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Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics
�QED� in new regimes, therefore realizing circuit QED. For quantum-information processing and quantum
optics, an interesting regime of circuit QED is the dispersive regime, where the detuning between the qubit
transition frequency and the resonator frequency is much larger than the interaction strength. In this paper, we
investigate how nonlinear corrections to the dispersive regime affect the measurement process. We find that in
the presence of pure qubit dephasing, photon population of the resonator used for the measurement of the qubit
act as an effective heat bath, inducing incoherent relaxation and excitation of the qubit. Measurement thus
induces both dephasing and mixing of the qubit, something that can reduce the quantum nondemolition aspect
of the readout. Using quantum trajectory theory, we show that this heat bath can induce quantum jumps in the
qubit state. Nonlinear effects can also reduce the achievable signal-to-noise ratio of a homodyne measurement
of the voltage.
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I. INTRODUCTION

Cavity quantum electrodynamics �QED� is a unique tool
to study the interaction between light and matter at its most
fundamental level �1,2�. Most interesting is the regime of
strong coupling where the frequency associated with light-
matter interaction is greater than all relaxation rates �3,4�.
For example, in this regime, experiments with very high-Q
cavities have been able to resolve quantum jumps and time-
resolved collapse of the cavity field �5,6�.

With the strong coupling regime easily accessible, super-
conducting electrical circuits offer distinctive advantages to
the study of light-matter interaction �7–14�, something which
has been realized experimentally with charge �15�, flux
�16,17�, and phase �18� superconducting qubits. Although the
present work applies to all physical realizations of cavity or
circuit QED, here we will focus on superconducting charge
qubits coupled to a transmission line resonator �14,15�. Be-
cause the qubit can be very strongly coupled to the transmis-
sion line in this system, it opens the possibility to study new
regimes of cavity QED. For example, the strong dispersive
regime was theoretically studied in Ref. �19� and experimen-
tally investigated in Ref. �20�.

In circuit QED, readout of the qubit is done by irradiating
the resonator with photons at, or close to, the bare resonator
frequency while the qubit is strongly detuned from the reso-
nator. Information about the state of the qubit is then en-
coded in the phase and amplitude of the field transmitted and
reflected from the resonator. In principle, increasing the am-
plitude of the measurement drive, hence the photon popula-
tion of the resonator, should increase the rate at which infor-
mation is gained about the qubit. For example, in Ref.
�14,21� it was estimated that by filling the resonator with the
critical photon number ncrit=�2 /4g2, where � is the fre-
quency detuning between the qubit and the resonator, and g
is their interaction strength, one would reach signal-to-noise

�SNR� ratios of �200, even taking into account realistic am-
plifier noise. Such a SNR would easily lead to single-shot
readout in this system �22�. However, high SNRs have not
been experimentally observed.

In previous work, the conclusions for the SNR were ob-
tained by analyzing the qubit-resonator Hamiltonian in the
dispersive approximation, which is a perturbative expansion
of the Jaynes-Cummings Hamiltonian to second order in
g /�. However, this approximation fails as the number of
photon in the resonator increases. As ncrit is approached, one
should expect higher order terms in the perturbative expan-
sion, with corresponding nonlinearities, to be important.
While the dispersive approximation has been shown to be
very accurate in understanding experimental results for cir-
cuit QED at moderate photon number population
�15,19,20,23–27�, it should break down as the photon popu-
lation is increased. Understanding these corrections is impor-
tant if we are to gain more insights into the measurement
process and its effect on the qubit.

Here, this is done by pushing the dispersive approxima-
tion used in Ref. �14,21� to higher order. These results not
only apply to circuit QED but also to cavity QED and more
generally to any physical situation where a two-level system
is dressed by an oscillator. Examples are quatronium �28,29�
or flux qubits �30–32� coupled to bifurcating oscillators for
readout purposes. In particular, the authors of Ref. �32� find
that the qubit relaxation rate is strongly enhanced when the
nonlinear oscillator is in its high-amplitude state compared to
its low-amplitude state, results which are at least qualita-
tively consistent with those presented here.

In Sec. III, we find a unitary transformation that exactly
diagonalizes the Jaynes-Cummings Hamiltonian. Expanding
this to higher orders in g /� allows us to derive results which
are valid for higher photon numbers �but still less then ncrit�.
This transformation is then applied on the Hamiltonians de-
scribing coupling of the resonator and qubit to environmental
degrees of freedom. Taking advantage of the large separation
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in energy scale in the dispersive regime for the relevant qubit
and resonator bath frequency, we obtain in Sec. IV a Mar-
kovian Lindblad-type master equation for the system that
takes into account higher order dispersive corrections and
potential frequency variations in the environmental spectral
densities.

One of the most important results of this paper is obtained
in Sec. V. There, building on Ref. �21�, we eliminate the
resonator degree of freedom from the resonator-qubit master
equation found in Sec. IV and derive an effective master
equation for the qubit’s reduced density operator. This is pos-
sible when n� �n� ,ncrit� where n� is a new maximum photon
number set by the cavity decay rate over the strength of the
nonlinearity. This effective master equation contains the
measurement-induced dephasing found in Refs. �19,21,23�
and the effect of photon-number-dependent qubit relaxation
and dephasing rates. For example, we show how finite pho-
ton population of the resonator acts as an effective heat bath
on the qubit. This effective model is shown numerically to be
very accurate in reproducing the dynamics of the full Jaynes-
Cummings model. By comparing results obtained with the
linear dispersive approximation, we find that nonlinear ef-
fects become important even for photon occupation number
significantly below ncrit. In Sec. VI,, the photon-dependent
qubit mixing and dephasing rates are discussed in more de-
tail and the analytical results are compared to numerical cal-
culations.

In Sec. VII a quantum trajectory equation describing the
evolution of the qubit and resonator under homodyne mea-
surement is obtained, as well as a reduced qubit quantum
trajectory equation. This is used to investigate the measure-
ment, where we show that the achievable SNR is decreased
substantially by the nonlinear effects.

II. CIRCUIT QED

In circuit QED, a superconducting charge qubit is fabri-
cated inside a transmission line resonator. This system is
illustrated in Fig. 1. Focusing on a single mode of the reso-
nator, the system Hamiltonian describing this circuit takes
the Jaynes-Cummings form �14�

Hs = H0 + �gI+, �2.1�

where we have defined

H0 = ��ra
†a + ��a

�z

2
, �2.2�

I� = a†�− � a�+. �2.3�

In this expression, �r is the frequency of the mode of interest
of the resonator, �a the qubit transition frequency, and g the
qubit-resonator coupling. The operators a�†� and �� are the
creation and annihilation operators for the photon field and
the qubit.

Logical operations and readout of the qubit can be
achieved by applying a microwave signal on the input port of
the resonator. Choosing a frequency that is close to the reso-
nator frequency �r corresponds to a readout of the qubit’s
state, while frequencies that are close to �a can be used to
control the qubit �14,19,25�. This can be modeled by the
Hamiltonian

Hd = �
k

���k�t�a†e−i�kt + �
k
*�t�aei�kt� . �2.4�

Taking into account that signals of different amplitude, fre-
quency, and phase can be sent simultaneously to the input
port of the resonator, �k�t� is the amplitude of the kth drive
and �k its frequency. In this paper, we will be more particu-
larly interested in looking at the effect of a measurement �k
=m� drive and will have only this drive.

Damping

The effect of coupling to environmental degrees of free-
dom can be described by the master equation �33�

�̇ =
− i

�
�H,�� + �D�a�� + 	1D��−�� +

	


2
D��z�� ,

�2.5�

where H is the total Hamiltonian of the system including
drives

H = Hs + Hd �2.6�

and D�L��= �2L�L†−L†L�−�L†L� /2. In the above expres-
sion, � is the resonator rate of photon loss, 	1 the qubit
energy decay rate, and 	
 is the qubit rate of pure dephasing.

This master equation is obtained in the Markov approxi-
mation which assumes that the spectral density of the envi-
ronment is frequency-independent. For high-quality factor
systems, like high-Q transmission line resonators or �most�
superconducting qubits, this approximation is accurate as the
system is probing the environment in a very small frequency

FIG. 1. �Color online� Schematic layout and
lumped element version of the circuit QED
implementation. A superconducting charge qubit
�green� is fabricated inside a superconducting
one-dimensional transmission line resonator
�blue�.
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bandwidth. As we will see in Sec. IV, when going to the
dispersive approximation, it can be important to take into
account the frequency dependence of the environment.

