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We show how a quantum walk can be implemented in a quantum quincunx created via superconducting
circuit quantum electrodynamics �QED� and how interpolation from a quantum to a random walk is imple-
mented by controllable decoherence using a two-resonator system. Direct control over the coin qubit is difficult
to achieve in either cavity or circuit QED, but we show that a Hadamard coin flip can be effected via direct
driving of the cavity, with the result that the walker jumps between circles in phase space, but still exhibits
quantum walk behavior over 15 steps.
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I. INTRODUCTION

The quantum walk �QW� is important in physics as a
generalization of the ubiquitous random walk �RW�, which
underpins diffusion and Brownian motion. QWs are impor-
tant in quantum algorithm research �1� because they expo-
nentially speed up the hitting time in glued tree graphs �2�.
Although realization of a QW by a quantum quincunx, analo-
gous to the quincunx �or Galton board� for realizing the RW,
has been proposed in ion traps �3� and cavity quantum elec-
trodynamics �QED� �4,5�, the former requires cooling of ions
to the center-of-mass motional ground state and the latter
hitting the atom with pulses that do not drive the cavity at
all: these obstacles prevent quantum walks from being real-
ized under foreseeable experimental conditions �a classical
optical simulation of a quantum quincunx has been per-
formed �6�, but cannot be a proper QW without complemen-
tarity �7��.

Here we devise a quantum quincunx that can realize a
QW in the laboratory by �i� employing the Jaynes-Cummings
model �8� to generalize the Hadamard transformation for
coin flipping by directly driving the cavity rather than the
atom, �ii� developing a theory of QWs on many circles in
phase space �PS� rather than on a single circle as a conse-
quence of generalizing the Hadamard transformation, �iii�
optimizing the protocol by having the duration of the gener-
alized Hadamard transformation depend on the time-
dependent mean photon number in the cavity �with detailed
theory described in Ref. �9��, �iv� implementing in a super-
conducting circuit QED system �10,11� with a two-level
Cooper pair box �CPB� serving as the quantum coin and a
coplanar transmission line resonator with a single mode as
the quantum walker, �v� introducing a double resonator
scheme that can control decoherence while simultaneously
enabling strong coupling between the CPB and the micro-
wave field and permitting fast readout, and �vi� using the
Holevo standard deviation as a measure of phase spreading
and showing that the rate of spreading can be tuned by con-
trollable decoherence to observe the quadratic enhancement
of phase spreading for the QW vs RW.

In our scheme the QW is executed with indirect flipping
of the coin via directly driving the cavity and allows control-

lable decoherence over circles in PS. Because the walker is
directly driven rather than the coin, photon number is no
longer conserved and the walker jumps between circles in
PS; however, a signature of quantum walking on circles in
PS is evident in both the time-dependent phase distribution
of the walker and via direct homodyne measurements to ob-
tain the quadrature phase �QP� distribution for the walker.
This signature is the scaling of the standard deviation �
�which measures the walker’s spreading� that is linear in
time �t for the QW and whose power decreases with increas-
ing decoherence until attaining the classical RW scaling ��t
for full decoherence. This controllable decoherence is
achieved by introducing a second low-Q resonator to obtain
fast readout �12�.

II. BACKGROUND

To understand the QW in PS, it is helpful to first under-
stand the RW in PS. The walker is a mode of the resonator
and hence is equivalent to a harmonic oscillator, which can
be described by its position x and momentum p. If the oscil-
lator’s energy E���2x2+ p2� /2 for unit mass and frequency
�, then the oscillator follows a periodic circular trajectory of
radius �E in PS with physical oscillatory motion

x�t� = �E cos �t . �1�

This oscillator can be modified to execute a RW on a circle
in PS by periodically applying an impulse that causes it to
rotate either clockwise along the circle in PS by angle �� or
counter clockwise by the same amount, with the choice of
��� strictly random. If ��=2� /d, d�N, then the walker
always remains on a �perhaps rotating� lattice on the circle
with angular lattice spacing ��.

