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The quantum state of a superconducting qubit nonresonantly coupled to a transmission line resonator can be
determined by measuring the quadrature amplitudes of an electromagnetic field transmitted through the reso-
nator. We present experiments in which we analyze in detail the dynamics of the transmitted field as a function
of the measurement frequency for both weak continuous and pulsed measurements. We find excellent agree-
ment between our data and calculations based on a set of Bloch-type differential equations for the cavity field
derived from the dispersive Jaynes-Cummings Hamiltonian including dissipation. We show that the measured
system response can be used to construct a measurement operator from which the qubit population can be
inferred accurately. Such a measurement operator can be used in tomographic methods to reconstruct single
and multiqubit states in ensemble-averaged measurements.
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I. INTRODUCTION

Among several stringent requirements such as scalability
or precise coherent control, high-fidelity readout of the qubit
state is an important aspect of all experimental efforts in
quantum information science �1�. For superconducting qubits
�2�, a number of readout strategies �3–10� specific to various
implementations have been pursued. Early charge qubit read-
outs implemented with single electron transistors �SETs� �11�
were limited by strong current noise back action from the
measurement device on the qubit. Similar limitations apply
to flux qubit readout when measuring the switching current
of a nearby superconducting quantum interference device
�SQUID� �12,13�. One strategy to achieve high readout fi-
delities is to perform a quantum nondemolition �QND� mea-
surement which preserves the eigenstates of the system
Hamiltonian �14�. Repeated measurements yield identical re-
sults and consequently an improved signal-to-noise ratio. In
the circuit quantum electrodynamics �QED� architecture,
where a superconducting qubit is strongly coupled to a trans-
mission line resonator �15,16�, the qubit can both be con-
trolled and read-out via the cavity using microwave signals.
The readout can be accomplished by detecting the dispersive
qubit state-dependent shift of the resonator frequency �17�.
In the dispersive limit, where the qubit transition frequency
is far detuned from the resonator frequency, and for small
photon numbers, the measurement of the transmitted resona-
tor field forms a QND measurement �15–19�. Similarly,
QND measurements have been employed to demonstrate ex-
plicitly the repeatability of this type of measurement for a
flux qubit dispersively coupled to a nonlinear oscillator
�20–22�. In a related experiment, the phase of a tank circuit
coupled to a flux qubit was monitored, demonstrating reso-
nant tunneling �23�. Note also that in the circuit QED archi-
tecture, a QND measurement has been proposed to generate
and detect multiqubit entangled states �24–26�.

Here we analyze the time-dependent response of the
quadrature amplitudes of an electromagnetic field transmit-
ted through a resonator to changes in the qubit state under
dispersive interaction. We derive and discuss a set of Bloch-

type equations describing accurately the dynamics of the qu-
bit and the resonator for continuous measurements. We also
extend the analysis to pulsed readout which avoids
measurement-induced dephasing during qubit manipulation
and allows for stronger measurement. We analyze experi-
mental data for different measurement frequencies and find
excellent agreement with theory using a single set of inde-
pendently measured parameters. This approach has already
been successfully used in experiments �17,27–29� but not yet
discussed in literature.

Within this framework, we demonstrate our ability to in-
fer the state of the qubit embedded in the cavity from a
measurement of both field quadratures transmitted through
the resonator. The construction of the corresponding projec-
tive measurement operator based on the state-dependent
resonator response is outlined. For Rabi-oscillation measure-
ments, we discuss the extraction of the qubit state population
and compare to numerical simulations.

II. PHYSICAL SYSTEM AND ITS MODEL

We consider a transmon-type qubit �30,31� embedded in a
transmission line resonator as illustrated schematically in
Fig. 1. The qubit is coupled to the resonator through the
effective capacitance Cg, leading to a qubit-resonator cou-
pling of strength g �16,32�. The qubit transition frequency �a
is tunable by an externally applied flux � �30�. The resonator
with resonance frequency �r determined by its geometric
and dielectric properties �33� is modeled as an LC circuit.

When the qubit-resonator detuning �ar=�a−�r is much
larger than the coupling strength g, this system is described
by the dispersive approximation of the Jaynes-Cummings
Hamiltonian �15�

Hdisp = ���r + ��̂z�â†â +
�

2
��a + ���̂z. �1�

Here,
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� � −
g2Ec

�ar��ar − Ec�
�2�

is the dispersive coupling strength between the resonator and
the transmon qubit approximated as a two-level system �30�.
Ec is the charging energy. The dispersive coupling leads to a
qubit state-dependent shift of the resonator frequency, which
we use to measure the qubit state.