III. DISPERSIVE EFFECTS ON THE HAMILTONIAN

In the limit that detunning between the cavity and the
qubit is large, no energy is exchanged. In this situation, the
interaction is said to be dispersive. In analyzing this interac-
tion, it is convenient to diagonalize the Jaynes-Cummings
Hamiltonian �2.1� by using a unitary transformation. In this
transformed frame, the new effective qubit and photon op-
erators are combinations of the bare qubit and photon opera-
tors. In this sense, the qubit acquires “a photon part” and vice
versa. This leads to, for example, the Purcell effect where a
qubit can decay through the photon decay channel �35,34�.

A. Dispersive Jaynes-Cummings Hamiltonian:
Linear regime

In the limit where 	�	
	�a−�r	�g, the Jaynes-
Cummings Hamiltonian �2.1� can be approximately diago-
nalized using the unitary transformation

DLinear = e�I−, �3.1�

with �=g /� a small parameter. Using the relation

e−�XHe�X = H + ��H,X� +
�2

2!
†�H,X�,X‡ + ¯ �3.2�

to second order in �, it is simple to obtain the effective
Hamiltonian describing the dispersive regime,

Heff = DLinear
† HsDLinear

= ��ra
†a + ���a + 2g��a†a +

1

2

��z

2
+ O��2� .

�3.3�

The qubit transition frequency is shifted by a quantity
proportional to the photon population 2g��a†a�. Alterna-
tively, this shift can be seen as a qubit-dependent pull of the
resonator frequency �r→�r�g�.

As a result, shinning microwaves at the input port of the
resonator at a frequency close to �r and measuring the trans-
mitted signal using standard homodyne techniques serves as
measurement of the qubit �14,19,21,23,24�. In this approxi-
mation, this corresponds to a quantum nondemolition �QND�
measurement of the qubit �19,21�.

For this measurement scheme, increasing the number of
photons in the input beam increases the intensity of the out-
put signal which would overcome the noise introduced by
the amplifier. However, the Hamiltonian �3.3� is only valid
for a mean photon population n
ncrit=1 /4�2 �as is shown
by a Taylor expansion of the exact result Eq. �3.8�� which
means we need to consider nonlinear corrections to Eq. �3.3�
to understand the dynamics as n approaches ncrit.

To see the breakdown of the linear approximation, we
have numerically calculated the time-dependent evolution of
the system master equation under measurement �see Fig. 2

for details� both in the linear dispersive approximation, using
the approach described in Ref. �21�, and with the full non-
dispersive Jaynes-Cummings model. To compare these re-
sults, we plot the trace distance

dTr��1,�2� =
1

2
Tr�	�1 − Trr��2�	�

= � �
i��x,y,z�

���i�1 − ��i�2�2, �3.4�

where �1 is the reduced qubit density matrix found using the
linear dispersive model presented in Ref. �21�, and Trr��2� is
the trace over the resonator of the total density matrix of the
system found by simulation of the complete master equation
�2.5�. This trace distance is the geometrical distance between
two Bloch vectors, and ranges from 0 to 2, with 0 when the
two qubit states are the same and 2 when they are opposite
on the Bloch sphere.

We plot, in Fig. 2�a�, the trace distance for a measurement
amplitude which is slowly turned on to reach an amplitude
corresponding to n̄�0.08ncrit photons in the resonator. Even
for this small number of measurement photons �compared to
ncrit�, the trace distance is non-negligible which implies the
breakdown of the dispersive approximation. Moreover, we
plot in Fig. 2�b� the maximum of the trace distance �over the
simulation time�, as a function of the maximum measure-
ment amplitude �m. Clearly, the trace distance gets worse as
the amplitude is increased. The importance of this effect de-
pends on the various parameters entering in the simulation,
but the results shown here are typical. It is clear from these
numerical results that it is important to take into account
higher order terms in the dispersive approximation.

B. Dispersive Jaynes-Cummings Hamiltonian:
Exact transformation

Following the derivation presented in Appendix A, which
is similar in spirit to the approach used in Refs. �36,37�, we
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FIG. 2. �Color online� Trace distance between the simulation of
the full master equation and the dispersive linear model presented
in Ref. �21� versus time. �a� The initial state is 	0��	g�+ 	e�� /�2
and g /2�=50 MHz, � /2�=2 GHz, ncrit=400, � /2�=2.5 MHz,
	1 /2�=0.1 MHz, and 	
 /2�=0.3 MHz. A measurement drive of
amplitude �m /2�=10 MHz of shape 0.5�m�tanh��t− t0� /��+1� with
2�t0=10.0 �s and 2��=10.0 �s is applied, corresponding to a
mean of �a†a��34�0.08ncrit photons. �b� Maximum of the trace
distance vs measurement amplitude. The vertical line indicates the
measurement amplitude used in �a�.
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find the unitary transformation that diagonalizes the Jaynes-
Cummings Hamiltonian Hs,

D = e−��Nq�I−, �3.5�

where

��Nq� = −
arctan�2��Nq�

2�Nq

, �3.6�

Nq 
 a†a + �e. �3.7�

Nq is an operator representing the total number of excita-
tions, and �e is the projector on the qubit excited state. Ap-
plying this transformation to Hs yields

Hs
D 
 D†HsD = ��ra

†a + ��a
�z

2
−

��

2
�1 − �1 + 4�2Nq��z.

�3.8�

As it should, the eigenenergies of this Hamiltonian are the
same as those presented in Ref. �14� if n is taken as the
eigenvalues of Nq and each eigenenergy is shifted by a con-
stant ��r.

In this basis, the qubit is dressed by the field. As a result,
qubit operators acquire photon part and similarly for field
operators. For example, under the transformation D, �z and
a†a become

�z
D = �z� 1

�1 + 4�2Nq
� −

2�

�1 + 4�2Nq

I+, �3.9�

�a†a�D = a†a +
�z

2
+

��I+ − �z/2�
�1 + 4Nq�2

. �3.10�

Both these operators now involve the off-diagonal operator
I+.

Expanding Eq. �3.8� to third order in �=g /� �one order
up from Eq. �3.3��, we find

Hs
D � ���r + ��a†a + ���a + 2��a†a +

1

2
�
�z

2
+ ���a†a�2�z,

�3.11�

where

� = g2�1 − �2�/� �3.12�

is the modified value of Lamb and Stark shift per photon. In
addition to a correction to these values, the third order ex-
pansion yields a squeezing term �a†a�2 of amplitude �=
−g4 /�3.

C. Drive Hamiltonian under the exact transformation

It is important not only to transform Hs but also the drive
Hamiltonian Hd. To do so, we first consider how the qubit
and field ladder operators are transformed under D. Contrary
to �z and N, the transformation does not lead to a compact
result. To order O��3� for a and O��2� for �−, we find

aD � a�1 +
�2�z

2

 + ��1 − 3�2�a†a +

1

2
�
�− + �3a2�+,

�3.13�

�−
D � �−�1 − �2�a†a +

1

2
�
 + �a�z − �2a2�+, �3.14�

such that the drive Hamiltonian Eq. �2.4� becomes

Hd
D = �

k

�ka
†�1 +

�2�z

2
�e−i�kt + H.c.

+ �
k

�k��1 − 3�2�a†a +
1

2
�
�+e−i�kt + H.c.

�3.15�

With �k��r, the first line of the above equation is respon-
sible for measurement of the qubit. Due to the �2 term, the
effective measurement drive strength is affected by the state
of the qubit. It will be slightly larger or smaller depending on
the qubit being in its excited or ground state. As will be
shown later, this leads to small corrections to the ac-Stark
shifted qubit transition frequency and measurement-induced
dephasing rate. Moreover, choosing �k��a, one could take
advantage of the second line of Eq. �3.15� to coherently con-
trol the qubit. Again, due to a �2 term, the effective strength
of this control drive will be modulated by the number of
photons in the cavity.

IV. DISPERSIVE EFFECT ON THE MASTER EQUATION

To obtain a complete description of the system in the
dispersive regime, we also need to apply the dispersive trans-
formation to the bath-system coupling. In principle, this can
be done by transforming the operators entering the dissipa-
tive terms of the Lindblad master equation �2.5�. Once trans-
formed, these terms will typically involve both qubit and
field operators which correspond to probing the environment
at different frequencies than the untransformed dissipative
terms. Since the master equation is obtained in the Markov
approximation, this frequency information is lost.

Here, we go beyond this approximation by rederiving the
qubit-resonator master equation. We first apply the dispersive
transformation on the system-bath Hamiltonian and then
trace out the bath degrees of freedom to finally obtain a
master equation in the dispersive frame.

A. System-bath Hamiltonians

Energy damping of the resonator ��� and of the qubit �	�
can be modeled by coupling to baths of harmonic oscillators
with free Hamiltonians �33�

HB� = ��
0

�

�b�
†���b����d� ,
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HB	 = ��
0

�

�b	
†���b	���d� , �4.1�

where b�,	
† ��� and b�,	���, respectively, create and annihilate

an excitation of frequency � in the resonator or qubit bath.
Coupling to these baths is described by �33�

H� = i��
0

�

�d�����f
�
*���b�

†��� − H.c.��a + a†�d� ,

H	 = i��
0

�

�d	����f
	
*���b	

†��� − H.c.��xd� , �4.2�

where di��� is the density of modes of bath i and f i��� rep-
resents the coupling strength of the mode of frequency � to
the resonator or the qubit.

