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Quantum network optimization
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In many candidate designs of solid-state quantum computers, interactions between qubits are limited to a
small number of neighboring qubits. Taking into account this limitation we describe how quantum algorithms
can be executed efficiently on these designs. We illustrate our results with the quantum Fourier transform for
which linear depth networks are obtained. The concepts presented in this work can be applied to all quantum
algorithms to reduce considerably the coherence time needed for their execution.
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Since the presentation by SHdr of an efficient quantum  of the quantum Fourier transform including such a limitation
algorithm for factorization there has been much interest irhas been presented in REE9], but many possible improve-
the development of quantum-information theory. In particu-ments, including parallelism, were omitted.
lar, a lot of attention has been focused on developing other We begin by first reviewing the quantum Fourier trans-
efficient quantum algorithmf2—4] and quantum error cor- form. This transformation acts as follows omdaubit regis-
rection code$5-7|. ter indexedn—1,n-2,...,1,0)

In parallel, great effort is now invested in the design of
physical implementations meeting the very stringent require- 1 o
ments needed for the coherent manipulation of quantum in- Foil})—— > 2™y (1)
formation[8]. The high level of expertise available in solid- 2" y=0
state based _technolog|es estgbh_shes this approach 3S1Ris evolution relies on two logical gates: a one-qubit gate
leading candidate for the realization of a usefaeveral " 00 i
thousand qubitsquantum computer. Several designs have g on qubiy
already been proposed: Josephson junctierd.2), quantum 1/1 1
dots[13], and spin-resonance transistptg|. Recent experi- A =_( ) )
mental success¢45,16| give good confidence that a practi- ! Y21 —1)
cal quantum computer resting on those approaches will be
built. and a two-qubit gat®;, acting on qubit§ andk

However, due to their large number of degrees of free-
dom, solid-state designs suffer from short coherence times. 1
In order to take full advantage of their computational power, 1
it will be important to optimize the algorithmgomputation Bjx=
and error correctionfor the specific quantum hardware in
use. el i

Moreover, in most solid-state designs, it will be experi- .
mentally simpler to build arrays of qubits with qubit-qubit with ij=7r/2k‘1. To perform the Fourier transform of a
interactions limited to a small number of neighboring qubits.five-qubit register=5 the following sequence oA; and Bjy
In this paper, we address the question of optimization ofjates is applied
guantum algorithms for the most limiting but also experi-
mentally more realistic case of qubits coupling: an unidimen- A4B34B24B14B0sA3B23B13B0AB1:BoAIBrAr.  (4)
sional array of qubits with nearest-neighbor interactions. We
will take advantage of the possibility of performing opera- The corresponding network is shown in Fig. A5 is thus
tions on different qubits simultaneously that is common torealized by 15 logical gates. More generafypne-qubit and
many designs. To illustrate our point, we present results fon(n—1)/2 two-qubit operations are necessary to implement
the important case of the quantum Fourier transform (QFTfn -
for which, even under the strong constraint of only nearest- To proceed with optimization of this algorithm, an explicit
neighbor interactions, we obtain depff{n) networks. prescription for the implementation éfandB in terms of a

Optimization of quantum networks by parallelization hasuniversal set of elementary gates is needed. Of course this
already been investigated in referenddd] and [18] but  restricts the optimization to implementations having this par-
without taking into account the limited extent of qubit-qubit ticular set of elementary gates in their repertory, but applica-

interactions. A study of the “actual computational time cost” tion to other implementations is straightforward. Here we
will use the universal set

2"—1

()

*Electronic address: ablais@physique.usherb.ca X]-(H):e_i"lx‘”z, Zj(¢)=e_i”JZ¢/2, (5)
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4 % B2a—1B14[—Boq
3 1 - s BB —Bod FIG. 1. Network realizing the quantum Fou-
) - ~ = rier algorithm on a five-qubit register. The output
2 is the bit reversal of the Fourier transform Eq.
1 * A1 [—Boy (D).
0 —{Ad—
ij(§)=exp(—itsz® gizg/z)_ (6)  As aresult, a single swap operation requires 21 elementary

operationgtime steps and 42<(]j —k|—1) elementary op-

acting on qubit andk. This set is useful as it corresponds to €rations are required to realize the network of Figy.2

the elementary set of gates of many solid-state designs It1S howe_ver possible to reduce this num_ber S|gn|f|cantly.

