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Abstract: In this paper we derive an effective master equation and quantum trajectory equation for multiple qubits in a
single resonator and in the large resonator decay limit. We show that homodyne measurement of the resonator transmis-
sion is a weak measurement of the collective qubit inversion. As an example of this result, we focus on the case of two
qubits and show how this measurement can be used to generate an entangled state from an initially separable state. This is
realized without relying on an entangling Hamiltonian. We show that, for current experimental values of both the decoher-
ence and measurement rates, this approach can be used to generate highly entangled states. This scheme takes advantage
of the fact that one of the Bell states is decoherence-free under Purcell decay.
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Résumé : Nous obtenons ici une équation maı̂tresse efficace et une équation de trajectoire quantique pour plusieurs qubits
dans un résonateur simple et dans la limite de désintégration d’un grand résonateur. Nous montrons que la mesure syn-
chrone de la transmission du résonateur est une mesure faible de l’inversion collective des qubits. Comme exemple illus-
tratif, nous focalisons sur le cas de deux qubits et montrons comment cette mesure peut être utilisée pour générer un état
intriqué à partir d’un état initialement séparé. Ceci se fait sans Hamiltonien d’intrication. Nous montrons que cette ap-
proche peut être utilisée pour générer des états hautement intriqués, compte tenu des valeurs expérimentales existantes des
taux de décohérence et de mesure. L’approche tire profit du fait qu’un des états de Bell est libre de décohérence sous dé-
sintégration de Purcell.

[Traduit par la Rédaction]

1. Introduction
In the last few years, circuit quantum electrodynamics

(circuit QED) [1–3], a solid-state analog of cavity QED [4–
6], has grown into a mature field. This system is based on
superconducting qubits [7] acting as artificial atoms and a
distributed [1, 2, 8–17] or lumped [3, 18] resonator that acts
as a harmonic oscillator. Examples of its success are the ob-
servation of the particle-like nature of microwave photons
[8], generation of a single photon [9] and Fock states [10,
11], observation of Berry’s phase [12], use of a quantum
bus to couple qubits [13, 14], single artificial-atom lasing
[15], and observation of the fundamental limit that exists be-
tween measurement and dephasing [16, 17].

Evolution of this system obeys a master equation (ME),
which has an interaction described by the Jaynes–Cummings
Hamiltonian [19] and decoherence processes, which are well
described by Markovian environments [20]. Measurement in
this system is done by operating in the dispersive limit
(where the detuning between the resonator and the qubit is
much larger then their coupling strength). In this limit, the
interaction induces a qubit-state dependent frequency shift
on the resonator. By measuring the resonator output voltage
with a homodyne measurement, information about the qubit
state is obtained. This measurement is a weak continuous-in-
time measurement of the quadrature of the resonator, and
the evolution of the conditional state is described by a quan-
tum trajectory equation (QTE) [20, 21]. The presence of the
resonator can make the Hilbert space needed for simulation
of the ME or QTE quite large and impractical (especially for
a many qubit system).

It has been shown by us in previous work [21] that for a
single qubit a polaron transformation can be used to elimi-
nate the resonator dynamics from both the ME and QTE.
The resultant ME and QTE have an extra decay channel
that represents measurement-induced dephasing. Moreover,
measurement is found to be a weak measurement of the qu-
bit inversion operator sz. This transformation has the advant-
age of being exact for the average evolution. Extending to
more than one qubit is nontrivial and will be discussed in a
future publication [22]. Here we follow a simpler approach,
which yields very accurate results in the large resonator
damping case. This large damping limit is particularly useful
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because it corresponds to a good qubit measurement. We
use an adiabatic approximation, similar to that presented in
refs. 23–26, to obtain an effective ME and QTE. From these
equations, we find that in this limit homodyne measurement
of the resonator corresponds to a measurement of the collec-
tive qubit inversion (

X
i
dis

z
i , where di is a dimensionless

parameter determined by the system parameters).
As an application of the derived many-qubit QTE, we

consider the case of two qubits and tune the system parame-
ters such that d1 = d2. In this situation, a measurement has
three possible outcomes. For one of these outcomes, meas-
urement cannot distinguish between an excitation being in
either qubit. As a result, starting with a particular separable
input state, this measurement will generate a maximally en-
tangled state. Similar ideas were used with trapped ions to
generate entanglement [27, 28]. Theoretical work towards
realization of these ideas in circuit QED was already done
in ref. 29. Here however, we consider realistic decoherence
rates as measured in recent experiments [30]. Moreover, to
obtain large concurrences our scheme takes advantage of
the fact that one of the Bell states is decoherence-free under
Purcell decay [31].