Dephasing in the bare basis occurs due to slow fluctua-
tions of the qubit transition frequency. For example, in a
superconducting charge qubit this is primarily caused by
charge noise �38,39�. Dephasing can be modeled by adding
the Hamiltonian

H
 = ��f
�t��z. �4.3�

In this expression, f
�t� is a random function of time with
zero mean and � is characteristic of the magnitude of the
coupling of the qubit to the fluctuations. Defining f
�t�
=�−�

� f
���ei�td�, H
 can be written in frequency space as

H
 = ���z�
−�

�

f
���ei�td� . �4.4�

B. Dispersive master equation

As shown in Appendix B, applying the dispersive trans-
formation on the above system-bath Hamiltonians and inte-
grating out the bath degrees of freedom leads to the master
equation

�̇D = − i�Hs
D + Hd

D,�D�

+ �D�a�1 + �2�z/2���D + 	�D��−��D

+ 	D��−�1 − �2�a†a + 1/2����D + �	D�a�z��D

+ 	
D��z�1 − 2�2�a†a + 1/2����D/2

+ 	�D�a†�−��D + 	−�D�a�+��D

= LD�D, �4.5�

where we have defined the rates �=�r, 	�=�2�a, 	=	a, �	

=�2	r with

�p = 2�d���p�	f���p�	2, �4.6a�

	p = 2�d	��p�	f	��p�	2, �4.6b�

	
 = 2�2S�� → 0� , �4.6c�

	�� = 4�2�2S���� . �4.6d�

In obtaining these results, we have taken into account the
fact that the spectral weight of the environment can be non-

white. As a result, although we obtain a Markovian master
equation, the rates depend explicitly on the qubit and reso-
nator environments at different frequencies. As is explained
in Appendix B, in obtaining these results it was assumed that
noise at the various relevant frequencies is independent. This
assumption is valid if the noise is relatively weak and the
various frequencies entering the expression for the rates are
well-separated one from another. For superconducting charge
qubits which experimentally show long coherence times �up
to 2 �s �40�� and in the dispersive regime �where � /2�, and
thus the frequency separation, is 1 GHz�, the above model is
accurate.

V. EFFECTIVE QUBIT MASTER EQUATION:
ELIMINATION OF THE CAVITY

In this section, we eliminate the resonator degree of free-
dom from Eq. �4.5� to obtain a master equation for the re-
duced qubit density matrix in the dispersive frame. Building
on Ref. �21�, this is done by first moving to a rotating frame
for the cavity, and then using a polaron-type transformation
to displace the cavity field back to the vacuum. From this
frame, it is possible to consider only the two classical fields
�e and �g. These fields correspond to the average value �a�
of the cavity field if the qubit is in the excited or ground
state.

The resulting master equation is valid as long as the reso-
nator state does not deviate too much from a superposition of
coherent state. This can be formalized by two requirements.
The first is

n 
 n� =
�

	�	
, �5.1�

where n� is the ratio of the rate � at which the nonlinearity is
squeezing the resonator state and the rate � at which these
deviations are taken back to a coherent state by damping.
The second requirement is

	↓,	↑ 
 � , �5.2�

where 	↓ and 	↑ are given in Eqs. �5.7� and �5.8� and are the
rates at which the superposition of the coherent states �e and
�g are getting mixed. This condition implies that the rate at
which the superposition of the coherent states gets mixed is
much slower than the rate of photon loss.

As derived in Appendix C, in a frame rotating at �m for
the resonator, the effective qubit master equation is

�̇D = − i
�a

D

2
��z,�

D� +
	
eff

2
D��z��D + 	↓D��−��D

+ 	↑D��+��D, �5.3�

where �=Trr��� is the reduced density matrix of the qubit.
The parameters introduced in this master equation are

�a
D = �a� + 2�� + ��1 + ne + ng��Re��g�

e
*� − ��ng

2 + ne
2�

+ �2 Re��m�*� −
	−� + 	� − �2	

2
Im��g�

e
*� , �5.4�
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eff
= 	
�1 −

�ne + ng + 1�
2ncrit


 + �d, �5.5�

�d = 2�� + ��1 + ne + ng��Im��g�
e
*� + �2 Im��m�*�

+
Re��	−��g − 	��e + 	�2�e��*�

2
, �5.6�

	↓ = 	1�1 −
�ne + 1 � 2�

2ncrit

 + 	� + 	��ne + 1� , �5.7�

	↑ = 	−�ng, �5.8�

where the classical parts of the field �g and �e �pointer
states� satisfy �i� �e ,g��

�̇ j = − i�m�1 �
�2

2
� − i��rm� � �� + 2��nj +

1

2
�
�� j

−
��1 � �2� + �	 + 	�� − � j,e	�2

2
� j , �5.9�

with the top sign for j=e and the bottom sign for j=g, and
with �rm� =�rm+�, where �rm=�r−�m. In this expression,
� j,e is the Kronecker delta. Following the notation of Ref.
�21�, we have used

� = �e − �g, � = �e + �g. �5.10�

Moreover, ne,g= 	�e,g	2 is the number of photons in the cavity
when the qubit is in the ground or excited state. With �2=0,
the results of Ref. �21� are correctly recovered.

We now turn to a physically motivated description of
these results. First, �a

D is the qubit transition frequency with
�a�=�a+� being the Lamb shifted qubit frequency. The re-
maning terms are the ac-Stark shift. Then, Eq. �5.5� is the
qubit’s pure dephasing rate. The first term is the bare pure
dephasing rate, which now depends on the photon number
ne+ng because of the dressing of the qubit by the field. In-
terestingly, this rate decreases with photon population as
dressing increases with photon number and the photons are
unaffected by qubit dephasing. This rate always remains
positive as ne, and ng must always be smaller than ncrit.

The term �d, which is defined in Eq. �5.6�, is
measurement-induced dephasing. The first term comes from
information about the qubit state contained in the frequency
dependence of the pointer states �see Eq. �5.9��, the second
term is the qubit information encoded into the driving part of
the pointer states �see Eq. �3.15��, and the last one is qubit
information encoded into the decay rates of the pointer
states. As in previous work �19,21�, this decay rate can be
negative. This is due to the recurrence of the qubit coherence
which physically comes from the information about the qubit
state which was lost into the cavity being transferred back
into the qubit. Positive constraints on the master equation
bound how negative this rate can be, but since our model is
based on a physical model which is positive in the enlarged
cavity-qubit space, these negative rates will never lead to an
unphysical state.

Equation �5.7� represents the effective qubit decay rate.
Its main contribution is proportional to 	1 and, again, is re-
duced by dressing �but can never be negative�. The second
term 	���2� is the Purcell effect which corresponds to qu-
bit decay through the photon loss channel �35�. The last term
of 	↓ and 	↑ is particularly interesting. It describes, respec-
tively, additional relaxation and excitation of the qubit due to
the photons populating the resonator.

For the remainder of this section, we consider a purely
white noise approximation, and a measurement drive at the
resonator frequency, which ensures n̄= �ne+ng� /2�ne�ng.
As a result of these contributions, photons injected in the
resonator for the measurement appear to the qubit as a heat
bath of temperature T= ���r /kB� / log�1+1 / n̄�. This effective
temperature depends on the measurement drive amplitude
and frequency. Under measurement, the qubit therefore suf-
fers from additional mixing, something which can reduce the
quantum nondemolition aspect of the readout. From Eq.
�4.6�, we can write 	↑/↓=	��n̄�2�2	
n̄, and these mixing
rates are therefore due to both photon population and pure
qubit dephasing. This can be understood in the following
way. Let us assume the qubit to initially be in the uniform
superposition �	g�+ 	e�� /�2 and the resonator in the vacuum
state 	0� �measurement drive is initially off�. This initial state
is schematically illustrated by the light gray dots in Fig. 3.
When the measurement drive is turned on, the photon popu-
lation increases to reach a poisson distribution centered
about an average value n. This is schematically illustrated by
the black dots in Fig. 3. Because of the qubit-resonator cou-
pling, the state 	e ,n� acquires a component 	g ,n+1� and,
likewise, 	g ,n� acquires a 	e ,n−1� component �illustrated by
the wiggly arrows�. The amplitude of this qubit-resonator
coherent “mixing” increases with photon population as
���n. As illustrated in Fig. 7 of Ref. �14�, in the absence of
dephasing, this mixing is completely coherently undone once
the measurement drive is turned off leading to a QND mea-
surement. However, in the presence of pure qubit dephasing,
the phase coherence in the qubit-resonator dressed states can
be lost, leading to effective downward and upward incoher-

0
g e

1
0

n
n-1

n+1
n

FIG. 3. Dispersive energy diagram. The full line represents the
bare states while the straight dashed lines represent the qubit-
resonator dressed states.
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ent transitions between the qubit states. Given this, one
should expect this rate to be proportional to the square of the
qubit-resonator mixing amplitude ��n and to the dephasing
rate, the result obtained in Eqs. �5.7� and �5.8�.