[10,11,14 (and can be implemented by nuclear magneticFirst, by taking advantage of the commutation relations be-

resonancé20,21)). tween the elementary gatés) and(6) and the symmetry of
These elementary operations can be used to implemefft€ controlledoT (10) it is possible to “compile” the se-

the logical gates\; and B, (on two adjacent qubitsin the ~ guence(9) by removing redundant gates. Doing so, we ob-
following fashion tain the following swap sequence implemented by 15 el-

ementary operations

S.c= e 14X (7/2)P o — m/2) Zy( mI2)X(7/2)
Bjk=e'""+2Z;( 0k + 1) Z( Ojk+ 1) Pjk( Ojk+1)- 8 X[Zo( mI2)X, (712)]P,o(— 7/2)Z,(7]2)
The phasee'’ik+2 depends on the qubits on whidby is XX (ml2)X(7/2)]P (= mI2) Zs( m/2) Xo(77/2)

applied but is independent of their state. It is thus an unim-
portant global phase factor and can be ignored.

To realize the network of Fig. 1 it will be necessary to ) -
apply Bj, gates on nonadjacent qubits. In a unidimensional Moreover, taking advantage of the ability to perform op-
array of qubits limited to nearest-neighbor couplings this will€rations on different qubits simultaneously, it is possible to
entail swapping recursively the state of adjacent qubits ifurther reduce the number of time steps used for moving
order to juxtapose the state of qubits to couple. For quanturitates through the register. Indeed, since operations on differ-
bits initially at locationsj and k in a quantum registej  €nt qubits commute, the gates in square brackets ir(Hg.
—k|—1 swap operations are required to bring the qubits tocan be performed simultaneously, reducing the number of
gether and anothelj —k|—1 to bring them back to their time steps to 12. In addition, the simultaneous swaps in Fig.
original locations, Fig. @). 2(b) requires only P|j—k|/2] time steps, wher¢x] is the

A swap between the state of qubits at positiorends, ~ Smallest integer larger thax and is thus much more effi-
respective'y, can be imp|emented by a sequence dﬂent than the Stra|ghtf0rward |mp|ementat|0n of F|@)2A

X[Z{(7/2)Z,(7/2)]. (11)

controlledNoT (C) gates final simplification is possible when we notice that there is
no need to move the qubits back to their original locations.
S.c=C<Cs,Cys. (9) Once the states of a pair of qubits have been brought together

and have interacted, the next reorganization should be done
in a way optimizing the realization of the following logical
operations.

With these results, the number of time steps is reduced
C..m e 37y (31N (N7 (DX 77 77]2 from 42(j—k|—1) to 12Z|j—k|/2] for a single swap se-

s s(3m/2)Pro(— mI2)Z((mI2)X(mI2)Z(m[2) quence. In the case of networks involving multiple swaps,

Using Egs.(5) and(6), theC gate is itself implemented by a
sequence of seven elementary gates

XZ(mI2)P,s(—7l2). (10)  further improvements are possible by reorganizing the qubits
properly during computation.
a) While the above optimization for swap gates is relevant to
[ R — the implementation of all quantum algorithms in one-
n dimensional1D) arrays of qubits, a key observation specific
Bik CiK to the quantum Fourier transform is

b) D SE——

= EY Ve

FIG. 2. (a) Repetitive use of swap operations to perform a con- . ) )
trolled interaction between initially nonadjacent qubits. Equiva- ~ The first of these relations express the fact that gates acting

lent network using simultaneous operations. Strat@ywas used on distinct qubits commute while the second relation holds
in Ref.[19] to estimate the time cost &, . becauseBjy is diagonal in the computational basis. While