As illustrated in Fig. 1, the qubit state is controlled by a
coherent microwave field of amplitude ��t� and frequency
�s applied directly to the qubit while the measurement tone
with amplitude �m�t� and frequency �m is applied to the input
port of the resonator. These externally applied control fields
are modeled by the Hamiltonian

Hd = ���m�t�â† exp�− i�mt� + ��t��̂+exp�− i�st� + H.c.� ,

�3�

where we have taken �m�t� and ��t� to be real for simplicity
of presentation.

The dynamics of the system in presence of dissipation and
dephasing is described by a Lindblad-type master equation
�34�

	̇ = −
i

�
�H,	� + 
D�a�	 + �1D��̂−�	 +

��

2
D��̂z�	 � L	 ,

�4�

where H=Hdisp+Hd and D�Â�	= Â	Â†− Â†Â	 /2−	Â†Â /2.
Here, �1=1 /T1 is the qubit decay rate, �� the qubit pure
dephasing rate, and 
 the photon decay rate. Since all experi-
ments discussed in this paper are done at a small photon
number nnncrit= ��ar

2 � /4g2 and as �1 exceeds the Purcell
decay rate �35�, we neglect higher-order corrections to this
dispersive master equation �36,37�.

To study the dynamics of the coupled qubit-resonator sys-
tem, we derive Bloch-like equations of motions for the ex-
pectation value of the qubit operators ��̂i	 �i=x ,y ,z� and the
resonator field operators �â	 and �â†â	. However, the master

equation �4� leads to an infinite set of coupled equations for
these expectation values. For instance, the differential equa-
tion for �â	 involves terms proportional to �â�̂z	, �â†ââ�̂z	,
and �â�̂x	, which in turn involve even higher-order terms. We
therefore truncate this infinite series by factoring higher-
order terms �â†â�̂i	��â†â	��̂i	 and �â†ââ�̂i	��â†â	�â�̂i	,
but keeping the terms �â�̂i	 which ensures that the field con-
tains information about the qubit state. This choice of factor-
ization yields the correct average values for coherent and
Fock states �38� and leads to a complete set of eight coupled
differential equations

dt�â	 = − i�rm�â	 − i��â�̂z	 − i�m −



2
�â	 , �5a�

dt��̂z	 = ���̂y	 − �1�1 + ��̂z	� , �5b�

dt��̂x	 = − 
�as + 2���â†â	 +
1

2
���̂y	 − ��1

2
+ �����̂x	 ,

�5c�

dt��̂y	 = 
�as + 2���â†â	 +
1

2
���̂x	 − ��1

2
+ �����̂y	

− ���̂z	 , �5d�

dt�â�̂z	 = − i�rm�â�̂z	 − i��â	 + ��â�̂y	 − i�m��̂z	 − �1�â	

− ��1 +



2
��â�̂z	 , �5e�

dt�â�̂x	 = − i�rm�â�̂x	 − ��as + 2���â†â	 + 1���â�̂y	 − i�m��̂x	

− ��1

2
+ �� +




2
��â�̂x	 , �5f�

dt�â�̂y	 = − i�rm�â�̂y	 + ��as + 2���â†â	 + 1���â�̂x	 − i�m��̂y	

− ��1

2
+ �� +




2
��â�̂y	 − ��â�̂z	 , �5g�

dt�â†â	 = − 2�m Im�â	 − 
�â†â	 , �5h�

which we refer to as Cavity-Bloch equations. Here, we have
defined �as=�a−�s and �rm=�r−�m as the detuning of the
control and measurement microwave fields from the qubit
and cavity frequency, respectively. While these equations are
apparently more complex than Eq. �4�, they can be analyti-
cally solved in some cases and are much faster to solve nu-
merically. Note, that they do not include measurement-
induced dephasing caused by photon shot noise �15,39�
because only the expectation value of â†â is taken into ac-
count and higher-order moments are omitted. This is of no
consequence for the understanding of the experiments pre-
sented here because of the small photon numbers present
during the measurement. In experiments where
measurement-induced dephasing is important, Eq. �4� has to
be solved directly �19� or higher-order terms have to be taken
into account �36�.