In summary, the rates 	↑ and 	↓ are due to dressing, by
the resonator field, of the qubit operator �z causing dephas-
ing in the bare basis. We will therefore refer to this as
dressed dephasing.

Numerical comparision with the full master equation

To verify the validity of the previous results, we have
done extensive numerical calculations in the limit n
n� to
compare results obtained from the reduced master equation
�5.3� to those obtained from the qubit-resonator master equa-
tion �2.5�. The results obtained from Eq. �5.3� are also com-
pared to those obtained from the linear approximation of
Ref. �21�. From this latter comparison, it will be apparent
that the nonlinear model obtained here is much more accu-
rate, while adding essentially no additional complexity in
numerical simulation.

Figure 4�a� presents a typical time evolution of the qubit
as obtained by the numerical integration of the full master
equation �2.5� �full black line�, the reduced model Eq. �5.3�
�dashed blue line�, and the linear model of Ref. �21� �dotted
red line�. The time evolution of ��x� and ��y� obtained from
these three models are indistinguishable. However, because
the linear model does not capture dressed dephasing, only
the nonlinear model reproduces the correct equilibrium value
of ��z�.

We note that the numerical results obtained using the full
master equation have been time-averaged to get rid of small
amplitude fast oscillations. These oscillations are not con-
tained in the effective models because of the various
rotating-wave approximations that have been performed ana-
lytically. Experimentally, this averaging is effectively per-

formed due to the finite bandwidth of measurement appara-
tus. Moreover, for simplicity, for the numerical results, a
white noise spectrum was assumed. We have therefore taken
	�=�2�, �	=�2	1, and 	��=2�2	
 throughout this section.

Figure 4�b� shows the maximum of the trace distance
�over time� as a function of measurement power for three
values of the pure dephasing rate 	
. The red curves with
square dots are the trace distances between the full and the
linear reduced model, while the green curves with triangle
dots are the trace distances between the full and the nonlinear
reduced model. Unsurprisingly, as the measurement power is
increased, the trace distance between the reduced models and
the exact solution increases. As shown by the three different
curves for both models, the distance also increases as the
dephasing rate is increased. However, the nonlinear model
obtained here is clearly much more accurate than the linear
one, it captures the physics of dressed-dephasing. The non-
linear model also shows much less variation in the trace dis-
tance with dephasing rate. It is worth pointing out that the
maximum measurement power used in Fig. 4�b� corresponds
to a very conservative photon population of the resonator n
�0.4ncrit, much lower than the critical photon number where
nonlinear effects were thought to become important �14,21�.

The effective model developed in this section is both ac-
curate and much less demanding numerically than the full
numerical integration of the qubit-resonator Hamiltonian. It
should therefore be a useful tool to study the dispersive re-
gime of circuit and cavity QED.

VI. QUBIT POPULATION AND EFFECTIVE
DAMPING RATE

In this section, we focus on the dependance of the qubit
mixing rate on photon population and dephasing rate, and on
the steady state value of ��z�. These two quantities could be
measured experimentally as a test of the present model.

A. Photon number dependent qubit decay rate

A remarkable feature of the nonlinear model is that the
qubit up, down, and dephasing rates depend on the photon
population. In particular, the effective qubit mixing rate is
given by

	eff�nes,ngs� = 	↓�nes� + 	↑�ngs�

= 	1�1 − 2�2�nes +
1

2
�
 + 	� + 	��nes + 1�

+ 	−�ngs, �6.1�

where nis= 	�is	2 are understood as the steady state solutions
of Eq. �5.9�. Interestingly, in the situation where nes�ngs and
for white noise, such that 	�=	−�=2�2	
, if 	
�	1 /2, then
increasing photon population leads to a decrease of the ef-
fective mixing rate. On the other hand, if 	
�	1 /2, increas-
ing photon population leads to an increase of the mixing rate.
This is again a consequence of dressing of the qubit by the
photon field.
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FIG. 4. �Color online� Comparison between the exact master
equation �2.5� and the model �5.3�. �a� A typical time evolution of
�x �full black line�, �y �full gray line�, and �z for the exact result
�full black line�, the nonlinear �dashed blue line�, and the linear
�dotted red line� models. The parameters and the initial state are the
same as Fig. 2. �b� Maximum of the trace distance for the linear
�red squares� and the non-linear �green triangles� models, for
	
 /2�=0.5,0.3,0.1MHz �dotted, dashed, full lines�.
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B. Measurement-induced heat bath

From the reduced qubit master equation �5.3�, the steady
state value of ��z� can be expressed as

��z�s = −
	↓ − 	↑

	↓ + 	↑
= − 1 +

2	↑�ngs�
	eff�nes,ngs�

. �6.2�

While the linear model would predict ��z�s=−1, the second
order term 	−� causes a deviation of ��z�s from this value
which increases with ngs. This deviation is indicative of the
breakdown of the QND aspect of the qubit measurement.

When comparing expectation values, it is of course im-
portant to compare expressions computed in the same basis.
As a result, it is useful to transform Eq. �6.2� to the bare basis
�46�. This is done by applying the dispersive transformation
to �z, see Eq. �3.9�, from which we obtain

��z�sb = ��z�s
1

�1 + 4�2��a†a�s +
��z�s + 1

2

 , �6.3�

with ��z�s given by Eq. �6.2�. The last term of Eq. �3.9� was
neglected in the above expression as it oscillates rapidly in
the rotating frame and the operator Nq has been replaced by
its average value. This expression for ��z�sb is consistant
with Eq. �30� of Ref. �14� when noticing that there n corre-
sponds to the total number of excitations while it is here the
average number of photons.

It is interesting to note that, because of the asymmetry of
the expression for ��z�s with respect to ne and ng, the steady
state value of �z depends on the measurement frequency.
Indeed, for a measurements of the phase where �m=�r, in
the steady state nes�ngs� n̄s and the effect will depend on
the average number of photons in the resonator. On the other
hand, for amplitude measurements with �m=�r+�, nes
�ngs and the departure from −1 should be less important.

C. Comparison with exact numerics

To compare the results of the analytical expressions, Eqs.
�6.3� and �6.1�, to numerical integration of the full resonator-
qubit master equation �2.5�, we initialize the qubit in its ex-
cited state and the resonator in the corresponding steady state
with a continuous measurement drive of amplitude �m and
frequency �r. In the absence of coherent driving at the qubit
frequency, the qubit then simply decays to reach a steady
state value of �z. By fitting the time evolution of ��z� as
obtained from numerical integration of Eq. �2.5� to

f�t� = Ae−	efft + ��z�sb, �6.4�

we extract the exact effective decay rate and steady state
mean value of �z.

These results are shown in Fig. 5, the analytical expres-
sions �6.3� and �6.1� �lines� in addition to the values ex-
tracted from the numerical solution of the full master equa-
tion �symbols� are plotted. With the parameters used here
�see caption�, the critical number of photons is ncrit=400
such that the figure shows results for n /ncrit�0.4.

Figure 5�a� shows the steady state value of ��z� as a func-
tion of the measurement amplitude for increasing values of

the pure dephasing rate 	
=	�� /2. The bottom line �black
stars� corresponds to 	
=0, which in turn corresponds to the
effective heat bath being at zero temperature. As a result, in
the dispersive basis, ��z�s=−1 and the deviation from −1 is
only caused by the change from dispersive to bare basis. The
lines lying above this result correspond to 	
 /2�=0.05, 0.2,
and 0.5 MHz �dashed gray, dotted red, and dashed-dotted
blue�. Clearly, even for a relatively low number of photons
compared to ncrit, mixing of the qubit excited and ground
states by the effective heat bath can be significant if the pure
dephasing rate is large.

While the reduced model is extremely accurate for 	


=0, it always slightly overestimates ��z�sb for nonzero
dephasing rates. Since the error is always positive, this can
be interpreted as being due to the effect of higher order terms
in the dispersive approximation. Nevertheless, the analytical
model is at most �10% away from the exact numerical re-
sults for the range of parameters shown in Fig. 5.