We refer to the coordinate in PS �x , p� as the walker’s
“location” in PS, and the coin flip randomness that deter-
mines clockwise vs counter clockwise angular steps implies
that the walker’s location is indeterminate and hence de-
scribed by a distribution P�x , p�.

In an ideal QW on a circle, the walker+coin state is a
density operator 	�B�H� for H=Hw � Hc �with walker
space spanned by d−1 discrete phase states �3,4�,
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Hw = span���m = 2m�/d	
 �2�

and coin space Hc=span��0	 , �1	
�, where B�H� is the Ba-
nach space of bounded operators on H. The walker’s phase
distribution on the circle is

Pw��� = ���	w��	/2�, 	w = Trc	 , �3�

with d equally spaced values of �=�m. However, here the
walker is following a circular trajectory in PS, so the QW’s
Hilbert space is Hw=span��n	 ;n�N
, with �n	 a Fock state
�n̂ eigenstate�.

Alternatively the generalized position representation
��x	

 can be used with �x	
, an eigenstate of x̂ cos 

+ p̂ sin 
, for x̂, p̂ the canonical operators satisfying �x̂ , p̂�
=i ���1�. The QP distribution is

P
�x�=
�x�	w�x	
, �4�

with 
 the phase of a local oscillator. A convenient corre-
spondence between the classical and quantum PS trajectories
of the walker is provided by the Wigner quasiprobability
distribution

W�x,p� = 

−�

� dy

2�
eipy�x − y/2�	w�x + y/2	 , �5�

whose marginal distributions are P
�x�. Our scheme for re-
alizing the first experimental QW builds on the cavity QED
quantum quincunx �4�, which alternately applies a coin-flip
Hadamard gate

H = � + 	�0� + �− 	�1� �6�

for

� � 	 = ��0	 � �1	�/�2, �7�

followed by a rotation of the walker’s state in PS by ���
with the sign depending on the coin state �with n̂= â†â for
â= ��x̂+ ip̂� /�2��:

F = exp�in̂�̂z��� . �8�

The initial state of the walker is a coherent state �
	: 
�R
and

�n�
 � �n̄0	 = �e−n̄0n̄0
n/n!. �9�

Figure 1 depicts PS, including how d is chosen given an
initial walker state �
	 �4�:

n̄ + �n̄ � d � 2��n̄ . �10�

With this choice, the walker’s angular step size is large
enough to ensure enough distinguishability to yield a circular
QW signature.

The simplicity of this model is rooted in the commutativ-
ity of �FH�N with n̂, hence a constant of motion; thus the
walker’s distance from the PS origin �n̄ is fixed. Unfortu-
nately alternating between F and H is not practical in circuit
QED. For the QW to be realized and also to have controlled
decoherence, a time-dependent driving field for the resonator
is needed. As we see below, the sacrifice is that �FH , n̂��0,
but for realistic circuit QED conditions, the QW on circles is

�surprisingly� evident provided that the step-by-step H pulse
duration is judiciously chosen.

The goal is to observe the spreading of the QW’s phase
distribution, and the signature of the QW is that this spread is
linear in time: specifically the standard deviation for the
phase distribution satisfies �� t for the QW, whereas ���t
for the RW, and the QW can be tuned continuously from the
RW by controlling decoherence. As phase is periodic, the
usual root-mean-square approach to � is problematic; in-
stead, we employ the Holevo standard deviation �13�

�H = ���ei�	�−2 − 1 �11�

for

�ei�	 = 

0

2�

d� P���ei�, �12�

with respect to any phase distribution P���, Eq. �3�. The
Holevo standard deviation is equivalent to the root-mean-
square definition for small spreading on the circle, and �H
naturally quantifies dispersion over all �� �0,2�� �14�.
Thus, for sufficiently short times �less than the time that
phase distribution spreads over a significant fraction of the
circle in PS�, if the relation between phase spreading on the
circle with time is a power law, then

ln �H = � ln t + � , �13�

with �=1 for the QW and �=1 /2 for the RW.