The paper is organized as follows. In Sect. 2 we derive
the underlying ME for many qubits coupled to a common
resonator and adiabatically eliminate the resonator degrees
of freedom. In Sect. 3 we derive the corresponding QTE. In
Sect. 4 we investigate how entanglement can be generated
by measurement, and show that, with realistic parameters,
high concurrence can easily be reached. We summarize our
findings in Sect. 5.

2. The master equation
We consider multiple superconducting qubits coupled to a

transmission line resonator acting as a simple harmonic os-
cillator. This system is illustrated schematically in Fig. 1. In
the limit where direct capacitive qubit–qubit coupling can be
ignored, the system is described by the multi-qubit Jaynes–
Cummings Hamiltonian [19, 32] (Z = 1),

H ¼ ura
yaþ Eðaþ ayÞ

þ
X
j

uqj

2
szj þ gjðs�j ay þ sþj aÞ

h i
ð1Þ

In this expression, ur is the resonator frequency, uqj is the
jth qubit transition frequency, and gj is the jth qubit resona-
tor coupling strength. E ¼ Em þ Ec represents external driv-
ing of the resonator, with Em referring to the measurement
drive (at frequencies close to the resonator) and Ec referring
to the control drives (at frequencies close to the qubits). We
take

Em ¼ eme
�iumt þ e�me

iumt

Ec ¼
X
k

ðeke�iukt þ e�ke
iuktÞ

ð2Þ

with um being close to ur and where, for all k, uk, is far de-
tuned from the resonator.

In the dispersive regime, where jDjj ¼ juqj � urj � jgjj,
we can adiabatically eliminate the resonant Jaynes–
Cummings interaction using the transformation3

U ¼ exp½
X
j

ljðays�j � asþj Þ� ð3Þ

where lj = gj/Dj is a small parameter. The effective Hamil-
tonian Heff = U{HU is, to second order in lj,

Heff ¼ ura
yaþ Emðaþ ayÞ þ

X
j;k 6¼j

Jjkðs�j sþk þ sþj s
�
k Þ

þ
X
j

cja
yaszj þ

uqj þ cj

2
szj þ ljEcðsþj þ s�j Þ

h i
ð4Þ

where cj ¼ g2
j =Dj parametrizes the strength of the ac-Stark

shift (fourth term) and Lamb shift (fifth term) on the jth qu-
bit transition frequency. Jjk represents the strength of the
coupling between the jth and kth qubit by virtual photons in
the resonator and is given by,

Jjk ¼
gjgkðDj þDkÞ

2DjDk
ð5Þ

Coupling to additional uncontrolled degrees of freedom
leads to energy relaxation and dephasing in the system. Inte-
grating out these degrees of freedom leaves the qubit plus
resonator system in a mixed state r(t), whose evolution can
be described by the ME,

_r ¼ �i½Heff ; r� þ kD½a�rþ
X
j

g1;jD½s�j �r

þ
X
j

gfj

2
D½szj �rþ kD

X
j

ljs
�
j

" #
r ð6Þ

where

D½A�r ¼ ArAy � fAyA; rg=2 ð7Þ

In this expression, k is the resonator decay rate, g1;j, gfj
re-

presents relaxation and dephasing on the jth qubit, and the
last term represents correlated relaxation due to the Purcell
effect [31, 34, 35]. While this term is of order l2, it is kept
because in the following adiabatic approximation, we will
require k to be large such that the product l2k is not neces-
sarily small.

To derive an effective ME for the qubits only, we start by
removing the fast dynamics of the resonator. This is done by
moving to the interaction frame rotating at the measurement
drive frequency um and by making the standard rotating-
wave approximation. This allows us to rewrite (4) as,