Figure 5�b� shows the effective decay rate 	eff as a func-
tion of measurement power for the same dephasing rates 	


as in panel �a�. The lines correspond to Eq. �6.1� while sym-
bols are extracted numerically. As expected from the discus-
sion surrounding Eq. �6.1�, if the dephasing rate is negligible
�black stars�, the qubit effective decay rate falls below the
bare decay rate 	1 /2�=0.1 MHz as the measurement power
is increased. However, for 2	
�	1 �red circles and blue
triangles� the effective decay rate increases, again as ex-
pected from the model. In this latter case, the photon number
and dephasing dependent qubit mixing simply overwhelms
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FIG. 5. �Color online� �a� Steady state value of ��z� and �b�
effective decay rate 	eff as a function of measurement power for
various values of 	
 /2�=0.0, 0.05, 0.2, and 0.5 MHz �black stars,
gray squares, red circles, and blue triangles�. Symbols are extracted
from the numerical solution of Eq. �2.5�. Lines correspond to Eqs
�6.3� and �6.1�. The numerical simulations were done with the same
parameters as Fig. 2, with the qubit initially in its excited state and
the cavity in the corresponding steady state with a continuous mea-
surement drive of amplitude �m. The top x axis is the approximate
average photons number in the cavity.
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the aforementioned decrease in 	eff which is no longer vis-
ible. For intermediate dephasing, 2	
=	1 �gray squares�,
these two processes cancel each other and the effective decay
rate is almost independent of the measurement amplitude.

VII. DISPERSIVE EFFECTS ON THE QUANTUM
TRAJECTORY EQUATION

The master equation description of the dynamics does not
take into account the result of the measurement. To include
this information, we use quantum trajectory theory
�33,41–43� and derive the evolution equation for the condi-
tional state, or quantum trajectory equation �QTE�. This was
already studied in Ref. �21� for the linear dispersive model
and is extended here to incorporate the nonlinear effects.

When monitoring the resonator bath, characterized by the
rate �, an observer would in principle see two signals: one at
the qubit frequency and one at the cavity frequency �47�. To
derive the QTE, it is assumed as above that the relevant bath
frequencies for the resonator bath are well-separated such
that they can be treated as two separate Markovian baths
with relevant frequencies �r and �a. That is, for an infini-
tesimal interval dt the unitary operator describing the reso-
nator bath is given by Eq. �B9a�.

In a homodyne measurement, with a local oscillator set to
��r, the bath is projected in an eigenstate of the operator
dB�,r+dB�,r

† �where dB�,r is defined in Appendix B�, with
measurement result J �33�. For many such measurements,
each separated by a time dt and with result Jk, the state
conditioned on the complete record J�t�= �J1 , . . . ,Jk� can be
expressed as �43�

�J�t� = �̃J�t�/Pr�J� , �7.1�

where Pr�J� is the probability for observing record J,

Pr�J� = Tr��̃J�t�� �7.2�

and �̃J�t� is an unnormalized conditional state given by

�̃J�t� = �
F

MJk,Fk
�dt� ¯ MJ1,F1

�dt���0�

�MJ1,F1

† �dt� ¯ MJk,Fk

† �dt� . �7.3�

Following the notation of Ref. �43�, MJk,Fk
is the Kraus op-

erator of the kth measurement and Fk= �f2k , f3k , f4k� the re-
sults of fictitious measurements performed on the baths
coupled to the operators L2, L3, and L4 defined in Eq. �B1�.
Since these latter measurements are fictitious and the condi-
tional state does not depend on them �we sum over all ficti-
tious results to obtain �̃J�, it is possible to choose the ficti-
tious observable at will �43�. For simplicity, we assume
fictitious homodyne measurement of the unobserved opera-
tors Lj with j=2,3 ,4. Using the evolution operator Eq. �B8�,
this leads to the following Kraus operator:

MJ,F�dt� = �F,J	U�t + dt,t�	0,0�

= ��J,F�1 − iHtotdt + ��L1Jdt

+ �L1
†L1dt/2 + FTLdt − L†Ldt/2� , �7.4�

where L= ���aL2 ,�	aL3 ,�	rL4� and �J,F is the Gaussian
probability measure

�J,FdJdf =
1

�2�/dt�2 exp�− �J2 + F2�dt/2�dJdF . �7.5�

For continuous monitoring, the time step dt between mea-
surements tends toward 0. In this limit, Eq. �7.3� leads to the
QTE whose ensemble average is the unconditional master
equation. The corresponding QTE, in Itô form, for the mea-
surement operator Eq. �7.4� is

�̇J
D = LD�J

D + 2�� M�I!�1 + �2�z/2���J
D"�t�

+ i�� �Q!�1 + �2�z/2�,�J
D�"�t� , �7.6�

where LD is given by Eq. �4.5�. In this expression, we have
defined the !-dependent field quadratures 2I!=ae−i!+a†ei!

and 2Q!=−iae−i!+ ia†ei!. Moreover, the superoperator
M�c� is defined as

M�c�� = �c − �c�t��/2 + ��c − �c�t�/2, �7.7�

where �c�t=Tr�c�J
D�t�� and the measurement outcome J can

be expressed as

J�t� = 2�� �I!�1 + �2�z/2��t + "�t� , �7.8�

where "�t� is Gaussian white noise and  is a detection effi-
ciency parameter included for completeness �21�.

While only the signal at the cavity frequency was taken
into account here, it is interesting to point out that the signal
at the qubit frequency could also be measured. This was
done experimentally in Ref. �26� to perform qubit state to-
mography. However, the signal at that frequency is in general
much weaker than the signal at the cavity frequency. As a
result, while by itself the former signal would lead to a very
inefficient QTE �which would be similar to that of a direct
homodyne measurement of the qubit�, this additional infor-
mation could be included in the present treatment to realize
even more efficient qubit measurements.

Effective qubit quantum trajectory equation

Using the polaron transformation Eq. �C1�, it is possible
to obtain an approximate reduced QTE for the qubit. As
shown in Appendix D, this reduced QTE takes the form

�̇
J̄

D
= LD�

J̄

D
+ ��ci�t�M��z��J̄

D�t��J̄�t� − ��ci�t���z�t�

− i
��ba�t�

2
��z,�J̄

D�t���J̄�t� − ��ci�t���z�t� , �7.9�

where �ci�t� is the rate at which information comes out of the
resonator and �ba�t� represents extra non-Heisenberg back-

action from the measurement. J̄�t� is the processed record
coming from the resonator and is given by �21�

J̄�t� = ��ci��z�t + "�t� . �7.10�

This quantity is linked to the homodyne current by
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J�t� = J̄�t� + �� 	��t�	cos�#� − !� + �� 
�2

2
	��t�	cos�#� − !� .

�7.11�

Equation �7.9� has the same form as the QTE found in Ref.
�21� for the linear model, apart from second order corrections
to the rates �ci�t�= �m cos2�#m� and �ba�t�= �m sin2�#m�,
where

�m = �	�	2�1 +
	�	cos�#� − #��

4	�	ncrit
+

	�	2

64	�	2ncrit
2 � ,

�7.12a�

#m = ! − #� + Im�ln�1 +
	�	ei�#�−#��

8	�	ncrit

� . �7.12b�

These expressions are valid for !−#�� �0,� /2�, with #�

=arg���, #�=arg���, and �, � defined in Eq. �5.10�. The
second order corrections do not change the physics in an
important way since, as in the linear model, it is possible to
choose the phase ! of the LO optimally such that �ba�t� is
zero. The corrections have the effect of reducing �ci�t� in
comparison to what is obtained in the linear model �21�.

To demonstrate the different features of the reduced QTE,
Fig. 6 presents a typical trajectory for three different mea-
surement powers using the same parameters as in Fig. 2. As
in the linear case, increasing the measurement power local-
izes the qubit state on one of its basis states. As a result,
although the QTE is based on homodyne measurement, we
do not expect diffusive but rather jumplike trajectories �21�.
Moreover, because of the effective upward rate 	↑ which
increases with measurement power, the trajectories show
telegraph noise rather than a single jump to the ground state.
These predictions can be experimentally tested once single
shot measurement is achievable. From these results, the wait-
ing time between jumps can be compared to 	↑ and 	↓.

Finally, the SNR can be defined as

SNR =
�ci

	eff
, �7.13�

which at the optimal point is  �m /	eff. As in the linear
model, �m is proportional, through 	�	2, to the cavity pull
�+�a†a times the number of photons in the cavity. However,
and contrary to the linear model, the cavity pull decreases
with increasing photon population. Moreover, we have
shown that the measurement photons act as a heat bath with
	eff$ n̄. Therefore, unlike the linear predictions, which pre-
dicts the SNR to increase linearly with photon population,
we expect the SNR to saturate at higher photon numbers.
This is discussed in more detail in Ref. �44�. It is important
to point out that the main contribution to this effect is the
reduction of the cavity pull, and not the measurement-
enhanced mixing rate.