ADC

Cg

300 K1.5 K20 mK300 K
Cin Coutωm

ωLO

ωs
Φ

Mixer

ωr

ωa

FIG. 1. �Color online� Circuit diagram of the experimental
setup. A harmonic oscillator modeled as an LC circuit with reso-
nance frequency �r is coupled to a transmon-type qubit �30�
through the coupling capacitance Cg. The qubit transition frequency
�a is controlled by an externally applied magnetic flux �. The qubit
state is coherently manipulated by a pulsed microwave source at the
frequency �s. The resonator is probed by a signal applied to the
input capacitor Cin at the frequency �m. The transmitted signal is
amplified and down-converted by mixing with a local oscillator at
frequency �LO and then digitized using an analog-to-digital con-
verter �ADC�.
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III. CONTINUOUS MEASUREMENT RESPONSE

To experimentally determine the state of the qubit, we
probe the dynamics of the resonator-qubit system by measur-
ing the resonator transmission at different frequencies �m. A
time-resolved, phase-sensitive measurement of the transmis-
sion quadrature amplitudes is realized by down-converting
the measurement signal at frequency �m in a mixer to an
intermediate frequency �mLO=�m−�LO=25 MHz using a
local oscillator of frequency �LO and phase �, yielding one
independent data point every 40 ns �see Fig. 1�. This
intermediate-frequency �IF� signal is digitized in an ADC.
The whole experiment is repeated and averaged 650 000
times to enhance the signal-to-noise ratio and then
digitally down-converted to dc, leading to a measurement
time of 26 ms per point for a total of 6.5 s for 250 points in
the trace. From this we obtain both the in-phase �I� and the
quadrature �Q� components of the transmitted field
A sin��mLOt+��� I sin �mLOt+Q cos �mLOt. Using input-
output theory �14�, these quadratures at the output of the
resonator are related to the cavity Bloch equations by

I�t� = �Z��r
 Re�â�t�	 ,

Q�t� = �Z��r
 Im�â�t�	 , �6�

where Z is the characteristic impedance of the transmission
line connected to the resonator.

When arbitrary qubit rotations can be performed, it is suf-
ficient to consider the measurement response for the qubit
prepared in either its ground �g	 or excited state �e	 for a full
characterization of the qubit state �40�. Figure 2�a� shows the
pulse scheme used for the measurement. The time-dependent
quadrature amplitudes I and Q are measured at the cavity
resonance frequency with the qubit in the ground state
��m=�r−��. The resonator is continuously driven at a mea-
surement drive amplitude of �m

2 =
 /2, populating the resona-
tor with n̄�1 photons on average in resonance. A 10-ns-long
� pulse ending at time t=0 and resonant with the ac-Stark
�41� and Lamb shifted �42� qubit transition frequency
�s= ��a+2���a†a	+1 /2��ª�s,res is then applied to the qubit
�see Figs. 2�b� and 2�c�. Qubit relaxation during the � pulse
limits the achievable �e	 state population to 99% �43�, as
obtained by solving the Cavity-Bloch equations. This is
within the statistical uncertainty of the detection. Further-
more, thermal excitations of the qubit are expected to be very
low and are therefore neglected.

The dependence of the quadrature components I and Q on
the detuning �mr of the measurement frequency from the
bare resonator frequency is plotted in Figs. 2�d� and 2�e�. For
clarity, the quadratures are rotated in the IQ plane for each
measurement frequency �m such that the Q quadrature is
maximal in the steady state �qubit in the ground state�, re-
sulting in Q=A and I=0 for t→�. As a result, before the �
pulse, the I quadrature is always zero.

The time and frequency dependence of the measurement
signal is accurately described by the Cavity-Bloch equations
with a single set of independently measured, nonadjustable
parameters as indicated by the solid lines in Figs. 2�b� and
2�c�. The cavity resonance frequency is determined as

�r /2�=6.442 52�0.000 02 GHz with a photon decay
rate of 
 /2�=1.69�0.02 MHz. The qubit transition
frequency is determined spectroscopically as �a /2�
�4.009�0.001 GHz with a charging energy of Ec /h
=232.5�0.5 MHz �31�. The transition frequency is adjusted
using external magnetic flux. The qubit-cavity coupling
g /2�=134�1 MHz is extracted from a measurement of the
vacuum-Rabi mode splitting at �a=�r �16�.