Heff ¼ Dra
yaþ

X
j

cja
yaszj þ ðe�maþ ema

yÞ þ Hq ð8Þ

where Dr ¼ ur � um and Hq represents the Hamiltonian of
the isolated qubits

3 This is a simple extension of (5.1) and (5.2) in ref. 33 to include more then two qubits. To include higher order effects, the results of
ref. 34 could be used.
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Hq ¼
X
j

uqj þ cj

2
szj þ

X
j;k 6¼j

Jjk

2
ðs�j sþk þ sþj s

�
k Þ

þ
X
j

ljEcðsþj þ s�j Þ ð9Þ

Next, we move to the frame defined by

rDðtÞ ¼ Dy½a�rðtÞD½a� ð10Þ

where D½a� ¼ exp½aay � a�a� is the displacement operator.
Applying this to (6) and choosing

a ¼ � iem

iDr þ k=2
ð11Þ

yields

_rD ¼ LrD � iDr½aya; rD� þ kD½a�rD

� i
X
j

cj½ayaszj ; rD� � i
X
j

cj½ða�aþ aayÞszj ; rD� ð12Þ

where L is the Lindblad superoperator representing only qu-
bit dynamics and is given by,

Lr ¼ �i½Hq; r� � icjaj2
X
j

½djszj ; r� þ
X
j

g1;jD½s�j �r

þ
X
j

gfj

2
D½szj �rþ kD

X
j

ljs
�
j

" #
r ð13Þ

In this equation the second term represents the ac-Stark shift
on the qubit transition frequency, with c ¼

X
j
cj=N, and N

being the total number of qubits. dj ¼ cj=c is the fractional
effect that ci gives to the average.

Following refs. 23 and 24, we now make an adiabatic ap-
proximation. That is, we will assume that quantum fluctua-
tions in the displaced resonator state are small. In this
situation, it is reasonable to assume that matrix elements
rnm, with n, m being the resonator photon number, decay rap-
idly with increasing n, m. As a result, we will assume that
there is a small parameter 3 such that rnm / 3nþm [23, 24].
Expanding the total state matrix to second order in 3 we find

rD ¼ r00j0ih0j þ r10j1ih0j þ r01j0ih1j þ r11j1ih1j

þ r20j2ih0j þ r02j0ih2j þ Oð33Þ ð14Þ

such that the reduced state for the qubits is given by
r ¼ Tr½rD� ¼ r00 þ r11.

Substituting this expansion in the above ME leads to the
following coupled differential equations,

_r00 ¼ Lr00 þ kr11 þ i
X
j

cjðar01s
z
j � a�szjr10Þ

_r10 ¼ Lr10 � kr10=2þ i
X
j

acjðr11s
z
j � szjr00Þ

� i
X
j

cjðszjr10 þ a�
ffiffiffi
2

p
szjr20Þ � iDrr10

_r11 ¼ Lr11 � kr11 þ i
X
j

cjða�r10s
z
j � aszjr01Þ

� i
X
j

cjðszj ; r11Þ

_r20 ¼ Lr20 � kr20 � i2Drr20

� i
X
j

cjða
ffiffiffi
2

p
szjr10 þ 2szjr20Þ ð15Þ

By looking closely at these expressions, we find that the
higher order terms are only populated at rate jaj

X
j
cj=k

and decay at rate k. Thus, taking

3 ¼
X
j

cjjaj=k� 1 ð16Þ

as our small parameter, we can assume that the off-diagonal
terms r10 and r20 decay much faster than the diagonal
terms, and as such can be approximated by their steady-state
value

r10 ¼
ia
X
j

cjðr11s
z
j � szjr00Þ

iDr þ k=2

r20 ¼
X
j

�ia
ffiffiffi
2

p
cjs

z
jr10

kþ i2Dr

ð17Þ

Substituting these expressions into the diagonal components
leads to the effective ME4

_9 ¼ L9þ Gd

2
D
X
j

djs
z
j

" #
9� iK

X
j

djs
z
j

 !2

; 9

2
4

3
5 ð18Þ

In this expression, Gd is the measurement-induced dephas-

Fig. 1. A schematic illustration of multiple-qubit circuit QED. Superconducting qubits (gray; six qubits are illustrated) are fabricated inside
a transmission-line resonator (blue). The full-wavelenght mode of the resonator is illustrated (pink).

4 Note that, as in refs. 23, 24, we have kept r11 even though to the required order it can be left out.
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ing rate and K is a resonator-induced Ising-like coupling.
These are

Gd ¼
2kjaj2c2

D2
r þ k2=4

and K ¼ �2Drjaj2c2

D2
r þ k2=4

ð19Þ

In the limit of a single qubit, the measurement-induced
dephasing rate obtained here correctly agrees with the large
k limit of ref. 17 (In this paper, this expression is labeled
Gm) and with the large k and steady-state limit of the rate
presented in ref. 21. We note that one could use a multi-qu-
bit polaron transformation to get results valid in the small k
limit and which would take into account initial transients in
the resonator [22].