VIII. CONCLUSION

We have investigated circuit QED in the dispersive re-
gime. To take into account the large photon population of the
resonator, useful for qubit readout, we have shown that it is
necessary to push the dispersive treatment to a higher order.
We have done this while taking into account the effect of
dissipation and external microwave driving. In particular, we
have obtained a Markovian model for the effect of dissipa-
tion that takes into account frequency dependence of the en-
vironment.

Building on our previous work �21�, we have then traced
over the resonator states to obtain an effective master equa-
tion for the qubit valid in the limit n
 �n�=� /� ,ncrit
=�2 /4g2�. A striking feature of the resulting master equation
is that the qubit relaxation and dephasing rates now depend
on the number of photons populating the resonator. More-
over, in the presence of pure dephasing, we have shown that
measurement will cause excitation of the qubit. In other
words, the photon population of the resonator acts as an ef-
fective heat bath on the qubit. This can lower the effective
“quality” of the dispersive QND readout of the qubit.

Finally, using the quantum trajectory approach, we have
obtained an effective stochastic master equation for the qu-
bit. In the single-shot limit, this equation predicts that the
measurement-induced heat bath should lead to telegraphlike
jumps in the measurement response. Moreover, the nonlin-
earity has been shown to lead to a reduction of the expected
signal-to-noise ratio, a result qualitatively consistent with ex-
perimental observations �48�.

There are various ways to test experimentally these pre-
dictions. First, the qubit effective decay rate 	↑�n�+	↓�n�
and the steady state value of ��z� can be measured expe-
rimentally and compared to the results obtained here. Sec-
ond, when single shot measurements become possible in
circuit QED, the effect of the upward transitions caused
by the measurement-induced heat bath should be observed.
The waiting times between the upward and downward tran-
sitions can then be related to the rates 	↑�n� and 	↓�n� ob-
tained here.
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FIG. 6. �Color online� Typical trajectories for 	
 /2�
=0.5 MHz and measurement amplitudes of �m /2�=0 MHz �bot-
tom�, �m /2�=10 MHz �center�, and �m /2�=20 MHz �top�. The
other parameters are the same as in Fig. 2. The initial state has
��z�=1 with zero photons and a measurement drive starting shortly
after t=0.
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APPENDIX A: EXACT DIAGONALIZATION OF
THE JAYNES-CUMMINGS HAMILTONIAN

BY UNITARY TRANSFORMATION

In this appendix, the Jaynes-Cummings Hamiltonian is
diagonalized exactly using a unitary transformation. In order
to simplify the notation, we introduce the commutation linear
application

CAB 
 �A,B�, CA
mB = �A,�A,�A, . . .�‡�

m times

,�†�B��� . �A1�

In terms of this superoperator, Hausdorff’s relation can be
written as

eABe−A = �
n=0

�
1

n!
CA

nB . �A2�

In the same way as for the linear approximation discussed in
Sec. III A, the anti-Hermitian operator I− will be key in this
diagonalization. Since it commutes with both Hs and I−, an-
other important operator is the total number of quanta Nq
defined in Eq. �3.7�. Moreover, with a unitary operator of the
form

D = e−��Nq�I−, �A3�

where � is a function to be defined, Nq can be considered as
a scalar when applied on Hs.

Before transforming Hs using D, it is useful to introduce
some important commutators. First, it is simple to show that

CI−
H0 = ��I+. �A4�

Using this result, transformation of Hs by D yields

Hs
D 
 D†HsD = H0 + ��

n=0

�
�n + 1�g + ��

�n + 1�!
C�I−

n I+, �A5�

with

C�I−

2n I+ = �− 4�n�2nNq
nI+, �A6�

C�I−

2n+1I+ = − 2�− 4�n�2n+1Nq
n+1�z. �A7�

Using this last result, we find

Hs
D = H0 + ��� sin�2��Nq�

2�Nq

+ g cos�2��Nq��I+

− 2�Nq�z� g sin�2��Nq�
2�Nq

+
��1 − cos�2��Nq��

4Nq
� .

�A8�

To complete the diagonalization, we take

��Nq� =
− arctan�2��Nq�

2�Nq

�A9�

such as to eliminate the off-diagonal term proportional to I+.
Using this result, we finally obtain the exact diagonal form

Hs
D = H0 −

��

2
�1 − �1 + 4�2Nq��z. �A10�

Using this result, we define the Lamb and ac-Stark shift
operators as �we use Hs

D�a†a ,�z��

�L 
 Hs
D�0,1� − Hs

D�0,− 1� − ��a = −
��

2
�1 − �1 + 4�2� ,

�A11�

�S�a†a� 
 Hs
D�a†a,1� − Hs

D�a†a,− 1� − �L − ��a

=
��

2
��1 + 4�2�a†a + 1� + �1 + 4�2a†a − 1

− �1 + 4�2� . �A12�

Developing these expressions in powers of �, we obtain

�L � �� + O��5� , �A13�

�S�a†a� � ��a†a + ���a†a�2 + O��5� , �A14�

with �=g��1−�2� and �=−g4 /�3. These approximate results
are used in Eqs. �3.3� and �3.11�.

APPENDIX B: OBTAINING THE DISPERSIVE
MASTER EQUATION

1. Qubit relaxation and photon decay

In this appendix, we find the effect of the dispersive trans-
formation on the nonunitary part of the master equation. Ap-
plying the dispersive transformation on the Hamiltonian
�4.2�, moving to the interaction frame defined by the trans-
formation exp�−i�Hs+HB�+HB	�t /��, and performing a
rotating-wave approximation �RWA� yields

H�
D = i��L1z�

†�t,�r� + L2z�
†�t,�a�� + H.c.,

H	
D = i��L3z	

†�t,�a� + L4z	
†�t,�r�� + H.c., �B1�

with L1=a�1+�2�z /2�, L2=��−, L3=�−�1−�2�a†a+1 /2��,
and L4=�a�z. The bath operators zi�t ,�p� are given by
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zi�t,�p� = �
�p−Bi,p

�p+Bi,p �di���f i���bi���e−i��−�p�td� . �B2�

We have kept in Eq. �B1� only terms that will contribute up
to order �2 in the master equation. In obtaining this expres-
sion, we have taken the �dispersive� system Hamiltonian as
Hs���ra

†a+��a�z /2, where �a should be understood as
the Lamb and ac-Stark shifted qubit transition frequency and
�r should be understood as the cavity frequency shifted by
the nonlinearity �i.e., �r+��. Moreover, to perform the RWA,
we have made the standard assumption that the system-bath
interaction is limited to a small band of frequency Bi,p
around the frequency �p of the corresponding system opera-
tor Li, Bi,p
�p �33�.

We now assume that, within the bandwidths Bi,p, the cou-
pling constants f i��p� and the density of modes di��� do not
vary significantly. In this situation, the above system-bath
Hamiltonians can be rewritten as

H�
D = i���rL1b�,r

† �t� + i���aL2b�,a
† �t� + H.c.,

H	
D = i��	aL3b	,a

† �t� + i��	rL4b	,r
† �t� + H.c., �B3�

where the decay rates are given by Eq. �4.6� and the bath
temporal modes are defined as

bi,p�t� =
1

�2�
�

�p−Bi,p

�p+Bi,p

d�bi���e−i��−�p�t. �B4�

Since �bi��� ,bj
†�����=�i,j���−���, the commutator of

two temporal modes is �after a change of integration vari-
able�

�bi,p�t�,bj,q
† �t��� =

�i,j

2�
�

−Bi,p

Bi,p �
−Bi,q

Bi,q

d�d����� − �� − �p

+ �q�e−i�te−i��t�. �B5�

If we now take 	�p−�q	�Bi,p ,Bi,q for p�q, then the above
becomes

�bi,p�t�,bj,q
† �t��� =

�i,j�p,q

2�
�

−Bi,p

Bi,p

d�e−i��t−t��. �B6�

In other words, we assume the bath operators to be indepen-
dent. In the dispersive regime, this is a reasonable assump-
tion since 	�p−�q	��, where the detuning 	�	�g is large.

