos θ1(a sin θ1 + σ− cos θ1).

Proceeding in a similar way for dissipators involved in pure
dephasing yields

Ddeph
O a = − 1

2

(
γ +

φ cos2 θ1 + γ −
φ sin2 θ1

)
a

− 1
2 sin θ1 cos θ1

(
γ −

φ − γ +
φ

)
σ− (F10)

Ddeph
O σ− = − 1

2 sin θ1 cos θ1
(
γ −

φ − γ +
φ

)
a

− 1
2

(
γ +

φ sin2 θ1 + γ −
φ cos2 θ1

)
σ−, (F11)

where we have defined

γ ±
φ = γφ(0)

2

∣∣σg0,g0
z − σ 1±,1±

z

∣∣2
. (F12)

If we now add the contributions from all dissipators in Eq. (F5)
to the Heisenberg equation for a, we get

−�+(θ1)〈a〉 − η(θ1)〈σ−〉, (F13)

while for σ−, we obtain

−η(θ1)〈a〉 − �−(θ1)〈σ−〉. (F14)

Here, we have defined

�+(θ1) = �1 sin2 θ1 + �2 cos2 θ1 (F15)

�−(θ1) = �1 cos2 θ1 + �2 sin2 θ1 (F16)

η(θ1) = (�1 − �2) sin θ1 cos θ1, (F17)

with the rates

�1 = γ− + γ
↑
φ + γ −

φ

2
; �2 = γ+ + γ

↓
φ + γ +

φ

2
. (F18)

This in turn involves the expressions

γ± = κ(�1±,g0)|Xg0,1±|2 + γ (�1±,g0)
∣∣σg0,1±

x

∣∣2
, (F19)

γ
↑/↓
φ = 1

2γφ(�1∓,1±)
∣∣σ 1∓,1±

z

∣∣2
. (F20)

We now calculate [Hdrvn,a
BS] and [Hdrvn,σ

BS
z ]. Neglecting

terms that lead to leakage out of the effective Jaynes-
Cummings three-level system, we obtain simple forms for aBS

and σ BS
z in the bare basis

aBS ≈
(

1 + �2

2

)
a − �σ+ + 2ξa† (F21)

σ BS
− ≈

(
1 + �2

2

)
σ− − �a†. (F22)

From these expressions, we easily get

[Hdrvn,a
BS] � −ε−

(
1+�2

2

)
�BS

r a−
(

1+�2

2

)
gσ−

+ (2ξ�BS
r −μ)a†+(2ξg−��BS

a )σ+ (F23)

[Hdrvn,σ
BS
− ] � −

(
1 + �2

2

)
�BS

a σ− −
(

1 + �2

2

)
ga

−��BS
r a† − μσ+. (F24)

We now want to express this result in the Bloch-Siegert basis.
From Eqs. (F21) and (F22)

σ− �
(

1 + �2

2

)
σ BS

− + �a†BS. (F25)

Knowing that aBS = a + O(�), Eq. (F21) leads to

a �
(

1 − �2

2

)
aBS + �σ BS

+ − 2ξa†BS. (F26)

This allows to find the appropriate commutators

[Hdrvn,a
BS] � −ε − �BS

r aBS −
(

1 + �2

2

)
gσ−

+ 2
(
ξ�BS

r −μ
)
a†BS − [

�
(
�BS

a + �BS
r

)
− 2ξg

]
σ BS

+ , (F27)

[Hdrvn,σ
BS
− ] � −[

(1 + �2)�BS
a + �2�BS

r

]
σ BS

− − gaBS

− [
�

(
�BS

a + �BS
r

) − 2ξg
]
a†BS − 2μσ BS

+ .

(F28)

We can now write equations for the evolution of aBS and
σ BS

− . While Hamiltonian contributions are purely imaginary,
those coming from dissipation are purely real. Imaginary
terms lead to oscillatory behavior, while real terms account
for excitation and relaxation. Terms in aBS and σ BS

− have
both real and imaginary components, but terms in a†BS and
σ BS

+ only have imaginary contributions. The latter then only
contribute through oscillations in the dynamics. Since we are
only interested in the steady-state behavior, we can neglect
them. This allows to get the following equations for the steady
state if we neglect terms of order higher than g2[

i�BS
r + �+(θ1)

]〈aBS〉 + [ig + η(θ1)]
〈
σ BS

−
〉 + iε = 0

[ig + η(θ1)]〈aBS〉 + [
i�̃BS

a + �−(θ1)
]〈
σ BS

−
〉 = 0,

where we have defined �̃BS
a = (1 + �2)�BS

a + �2�BS
r . Solv-

ing the above set of equations, we finally obtain

〈a〉s = iε Gq(θ1)

G2
η(θ1) − Gq(θ1)Gr (θ1)

, (F29)

where

Gq(θ1) = �−(θ1) + i�̃BS
a (F30)

Gr (θ1) = �+(θ1) + i�BS
r (F31)

Gη(θ1) = ig + η(θ1). (F32)
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