3. Quantum trajectory equation

Although direct detection of the transmitted microwave
photons is possible [9], here we will consider homodyne
processing [20]. That is, we will assume that the signal com-
ing from the output port of the resonator is mixed with a
strong local oscillator tuned to the signal frequency and of
phase f. Given the homodyne measurement result J(t), we
can assign to the qubit and the resonator the conditional
state rJðtÞ, whose evolution is governed by the QTE [36],

_rJ ¼ LrJ þ i
ffiffiffiffiffi
kh

p
½Qf; rJ �xðtÞ þ

ffiffiffiffiffi
kh

p
M½2If�rJxðtÞ ð20Þ

with L given above. Here, M½c� is the measurement super-
operator defined as,

M½c�r ¼ ðc� hcitÞr=2þ rðc� hcitÞ=2 ð21Þ

where hcit ¼ Tr½crJðtÞ� and the f-dependent field compo-
nents are 2If ¼ ae�if þ ayeif and 2Qf ¼ �iae�if þ iayeif.
h is the efficiency at which the photons coming out of the
resonator are detected. For the current circuit QED experi-
ments, this can be written as hdet ¼ 1=ðNth þ 1Þ with Nth

being the number of noise photons added in the amplifier
stage. The measurement record is

JðtÞ ¼
ffiffiffiffiffi
kh

p
h2Ifit þ xðtÞ ð22Þ

where x(t) is Gaussian white noise and represents the photon
shot noise. It is formally defined by E[x(t)] = 0 and E[x(t)
x(t’)] = d(t – t’), with E denoting an ensemble average over
realizations of the noise x(t).

To obtain an effective QTE for the qubits only, we apply
the small 3 expansion to the above QTE. For the stochastic
part only, we find

_r00 ¼
ffiffiffiffiffi
kh

p
ðr10e�if þ r01eif � h2Ifir00ÞxðtÞ

_r11 ¼
ffiffiffiffiffi
kh

p
ð�h2Ifir11ÞxðtÞ

ð23Þ

which gives the following stochastic term to the qubit equa-
tion

_9 ¼
ffiffiffiffiffi
kh

p
ðr10e�if þ r01eif � h2IfirÞxðtÞ ð24Þ

Using the steady state value for r10 given in (17), this yields

_9 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kh

D2
r þ k2=4

s
c XM

X
i

dis
z
i

" #(

�i Y
2

X
i

dis
z
i ; 9

" #)
xðtÞ ð25Þ

where X ¼ <½a�eiðf�qÞ� and Y ¼ =½a�eiðf�qÞ� with
tan ðqÞ ¼ k=2Dr. Defining the measurement rate Gci, the ex-
tra non-Heisenberg backaction Gba and the maximum mea-
surement rate Gm as

Gci ¼
4khc2X2

D2
r þ k2=4

; Gba ¼
4khc2Y2

D2
r þ k2=4

;

and Gm ¼
4kc2jaj2
D2

r þ k2=4
ð26Þ

allows us to write the effective QTE in the form,

_9J ¼ L9J þ
Gd

2
D
X
j

djs
z
j

" #
9J � iK

X
j

djs
z
j

 !2

; 9J

2
4

3
5

þ
ffiffiffiffiffiffi
Gci

p
M

�X
i

dis
z
i

�
9JxðtÞ

� i
ffiffiffiffiffiffiffi
Gba

p
2

�X
i

dis
z
i ; 9

�
xðtÞ ð27Þ

with

JðtÞ ¼
ffiffiffiffiffiffi
Gci

p X
i

hdiszi it þ xðtÞ ð28Þ

and Gci þ Gba ¼ hGm. This last equality is also found in
ref. 21 and reflects the fact that maximum information about
the qubit is obtained by setting the phase of the local oscil-
lator such that Gba is zero (Y = 0). At this point, the rate of
information gain is Gci ¼ hGm, and for h = 1 this system
reaches the quantum limit (Gd=Gci ¼ 1=2).