[BjkrBrs]ZO v j,k,r,s. (12)
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and three swaps which are in the light shaded area of the
same figure, we now obtain an optimized QFT on four qu-
bits. These extra gates add 29 time step$-40[25]. The
same observation also holds in going frémto F5 by add-
ing the five logical operations and four swaps that are on the
left of the light shaded area, adding again 29 time steps. By
using this construction recursively, we can now obtain an
FIG. 3. Network realizing the quantum Fourier algorithm on aoptimized network forF, once the network forF,_; is
five-qubit register using simultaneous operations and efficient usgiven. As seen from the above constructions, this is easily
of the swap operations. The numbers at both end of the circuit ardone by addingn logical operations and— 1 swaps td~,,_;
used to keep track of the position of the logical states. The operafor n>2). TheseO(n) extra gates add 29 time steps to
tions in the dark gray area implemefj. F,_1 and the number of time steps required to perféigin
this fashion can then be evaluated to be (n—2) for n
2. Hence, we have obtained linear depth networkd=fpr
Thus, while taking into account the limited range of non-
éocal interactions between qubits we have obtained a
peedup quadratic in over nonoptimized networks. Effi-

A W O A N

respecting these commutation relations, it is now possible t
permute logical operations and apply them when it is mos
convenient.

Let us now apply these concepts. For this purpose, w

developed an algorithm adding swaps, as suggested in Fi jent use of swaps and massig@assical parallelism are

2(b), to the original QFT sequence. To minimize the length ) "
of the networks, the algorithm then maximizes parallelism byrespon3|ble for this speedup. Indeed, speedup by a factor of

3
grouping operations that commute while not acting on theo(n) can be seen to come from the fact tan") swaps

same qubits. The result, for five qubits, is given by the netd'€ necessary in nonoptimized circuits while ofi{n”) are

work of Fig. 3. We compute the depth of our networks inrequested in the optimized case. The other factoO(h)

terms of the elementary gates implementing each Iogicagomes from the fact that up tosimultaneous operations can

gates. Recognizing that operatioBs; are realized in two e realized om qubits. As in the case of classical parallel

time stepdall elementary gates realizing this operation, Eq.computers., this prowdes a speedup of ord¢n). . .
(8), commute and it is possible to apply the first two simul- Interestingly, linear depth networks were also obtained in

taneously while A; in 3 we obtain that the network of Fig. 3, Ref. [17% n thfi sprIter case \E)v_?ere no I'm't.?jté%a 'T the
is implemented in 95 time step&3]. Without optimization, range ot coupling between qubils was consi - n

Fs would necessitate 20 swaps for a total of 275 time stepsf.aCt’ depthO(n) networks is the best one can achieve for the

Figure 4 compares, on a logarithmic scale, the time cos‘lax"’wt':n network given by sequend@) sincen operations

of the improved networks obtained numericallyplack have to be applied on theh [top most in Fig(1)] qubit and

circles with nonimproved networkgopen squareg 24] for no operations acting on similar qubits can be parallelized. As

up to 300 qubits. The time cost of the later networks is easily"l result, the Ilmlj[atlons .Of a linear design restricted to
determined to be 10~ 11n2+4n3~0(nd). nearest-neighbor interactions, at least for the exact Fourier

To go beyond numerical constructions, a useful observat-ranSfor.m' o_loes no_t seem t_o b_e an |_mportar_1t one as long as
tion is that the dark gray region at the rightmost end of Fig'parallelllsm IS possible. A circuit similar to Fig. 3 was pub-

3 is an optimized quantum Fourier transform on three qubitsl.'ShE(.j Ina q|fferent context if22].

Moreover, adding to this transformation the four logical It is possible to shorten furthgr, by a cor)st_ant.factor, the
length of QFT networks by starting the optimization proce-

gates dure with a permutatiorirespecting relation$12)] of the
10°7" T T L original sequencé4). We then seek the permutation mini-
, o mizing the depth. This is a constrained optimization problem
109 L and has many similarities with the problem of placement
10° 4 .,D“nu - occurring in very large scale integrated circuit related tech-

o nologies for which heuristics, like simulated annealing or
tabu search, are known to give good results. In placement,
one seeks to arrange the components ¢flassical circuit
such as to minimize the length of interconnecting wires and

Time cost

w -O:-
[ ]

[ ]