The cavity pull � /2�=−0.69�0.02 MHz is determined
spectroscopically. This is done by measuring the cavity reso-
nance frequency leaving the qubit in the ground state and
then measuring its frequency shift applying a continuous co-
herent tone to the effective qubit transition frequency �s,res.
When the qubit transition is saturated ����1�, the resonator
is shifted on average by �. This value is in good agreement
with the full transmon model taking into account higher lev-
els �30� �� /2�=−0.71 MHz�.

In fitting the measurement response in Fig. 2, the qubit
decay rate �1 /2�=0.19�0.01 MHz is used as an adjustable
parameter which is equal to an independent measurement of
�1 within the statistical uncertainty. In practice, the qubit
decay rate is determined for one measured trace and then
kept fixed for all other traces. Note that, for short � pulses,
the dephasing rate �� has no measurable influence on the
solution of the equations. Additionally, a single scaling factor
is introduced to relate the quadrature voltages at the output
of the resonator to the digitized voltages after amplification.

To interpret the time and frequency dependence of the
measurement signal shown in Fig. 2, it is instructive to plot I
and Q as a function of �m at fixed times t, as shown in Fig.
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FIG. 2. �Color online� �a� In a continuous measurement, the
cavity is driven with the qubit in its ground state, populating the
resonator with n̄=1 photons on average at the cavity resonance
frequency. The qubit is then prepared in the excited state with a �
pulse ending at t=0. ��b� and �c�� averaged measurement response
Q, I vs time t for a continuous weak measurement at the frequency
�m=�r−�. Solid lines show the predicted response from the
Cavity-Bloch equations, Eq. �5�. Time-resolved data taken at differ-
ent detunings �mr is shown in �d� and �e�. Arrows indicate the
detuning at which data shown in �b� and �c� are taken. The color
map codes red for a positive amplitude and white for zero.
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3. With the qubit in �g	, red points in Fig. 3, the resonator
transmission exhibits the expected line shapes for both
quadratures. When applying a � pulse to prepare the qubit in
�e	, the cavity resonance frequency shifts by 2�, but the
transmitted quadratures respond only on a time scale corre-
sponding to the photon lifetime T
�1 /
. The line shape of
the cavity transmission spectrum centered at +� will only be
reached in the limit of T1�T
 �see dotted line in Fig. 3�. The
interplay of the cavity field rise time and the qubit decay
time results in the observed dynamics of the cavity transmis-
sion in Figs. 2 and 3.

At time t=180 ns�1.9 T
�0.2 T1 after the preparation
of �e	, the shift of the cavity resonance to lower frequency
toward +� is clearly visible �see blue diamonds in Fig. 3�. At
t=740 ns�7.9 T
�0.9 T1, when �60% of the excited-
state qubit population Pe is decayed, the measured curve is
approximately the average between the steady-state �g	 and
�e	 responses �see green crosses in Fig. 3�.

When looking at the time traces in Fig. 2�d�, the effective
shift of the resonance to lower frequency explains the reduc-
tion of the signal in the Q quadrature for measurement de-
tunings �mr�−0.6 MHz��. For �mr�−0.6 MHz, the am-
plitude is increased after the � pulse because the resonator is
driven closer to resonance. Given our choice of the rotation
of the traces in the IQ plane, the I quadrature of Fig. 2�e� acts
like a phase and always shows a positive response to the �
pulse.

The same considerations explain the features seen in the
single measurement trace in Figs. 2�b� and 2�c� taken at a
measurement frequency corresponding to �mr=−�. The
change of the I and Q quadratures on a time scale T
 after the
� pulse reflects the relaxation of the field in response to the

qubit excitation. The time scale of the return of the quadra-
tures to their initial values is determined by the qubit decay
at rate �1.

IV. PULSED MEASUREMENT RESPONSE

To avoid measurement-induced dephasing during the qu-
bit manipulation, most of the recent circuit QED experiments
have been performed by probing the qubit state with pulsed
measurements �27–29,31,43,44�. In contrast to a continuous
measurement, the measurement tone is switched on only af-
ter the qubit state preparation is completed �see Fig. 4�a� for
the pulse scheme�. The absence of measurement photons dur-
ing qubit manipulation also avoids the unwanted ac-Stark
shift of the qubit transition frequency, thus simplifying qubit
control.