4. Entanglement by measurement
As an illustration of application of the above QTE, we

consider the probabilistic generation of entanglement from a
separable state without using a two-qubit unitary. This ap-
proach can be particularly useful when such a two-qubit uni-
tary is not present or hard to implement. We consider the
case where only two qubits are present and take Dr ¼ 0,
d1 ¼ d2 ¼ 1. The last equality is such that both states |eg>
and |ge> pull the resonator to the same frequency and are
thus indistinguishable. Moreover, the local oscillator phase
is assume to be chosen such that Gba ¼ 0 and we take
l1 ¼ �l2. The sign change in l is easily realized by putting
the two qubits at both ends of the resonator and working
with an odd mode. Finally, to rule out any possible entan-
glement due to unitary qubit–qubit coupling, the indirect in-
teraction J12 between the qubits is ignored in the numerics5.

5 Keeping this coupling does not change the results since the states generated by measurement are eigenstates of the J12 interaction.
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With a transmon-type qubit [37], we can safely take the
qubit dephasing rate gf to be small [30]. In this situation,
(27) in the rotating frame becomes,

_9J ¼ g1;1D½s�1 �9J þ g1;2D½s�2 �9J þ gpD½s�1 � s�2 �9J

þ Gd

2
D½sz1 þ sz2�9J þ

ffiffiffiffiffiffi
Gci

p
M½sz1 þ sz2�9JxðtÞ ð29Þ

where J ¼
ffiffiffiffiffiffi
Gci

p
hsz1 þ sz2i þ xðtÞ and gp ¼ kl2 is the

Purcell decay rate.
For the system in the initial separable state

jji ¼ 1

2
ðjei þ jgiÞðjei þ jgiÞ

¼ 1

2
ðjeei þ jggi þ

ffiffiffi
2

p
jþiÞ ð30Þ

where

j�i ¼ 1ffiffiffi
2

p ðjegi � jgeiÞ ð31Þ

The QTE (for g1;1 ¼ g1;2 ¼ gp ¼ 0) leads to a collapse to
the state |ee> with probability 1/4, |gg> with probability 1/
4, and to the entangled state |+> with probability 1/2. This
is illustrated in Fig. 2, where typical quantum trajectories
for the elements ree (blue; solid), rgg (red; dotted), and rþþ
(green; dashed) are plotted as a function of time for these
three possible outcomes.

To connect this to the language of POVMs [38] or to a
quantity measured in an experiment, we defined the inte-
grated current [21, 39],

Fig. 2. Three typical trajectories of the conditional state elements
ree (blue; solid line), rgg (red; dotted line), and rþþ (green; dashed
line) when the initial condition is the separable state given by (30).
The system parameters are Gd ¼ Gci=2 and g1;1 ¼ g1;2 ¼ gp ¼ 0. In
panel (a) the collapse of the wave function is to the pure state |ee>,
in panel (b) to |gg>, and in panel (c) to the entangled state |+>.

Fig. 3. Histogram of 10 000 trajectories (a) at time t ¼ 1G�1
ci and

(b) time t ¼ 10G�1
ci . In both panels the full blue (solid) line shows

the expected distribution. The center peak in panel (b) corresponds
to the entangled state |+>, while the side peaks correspond to the
separable states |gg> and |ee>. Average concurrence (blue; solid
line) and probability of success (red; dotted line) are plotted as a
function of nth for (c) times t ¼ 1G�1

ci and (d) t ¼ 10G�1
ci . Other

parameters are the same as in Fig. 2.

Fig. 4. The average concurrence given that s is between �
ffiffiffiffiffiffi
Gci

p
t as

a function of time for 5000 trajectories and ðgp; g1;1; g1;2;GdÞ ¼
ð0; 0; 0; 1=2ÞGci (red; dotted line), (1/2,0,0,1/2) Gci (green; dashed
line), (1/2,1/200,1/200,1/2) Gci (blue; solid line), and (1/2,1/200,
1/200,10) Gci (pink dash-dotted line). The inset is a histogram of
5000 trajectories at time t ¼ 5G�1

ci and ðgp; g1;1; g1;2;GdÞ ¼
ð1=2; 0; 0; 1=2ÞGci.
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sðtÞ ¼
Z t

0

Jðt0Þdt0 ð32Þ

If we break s into three regimes defined by s < �nth,
�nth < s < nth, and s > nth, where we refer to nth as the
threshold, then the POVM elements Eg, E0, and Ee are mea-
sured, respectively. These are

Eg ¼ agPg þ bgP0 þ cgPe

E0 ¼ a0Pg þ b0P0 þ c0Pe

Ee ¼ aePg þ beP0 þ cePe

ð33Þ

where Pg ¼ jggihggj, Pe ¼ jeeiheej, and
P0 ¼ jegihegj þ jgeihgej are projectors, and the rest of the
parameters are simply positive real numbers (probabilities)
that satisfy ag þ a0 þ ae ¼ 1, bg þ b0 þ be ¼ 1, and
cg þ c0 þ ce ¼ 1. For example in the POVM element Eg, ag
is the probability that the measurement was of the projector
we desired, and bg and cg are the probability of the false
positive events P0 and Pe, respectively.