We finally make the standard and reasonable assumption
that dissipation is not too strong, such that the time scales set
by the decay rates �p and 	p are much longer than the cutoff
time 1 /Bi,p. In this situation, we can effectively take the limit
Bi,p→�. This corresponds to the standard Markov approxi-
mation �33�, which was already successfully applied to de-
scribe circuit QED experiments �15,20,23,24,26,27�. In this
situation, the above commutation relation reduces to

�bi,p�t�,bj,q
† �t��� = �i,j�p,q��t − t�� . �B7�

In this Markov, or white noise, approximation the evolu-
tion operators can be written in Itô form as

U�t + dt,t� = U��t + dt,t�U	�t + dt,t�e−iHtotdt �B8�

with

U��t + dt,t� = exp�− i��r�L1dB�,r
† − L1

†dB�,r�

− i��a�L2dB�,a
† − L2

†dB�,a��U��t� , �B9a�

U	�t + dt,t� = exp�− i�	a�L3dB	,a
† − L3

†dB	,a�

− i�	r��L4dB	,r
† − L4

†dB	,r��U	�t� ,

�B9b�

where dBi,p=bi,pdt is a quantum Wiener increment �33�.
We now take the bath to be in the vacuum state and un-

correlated to the system at time t=0. By tracing over the bath
and keeping terms of order O�dt� using Itô calculus, we ob-
tain a Lindblad form master equation for the resonator-qubit
system. In this master equation, the photon bath � leads to
the damping superoperators �33�

�D�a�1 + �2�z/2���D + 	�D��−��D, �B10�

while the qubit bath 	 leads to

	D��−�1 − �2�a†a + 1/2����D + �	D�a�z��D. �B11�

These terms are the second and third lines of Eq. �4.5�.

2. Qubit dephasing

For dephasing, we start with the Hamiltonian �4.4�. Mov-
ing to the dispersive basis, it becomes

Hdep
D = ����z�1 − 2�2Nq� − 2�I+��

−�

�

f
���ei�td� ,

�B12�

where we have used the second order expansion of Eq. �3.9�.
Moving to a frame rotating at the qubit and resonator fre-
quencies, we find

Hdep
D = ���z�1 − 2�2Nq�f0�t� − 2���a†�−f��t�

− 2���a�+f−��t� , �B13�

where

f�0
�t� = �

−�

�

f
���ei��−�0�td� . �B14�

The main contribution to dephasing comes from a small fre-
quency band B0 centered around the frequency �0. In this
situation, the integration boundaries in f�0

�t� can be reduced
to

f�0
�t� = �

�0−B0

�0+B0

f
���ei��−�0�td� . �B15�

For this rotating-wave approximation to be valid, it is re-
quired that B0
�0 �33�.

The Wiener-Khinchin theorem can be used to relate f
���
to its noise spectrum S��� �45�,
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E�f
���f
�− ���� = ��� − ���S��� , �B16�

where E�·� is an ensemble average. This allows us to write
the � component of the noise as

f
��� = �S���"��� , �B17�

with "��� white noise obeying E�"����=0 and
E�"���"�−����=���−���.

Using these results, we now make similar assumptions as
in the last section and take the noise spectrum S��� to be
constant within the small frequency band B0 around �0. After
a change of integration variable, f�0

�t� can be written as

f�0
�t� = �S��0��

−B0

B0

"�� + �0�ei�td� . �B18�

In this Markov approximation, we will again assume the
noise spectrum to be relatively weak which implies that the
time scale corresponding to dissipation is much slower than
1 /B0 �33�. In this situation, we take B0→� which allows us
to write

f�0
�t� = �S��0�"�0

�t� �B19�

such that the transformed dephasing Hamiltonian becomes

Hdep
D = ���S�0��z�1 − 2�2Nq�"0�t� − 2���S����a†�−"��t�

− 2���S�− ���a�+"−��t� . �B20�

The three "�0
�t� white noise terms in the above expression

now correspond to independent noises, centered around three
different frequencies.

The above Hamiltonian leads to the following superopera-
tors in the resonator-qubit master equation

	
D��z�1 − 2�2�a†a + 1/2����D/2 + 	�D�a†�−��D

+ 	−�D�a�+��D, �B21�

with the rates given by Eq. �4.6�. These terms correspond to
the fourth and fifth lines of Eq. �4.5�.

APPENDIX C: THE POLARON TRANSFORMATION

Following the approach developed in Ref. �21�, a reduced
master equation for the qubit is obtained in this appendix. To
do so, we start from the dispersive master equation �4.5� and
go to the rotating frame defined by R=exp�i�ma†at�. We
then go to a frame defined by the polaron-type transforma-
tion

P = �eD��e� + �gD��g� , �C1�

where D��� is the displacement operator and �g�e� satisfy
Eq. �5.9�. In the polaron frame, the field a is described by a
classical part given by the complex variables �g and �e, and
a small quantum part corresponding to quantum noise.

The action of P on various system operators is given by

P†aP = a + ��, �C2a�

P†a†aP = a†a + a†�� + a�
�
* + 	��	2, �C2b�

P†�−P = �−D†��g�D��e� , �C2c�

P†�zP = �z, �C2d�

P†�a†a�2P = 	��	4 + ��2	��	2 + 1��
�
*a + H.c.�

+ 	��	2�4a†a + 1� + �aa�
�
*2

+ H.c.�

+ �2a†aa�
�
* + H.c.� + �a†a�2, �C2e�

where we have defined the projection operator

�� = �g�g + �e�e, �C3�

with 	��	n= 	�g	n�g+ 	�e	n�e. Using these results, we apply
the transformation P to the Hamiltonian HD=Hs

D+Hd
D to ob-

tain

HDP = ��rm� 	��	2 + ��	��	4�z + ���
�
*�m + H.c.�

��1 +
�2�z

2
� + ���a + � + 2�� + ��	��	2�

�z

2

+ ����rm� �� + �� + �����z + 2�	��	2���z

+ �m�1 +
�2�z

2
�
a† + H.c.


+ ���rm� + �� + �a†a + 4�	��	2��z�a†a

+ ���a†a†��
2 + H.c.� + �2��a†a†a���z + H.c.� ,

�C4�

with �rm� =�rm+�. Taking into account the time-dependence
of P, the transformed Hamiltonian reads

HDP̄ = HDP − �i��̇�a† + H.c.� + � Im��̇��
�
*� , �C5�

the bar on the superscripts indicating that time dependence of
the transformation is taken into account explicitly.

We also apply this transformation to the dissipative terms
of the dispersive master equation �4.5�. For the first term of
the second line �� term�, keeping up to order �2, we get

D�aDP�� � D�aP�1 +
�2�z

2
�
�

= D�a�1 +
�2�z

2
�
�

+ ���z,��
a†

2
�� + ���� + H.c.


+
1

4
�	�	2 + �2�ne − ng��D��z��− i

Im��g�
e
*�

2
��z,��

− i
1

2
�− i���1 + �2�z�a† + H.c.,�� + O��4� . �C6�
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We then get for the 	 and �	 terms

D��−
P�1 − �2�a†a +

1

2
��P
�

= �1 − 2�2�ne +
1

2
�
D��−

P��

− ��e�
2D����−�a†� + �a†��+D†��� + H.c.�

+ �2�e�
2�a†�+�− + H.c.�

− ��2�D����−��+a†aD†��� − �a†a�+�−� + H.c.�

− i�2�i�e�ea
† + H.c.,�� + O��4� , �C7a�

D�aP�z�� = D�a�z�� +
	�	2

4
D��z�� −

i Im��g�
e
*�

2
��z,��

+ †��z���a†�z − �a†��� + H.c.‡

− i
1

2
�− ia†�� + H.c.,�� , �C7b�

and, for the 	
 term,

D��z�1 − 2�2�a†a +
1

2
��P
�

= �1 − 2�2�ne + ng + 1��D��z�� − 2�2�a†aD��z�� + H.c.�

− 2�2��D��z���a†�� + H.c.�

− 2�2�a†��D��z�� + H.c.� + O��4� . �C8�

Finally, for 	��, we have

D�aP�+
P�� = ngD��+

P�� + D��+
Pa��

+ †�g�D†����+��−a†D��� − �a†�g� + H.c.‡

− i
1

2
�− i�ga†�g + H.c.,�� , �C9a�

D�a†P�−
P�� = neD��−

P�� + D��−
Pa†��

+ †�e�D���a†�−��+D†��� − �a†�e� + H.c.‡

− i
1

2
�− i�ea

†�e + H.c.,�� . �C9b�

The last line of Eqs. �C6�, �C7�, and �C9� act like a drive
Hamiltonian. We will be able to cancel them with �e and �g
given by Eq. �5.9�. In the above expressions, the quantities

ng= 	�g	2 and ne= 	�e	2 are the number of photons when the
qubit is in the ground or excited state, and we have D��−

D�
=D�D����−� and D��+

D�=D�D†����+�.
If we put all the results of this section together, we can

write the polaron-frame master equation, which is given by
applying the polaron transform on Eq. �4.5�. The result is
given by combining the results from Eqs. �C5�–�C9�:

�̇DP = − i�HDP̄,�DP�

+ �D�aP�1 + �2�z/2���DP + 	�D��−
P��DP

+ 	D��−
P�1 − �2�a†a +

1

2
��P
�DP + �	D�aP�z��DP

+
	


2
D��z�1 − 2�2�a†a +

1

2
��P
�DP

+ 	�D�a†P�−
P��DP + 	−�D�aP�+

P��DP. �C10�

Reduced master equation

In this section, we trace the transformed master equation,
Eq. �C10�, over the resonator states to obtain an effective
master equation for the qubit only. This is done by first ex-
pressing the total density matrix in the polaron-transformed
frame as

�DP = �
n,m=0

�

�
s,s���e,g�

�n,m,s,s�
DP 	n,s��m,s�	 . �C11�

Since our goal is to obtain the effective equation in the origi-
nal nonpolaron transformed frame, we write the reduced qu-
bit density matrix in this frame as

�D = Trr�P�DPP†� = �
s,s���g,e�

�s,s�
D 	s��s�	 �C12�

with

�s,s
D 
 �0,0,s

DP , �e,g
D = �

n,m=0

�

�n,m,m,n
DP , �C13�

where we have defined

�i,j,s
DP = Trr�a†jai�s,s

DP� , �C14�

with �s ,s��� �g ,e�, �n,m,p,q
DP =�n,m,e,g

DP dp,qe−i Im��g�
e
*�, and dp,q

= �p	D���	q� is the matrix element of the displacement op-
erator in the number basis.