With the qubit in �g	, the resonator response reaches its
steady state at the rate 
, which is seen in the exponential
rise of the Q quadrature �see blue crosses in Fig. 4�b��. Since
the resonator is measured on resonance at its pulled fre-
quency �mr=−�, the I quadrature is left unchanged �see blue
crosses in Fig. 4�c��. As in the continuous case, the resonator
frequency is pulled to �r+� when the qubit is prepared in �e	
�see red dots in Figs. 4�b� and 4�c��. Since the resonator is
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now effectively driven off-resonantly, the transmitted signal
has nonvanishing I and Q quadrature components both of
which contain information about the qubit state. With the
measurement frequency still at �mr=−�, ringing occurs at
the difference frequency ��r+��−�m=2�. At later times, the
average response is approaching again the steady-state value
as the qubit decays to �g	 at the rate �1. As in the continuous
case, the qubit lifetime in presence of measurement photons
is obtained from a fit to the Cavity-Bloch equations. Note
that the decay of the quadrature amplitudes shown in Figs.
4�b� and 4�c� does not directly correspond to the exponential
decay of the qubit population ��̂z	, but rather is determined
by the interplay of resonator and qubit evolution.

The dynamics of the I and Q quadrature amplitudes can
also be represented in a phase-space plot �see Fig. 4�d��. The
response for the qubit in �g	 follows a straight line while the
response for the qubit in �e	 is more complex. The nontrivial
shape of this curve reinforces the fact that both field quadra-
tures contain information about the qubit state. It is obvious
that a simple rotation in the IQ plane cannot map the signal
into a single quadrature.

Data taken at different measurement frequencies are
shown in Fig. 5. As in Sec. III, the I and Q components are
rotated such that Q=A and I=0 in steady state. For the the-
oretical curves �solid lines�, the same set of parameters as for
the analysis of the continuous measurement is used, leading
to very good agreement. Figure 5�a� shows the measured
response for the qubit in �g	. The Q quadrature shows the
expected exponential rise in the cavity population and for
t�0.5 �s, we recover the continuous measurement re-
sponse. The I quadrature shows the transient part of the re-
sponse during the initial population of the resonator, having a
negative value �blue crosses� for measurements at a fre-
quency above �r−� �blue detuned� and a positive value �red
dots� at frequencies below �r−� �red detuned�. Ringing can
be observed when the measurement is off-resonant from the
pulled cavity frequency. Figure 5�b� shows the response with
the qubit prepared in �e	. The response is similar to the one

shown in Fig. 2 for the continuous measurement if one omits
the initial 100 ns where the resonator is populated.

V. RECONSTRUCTION OF QUBIT STATE

The detailed understanding of the dynamics of the disper-
sively coupled qubit-resonator system can be used to infer
the qubit excited-state population pe= ���̂z	+1� /2. Indeed,
the difference in the measured response for a given unknown
state s	�t� and the ground-state response sg�t�, which corre-
sponds to the shaded areas indicated in Figs. 4�b� and 4�c�, is
directly proportional to pe.

To explicitly state this relation, we introduce an effective

qubit measurement operator M̂i�t�, an approach that we have
already employed to perform two-qubit state tomography us-
ing a joint dispersive readout �28�. Here, i= I ,Q denote the I
and Q field quadratures used to measure the qubit state. In
terms of this measurement operator, the I and Q components
of the signal s	

i �t� for the qubit in state 	 before the measure-
ment are given by

s	
i �t� � �M̂i�t�	 = Tr�	M̂i�t�� , �7�

where M̂i�t� is determined by the solution to the master equa-
tion �4�. Analytical solutions can be found in the limit of
vanishing qubit decay �28�

M̂I�t� = �
e−
t/2�2�̂ cos��̂t� + 
 sin��̂t�� − 2�̂

�̂2 + �
/2�2 , �8a�

M̂Q�t� = �
e−
t/2�
 cos��̂t� − 2�̂ sin��̂t�� − 


�̂2 + �
/2�2 , �8b�

which depend on the operator �̂��rm+��̂z for the qubit
state-dependent cavity pull. As a consequence of performing
a quantum nondemolition measurement with only a
few photons populating the resonator, mixing transitions be-

tween the two qubit states can be neglected �15� and M̂i�t� is
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FIG. 5. �Color online� I and Q quadratures for pulsed measurements at different detunings from the resonance frequency. The plots in �a�
are taken with the qubit in the ground state �g	 while �b� displays the response of the system with the qubit prepared in the excited state �e	.
�c� shows the result of the pointwise difference of the data acquired with the qubit in the ground state and the excited one. The lower panels
show time traces taken at different detunings �blue crosses: �mr=1.4 MHz, black diamonds: �mr=0.3 MHz, red dots: �mr=−0.7 MHz�
with comparison to theory �solid lines�.
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diagonal at all times. The qubit then remains in an eigenstate

during the measurement �37� and we can write M̂i�t�
=sg

i �t��g	�g�+se
i �t��e	�e�. The signals sg

i �t�=Tr��g	�g�M̂i�t��
and se

i �t�=Tr��e	�e�M̂i�t�� are determined by Eq. �8� for the
values ��̂	=�rm�� corresponding to the qubit in the ground
or excited state. To account for qubit relaxation, the Cavity-
Bloch Eqs. �5� are solved to determine sg/e

i �t�.
The qubit excited-state population pe�	� in a given state 	

is determined by the normalized area between the measured
signal s	

i and theoretical ground-state response sg
i ,

pe�	� =
1

T
�

j

s	
i �tj� − sg

i �tj�
se

i �tj� − sg
i �tj�

�t , �9�

where �t denotes the discrete time step between data points.
sg/e

i �tj� are solutions to the Cavity-Bloch Eqs. �5� with inde-
pendently determined parameters. Replacing s	

i �tj� with the
corresponding expressions from Eq. �7�, we notice that Eq.
�9� simplifies to pe�	�=Tr�	�e	�e��, demonstrating that the
excited-state population of an arbitrary input state is propor-
tional to the normalized area between signal and ground

state. Thus, the effective measurement operator M̂�i= �e	�e�
defined by this procedure is equivalent to a projective mea-
surement of the excited qubit state.

The measurement protocol can be summarized as follows.
First, the relevant system parameters are determined in sepa-
rate measurements as discussed in Sec. III. The qubit lifetime
T1, the single remaining parameter, is determined by apply-
ing a � pulse to the qubit and analyzing the resulting trans-
mitted signal. From this complete set of parameters, the sig-
nals sg

i �t� and se
i �t� are computed. Finally, the excited-state

population pe is calculated from the recorded signal s	
i �t� of

an arbitrary qubit state 	 and the theory lines sg
i �t� and se

i �t�,
using Eq. �9�, which amounts to a measurement of

M̂�i= �e	�e�. For the particular case of the qubit being in �e	
after a � pulse, the point-by-point difference signal is shown
in Fig. 5�c�. Note that the excited-state population can also
be directly inferred from a fit of the Cavity-Bloch equations
to s	

i �t�, with pe as free fit parameter. It is, however, compu-
tationally less intensive to calculate the population with the
area method from Eq. �9�, that is, to perform algebraic op-
erations for the data analysis rather than employing a nonlin-
ear fit routine. We have checked that both techniques provide
the same results within the experimental precision.

To test our method experimentally, we perform a Rabi-
oscillation experiment �17�, where a pulse of variable length
� and amplitude � is applied at the effective qubit transition
frequency �s,res. Indeed, the population pe obtained with the
area method �Fig. 6, points� has an rms deviation of less than

1% from the population predicted by Eq. �10� �Fig. 6, solid
line�. The data are also in good agreement with a simplified
expression

pe�t� �
1

2
−

1

2
exp
−

t

4
�3�1 + 2��� cos��t/2� , �10�

predicting the time-dependent population of the qubit in the
limit of large driving fields ����1 ,��� �45�.

VI. CONCLUSION

In conclusion, we have presented a simple set of equa-
tions describing the dynamics of the average values of the
quadrature amplitudes of the transmitted microwave fields in
dependence on the qubit state in a circuit QED setup oper-
ated in the dispersive regime. The measured time-dependent
response of the cavity field to a change in the qubit state is in
excellent agreement with calculations. The dependence of
the measured response on measurement frequency is well
understood both for continuous and pulsed measurements.
From the time-dependent measurement response, we recon-
struct the qubit excited-state population that is used in to-
mographic measurements to accurately measure both single
and two-qubit density matrices �28,29�.
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