A histogram of s for 10 000 trajectories is plotted in
Fig. 3 for g1;1 ¼ g1;2 ¼ gp ¼ 0. Panel (a) is taken at the in-
tegration time t ¼ 1G�1

ci and panel (b) at t ¼ 10G�1
ci . Clearly,

the measurement at the earlier time is not projective (the
false positive rates are high), whereas at the later time the
measurement is projective, since the distributions are well
separated. At that time, it is possible to create and distin-
guish the entangled state |+> from |gg> and |ee>. This is
shown more explicitly in panels (c) and (d), where the aver-
age concurrence [40] and the probability of success Ps (de-
fined as the number of detections in the range ½�nth; nth�
divided by total number of measurements) as a function of
the threshold nth are plotted. Panel (c) corresponds to
t ¼ 1G�1

ci and panel (d) to t ¼ 10G�1
ci . We see that at the

shorter time, it is impossible to generate the entangled state,
while at the later time a highly entangled state can be cre-
ated by setting a low threshold. If this threshold is too small,
the probability of generating the entangled state goes to
zero, and if it is too large, then the unentangled results are
included in the post selection states. However, if the meas-
urement time is long enough there can be a large range of
values for nth [8–12 in Fig. 3d], where it is possible to create
the desired entangled state with probability 1/2.

We now take into account realistic values for the qubits
relaxation rate. We choose gp ¼ Gci=2 and
g1;1 ¼ g1;2 ¼ Gci=200 as measured in ref. 35. These rates
correspond to Tp ¼ 1=gp ¼ 40 ns and T1 ¼ 4 ms, and to a
signal-to-noise ratio Gci=gp of 2, consistent with experimen-
tal observations. Numerical results using these values pre-
sented in Fig. 4 show that states that are close to maximally
entangled can be obtained even in the presence of qubit de-
cay. This is because the Purcell effect, which is the dominat-
ing source of decay for the transmon [35], does not act on
the entangled state |+>, since ðs�1 � s�2 Þjþi ¼ 0. This state
is thus a decoherence-free subspace with respect to this de-
cay channel. It is also worth pointing that it is an eigenstate
of the Hamiltonian, such that the prepared |+> states are ro-
bust against further evolution of the system.

To maximize the amount of entanglement generated, we
find that it is best to use an integration time that is larger

then 1=gp (so that errors due to to |ee> decaying into |–>
have subsided) but shorter than the single qubit relaxation
time 1=g1;1ð2Þ (causing errors with |+> decaying into |gg>).
Doing this, we find that the maximum attainable concur-
rence can be as large as 0.94. Interestingly, these results de-
pend on the signal-to-noise ratio Gci=gp but not on the
efficiency of the detector h, which was so far taken to be
unity. To show this, we have simulated the average concur-
rence for s between �

ffiffiffiffiffiffi
Gci

p
t as a function of time and for an

efficiency h = 1/20 (Gd ¼ 10Gci). This is shown in Fig. 4c as
the pink dash-dotted line. These results are equal, within
statistical error, to the situation where h = 1 (blue; solid
line). This is simply because the extra dephasing caused by
the inefficiency only results in the system losing coherences
between the measurement eigenstates faster than the limit
imposed by measurement (the quantum limit). This does not
change the measurement statistics because with dephasing,
measurement selects the final state out of a classical mixture
rather than from a quantum superposition.

5. Conclusion
In this paper we have derived a master and quantum tra-

jectory equation for multiple qubits in a resonator. These
equations are valid in the limit where 3 ¼

X
j
cjjaj2=k� 1.

In this limit, we find that measurement of the resonator
transmission leads to a weak measurement of the qubit ob-
servable

X
i
dis

z
i . As an example of this result, we have dis-

cussed how entanglement can probabilistically be generated
by measurement only. We have shown that with current ex-
perimental decoherence rates, this process can yield a highly
entangled state. This is mostly due to the fact that, in circuit
QED a major source of relaxation (the Purcell effect) does
not affect one of the Bell states, which is therefore protected
from decay.
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