®

i

[ ]
[ ]

107 %

nn.’ oo the circuit ared27].
10°1 De® ] The problem at hand is very similar but with the addi-
‘ o tional complication that reordering two logical operations at
10°7 o 3 a given location in a circuit will change the sequence and
a
0 possibly the number of swaps needed at all further points in
10°+ T T )SSIDIY 1 _ [
1 wQubits 100 300 this circuit. Based on this analogy, we developed a simulated

annealing(SA) algorithm[28] to obtain improved networks.
FIG. 4. Number of time steps for QFT networks as a function of AS SAis a heuristic algorithm, it will not necessarily provide
the number of qubits on a logarithmic scale. Black circles are foroptimal solutions, but solutions that are close to the optimal
the improved networks obtained numerically while open square®nes. This is not a problem here as we will be satisfied with
correspond to nonimproved networks. any improvements over straightforward networks.
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provements were obtained by first expressing the necessary
gates in terms of an elementary set of gates. Knowing the
number of time steps required to realize each member of this
set, we then minimized the length of quantum Fourier net-
works by taking advantage d@tlassical parallelism and of

the commutation relations between logical operations. While
limiting the spatial extent of coupling between qubits, we

Networks obtained with this approach are only a few Ioer_obtalned circuits that can be implementeddi(n) time steps

. corresponding to a quadratic speedup for time resources.
cent shorter th_an the best. networktdack d.OtS of Fig. 4. Twopmain g(]:onclugions can tr))e drar/)vn from this wofk:
Moreover, SA is computationally demanding and becomeg, . antym algorithms can be optimized by prior classical

impractical for a few tens of qubits. This further speedup will compytation to yield networks necessitating much smaller
nevertheless be welcomed for prototypical quantum computeonerence timedii) As long as they allow for simultaneous
ers. The network of Fig. 5 was obtained by improving upongperations of distinct qubits, solid state quantum computers
the circuit of Fig. 3 in this way. It requires only six swaps -an pe designed with very simple qubit-qubit interaction
and 83 time steps. o _ schemes without degrading their performance, at least for
Finally, we note that for very large networks, it is experi- some computational tasks. From the results obtained in this
mentally challenging to implement the operatioBx for ok, parallelism seems like a very desirable feature for can-
large|j — k| as this corresponds to very small phases and willjigate quantum computer implementations. These conclu-
require the application of elementary gates for short periodgjons are significant for the design and use of prototypical
of times. It is however possible to omit thg&y, such that ggjig-state guantum computers.
m/2~ )< /2" for a choserm and obtain a result that differs  \we stress that the concepts presented here are applicable
only by a multiplicative factoe'?, with [e[|<2mn/2™, from {0 all quantum algorithms and can be generalized to other
the result of the origindF,, network[29]. Combined with the  quantum computer architectures and geomet(@& arrays
Optimization procedure presented here, this will yleld net'of quitS, quasi-]_D arrays, elcand to the case where inter-
works that are still more efficient, but at the expense of losactions are not restricted to neighboring qubits but neverthe-
ing some accuracy. This was explored recently by Cleve angss have limited spacial exteri13]. Moreover, the results
Watrous[18] in the case of arbitrarily long qubit-qubit inter- optained here can be improved by working directly with the
actions for which they obtained dep@(log, n) networks. elementary gates implementing the logical operations rather
We note that for the unidimentional architecture studied inthan with the logical operations themselves. As seen from
this paper, the limitation of nearest-neighbor coupling wouldggs. (9) and (11), this certainly can yield further improve-

W N - O &

FIG. 5. Improved quantum Fourier network on five qubits.

not allow for the implementation of the approximate QFT in ments.

logarithmic depths.

In summary, we considered several improvements that Helpful discussions with S. Lacelle, A.-M. Tremblay, J.-F.
should be applied in the implementation of quantum algo-Veillette, A.M. Zagoskin, and particularly with M. Beaudry
rithms. To illustrate our point, we presented results for theon circuit complexity are acknowledged. This work was sup-
important case of the quantum Fourier transform. These imported in part by NSERC, D-Wave Systems Inc. and FCAR.
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