To obtain the master equation for �D, we simply find the
equation of motion for the matrix elements of �DP. More
precisely, we will look at the equation of motion for �i,j,s

DP .
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�̇n,m,e
DP = − i���rm� + � + 4�ne��n − m� + ��n2 − m2���n,m,e

DP − 2i��n − m��n+1,m+1,e
DP

− i��e
2�2n�n−1,m+1,e

DP + n�n − 1��n−2,m,e
DP � + i��

e
*2�2m�n+1,m−1,e

DP + m�m − 1��n,m−2,e
DP �

− 2i��e��2n − m��n,m+1,e
DP + n�n − 1��n−1,m,e

DP � + 2i��
e
*��2m − n��n+1,m,e

DP + m�m − 1��n,m−1,e
DP �

− ���	 + ��1 + �2� + 	� − 2	�2�
n + m

2
+ 	�1 − 2�2�ne +

1

2
�
 + 	� + 	�ne��n,m,e

DP

− �	�

2
− 2	�2���e�n,m+1,e

DP + �
e
*�n+1,m,e

DP � − �	� − 2	�2��n+1,m+1,e
DP

+ 	−�Trr�D���a†manD†����ng�g,g
DP + �g�g,g

DPa† + �
g
*a�g,g

DP + a�g,g
DPa†�� . �C15�

From this equation, we see that the only way the element
�0,0,e

DP depends on the other elements is through the two last
lines. Moreover, the only way the elements n ,m�0 can be
populated from an element i�n, j�m is through the second,
third, and last lines. The rates at which these mechanisms act
are of the order �	�e	2=�ne and 	↑
	−�ng. On the other side,
these elements decay more quickly than the 0,0 element be-
cause of the � term, which we assume is dominant compared
to �	, 	�, and 	�2. If the conditions ne
n�
� /� and 	↑

� are satisfied, we can assume there is no significant popu-
lation of the n ,m�0 matrix elements. We will have a similar
equation for �̇n,m,g

DP , with the conditions being ng
n� and
	↓
�, where 	↓ is defined at Eq. �5.7�. If these conditions
are fulfilled, we can reduce the above equation and that for
the g component to

�̇e,e
D = − 	↓�e,e

D + 	↑�g,g
D , �C16a�

�̇g,g
D = − 	↑�g,g

D + 	↓�e,e
D . �C16b�

On the other hand, the off-diagonal elements of the re-
duced qubit density matrix involve off-diagonal elements of
the resonator density matrix, and we must consider the equa-
tion of motion for all the terms �n,m,p,q

DP :

�̇n,m,p,q
DP = �̇n,m,e,g

DP dp,qe−i Im��g�
e
*� − i�t Im��g�

e
*��n,m,p,q

DP

+ �̇�p�n,m,p−1,q
DP − �̇*�q�n,m,p,q−1

DP −
1

2
�t���*��n,m,p,q

DP .

�C17�

If we do this and compute �̇n,m,e,g
DP according to Eq. �C10�, we

get an equation that can be reduced only to the element
�0,0,e,g

DP in the conditions stated above �ne ,ng
n��. Consider-
ing that only the 0,0 element is ever populated significantly,
the equation of motion is then

�̇e,g
D = �̇0,0,0,0

DP = − i��a
P + �t Im��g�

e
*���e,g

D

− �	↑ + 	↓
2

+ �	
eff

P +
1

2
�t���*��
�e,g

D ,

�C18�

with

�a
P = �a + � + Re��m��* +

�2�*

2
�


− ��ne
2 + ng

2� + �� + �	�Im��g�
e
*� , �C19a�

	
eff

P = 	
�1 − 2�2�ne + ng + 1��

+ �� + �	�
	�	2

2
+

��2�ne − ng�
2

+
	�

2
. �C19b�

Using the expression �5.9� for �g�e�, we can combine the
equations of motion for the reduced qubit density matrix �D

to find the reduced qubit master equation �5.3� with the fre-
quency and rates given by Eqs. �5.4�, �5.5�, �5.7�, and �5.8�.

APPENDIX D: EFFECTIVE QUBIT QUANTUM
TRAJECTORY EQUATION

The QTE is derived using linear quantum measurement
theory �21,43�. The linear form of Eq. �7.6� is

�̇̄J
D = LD�̄J

D + 2�� M̄�I!�1 + �2�z/2���̄J
DJ

+ i�� �Q!�1 + �2�z/2�,�̄J
D�J , �D1�

where the bar means that the state is not normalized and the
linear measurement superoperator is

M̄�c��D = �c�D + �Dc�/2. �D2�

Moving to the frame defined by Eq. �C1� yields

�̇̄J
DP = LDP�̄J

DP + �� �a�1 +
�2�z

2
�e−i!�̄J

DP + H.c.
J

+ �� �Re��̃!�M̄��z��̄J
DP + Re��̃!��̄J

DP�J

+ i�� 
Im��̃!�

2
��z,�̄J

DP�J , �D3�

where we have defined

�̃! = �� +
�2�

2
�e−i!, �̃! = �� +

�2�

2
�e−i!. �D4�

As it should, for �2=0 the three equations above are of the
same form as those obtained in Ref. �21�.
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As before, we now find the equations of motion for the

coefficients �̄n,m,e
DP , �̄n,m,g

DP , and �̄n,m,p,q
DP . For the �̄n,m,e

DP element,
we find

�̇̄n,m,e
DP = �C15� + �� �Re��̃!� + Re��̃!���̄n,m,e

DP J

+ �� �1 +
�2

2
��e−i!�̄n+1,m,e

DP + ei!�̄n,m+1,e
DP �J ,

�D5�

with a similar equation for the �̄n,m,g
DP component. For the

�̄n,m,p,q
DP component, we find

�̇̄n,m,p,q
DP = �C17� + �� ��Re��̃!� + i Im��̃!���̄n,m,p,q

DP

+ �1 +
�2

2
��n + 1e−i!�̄n+1,m,p,q

DP

+ �1 −
�2

2
��m + 1ei!�̄n,m+1,p,q

DP 
J . �D6�

In these expressions, which are the contribution of the Lin-
blad term LDP�̄J

DP of Eq. �D3�, the equation numbers refer to
the right-hand side of the corresponding expressions.

The added measurement and back-action operators in the
evolution equations does not change the approximation used

in the previous section. Therefore, in the same limits, we can
consider that the only relevant components are �̄0,0,e

DP , �̄0,0,g
DP ,

and �̄0,0,0,0
DP . We can then write

�̇̄e,e
D = �C16a� + �� �Re��̃!� + Re��̃!���̄e,e

D J

+ �� �1 +
�2

2
��e−i!�̄1,0,e

DP + ei!�̄0,1,e
DP �J , �D7a�

�̇̄g,g
D = �C16b� + �� �Re��̃!� − Re��̃!���̄g,g

D J

+ �� �1 −
�2

2
��e−i!�̄1,0,g

DP + ei!�̄0,1,g
DP �J , �D7b�

�̇̄e,g
D = �C18� + �� �Re��̃!� + i Im��̃!���̄e,g

D J , �D7c�

and it is possible to construct a reduced linear QTE for the
qubit in the dispersive frame

�̇̄J
D = LD�̄J

D + �� Re��̃!�M̄��z��̄J
DJ

+ i
�� Im��̃!�

2
��z, �̄J

D�J + �� Re��̄!��̄J
DJ . �D8�

Using Eq. �7.11� and normalizing, the above QTE gives Eq.
�7.9� with the measurement record given by Eq. �7.10�.
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