III. SUPERCONDUCTING CIRCUIT
QUANTUM ELECTRODYNAMICS

The circuit QED Hamiltonian is �10�

Ĥ = ĤJC + Ĥd, Ĥd = ��t��â†e−i�dt + âei�dt� �14�

for Ĥd the time-dependent driving field Hamiltonian and

FIG. 1. PS diagram depicting circles of fixed radius �n̄j for
circle j. The circle of radius �
� depicts 1 /e contours of the Wigner
function for coherent states separated by angular spacing 2� /d to
make them distinct. A generic Wigner function 1 /e contour �bound-
ary of shaded areas� is depicted for circle j with mean �n̂	= n̄j. Solid
boundaries represent contours around positive peaks, while dashed
boundaries are for contours around negative peaks.
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ĤJC = �rn̂ + �a�̂z/2 + g�â†�̂− + â�̂+� , �15�

the Jaynes-Cummings �JC� Hamiltonian, with �a and �r the
coin and resonator frequencies, respectively, and g the cou-
pling strength. It is sufficient to let ��t� be a square wave, so
� is a constant ��=0 when the field is off�. In the dispersive
regime,

��� = ��a − �r� � g , �16�

and in a frame rotating at �d for the qubit and the resonator,

Ĥ can be replaced by the effective Hamiltonian

Ĥeff = �n̂�̂z/− �da�̂z/2 − �drn̂ + �R�̂x/2 + ��â† + â� , �17�

with

�da = �d − �a, �dr = �d − �r , �18�

�R = 2g�/�dr �19�

the Rabi frequency, and

� = g2/� , �20�

the cavity pull of the resonator.
The first term in the above expression effects the coin-

induced walker phase shift. The atom transition frequency is
ac Stark shifted by g2n̂�. To implement

Ĥ = exp�itH�R�̂x/2� �21�

on the coin, we choose

�d = 2n̄g2/� − 2g�/� + �a �22�

with pulse duration tH=� /2�R and �R a function of average
photon number:

n̄�t� = Tr�n̂	w� . �23�

The free evolution

exp�− iĤefft� �24�

continues even when the driving field is off ��=0�. For time
� between H pulses, the walker steps through an angle

�� � � g2�� + tH�/� . �25�

Whereas the ideal QW conserves photon number, Eq. �17�
violates this, which we interpret as the walker wandering
between circles in PS. Circles have radii �n̄�t�, and �d and tH
are adjusted due to n̄�t� to ensure that the angular step size
�� is constant regardless of how far the walker is from the
PS origin. The mean photon number n̄�t� can be calculated as
follows �9�. We begin by solving the Schrödinger equation

d�
	
dt

= − iĤeff�
	 �26�

from time t=0 to t=N�tH
�0�+��, for N, the number of steps,

tH
�0� = ��� + 2��
�2 + 1�� − 2g�/��/4g� �27�

and beginning with the initial state

�
0	 = ��0	 + i�1	��
	/�2. �28�

Figure 2 plots n̄�t� for 
=3, d=21, and realistic system
parameters �15,16�

��a,�r,g,��/2� = �7000,5000,100,1000� MHz. �29�

It is evident in the figure that the mean number oscillates and
then settles down during the free evolution, so the walker is
concentrated on a circle of squared radius,

n̄j = �tH
�0� + ��−1


�j−1��tH
�0�+��

j�tH
�0�+��

n̄�t�dt , �30�

at step j. The corresponding Hadamard pulse duration tH
�j� for

each step j is

tH
�j� = ��� + 2�n̄j + 1�� − 2g�/��/4g� �31�

for j�N, n̄0=9, and tH
�0�=0.01567 �s.

Alternatively, to compensate for photon number fluctua-
tions, it is possible to vary the frequency of the Hadamard
pulse rather than its duration. For large step number N, the
photon number distribution is found numerically to approxi-
mate

P�n� = ��n�	w�n	�2 � e−n̄n̄n/n!, �32�

and the width of the photon number distribution P�n� is
closely approximated by

�n = ��n̂2	 − �n̂	2 � �n̄ �33�

in the numerical simulations. Thus, number spreading is neg-
ligible, and the walker can be regarded as indeed being con-
centrated in the locality of one circle in PS �9�. As the walk-
er’s initial state is a coherent state with a Poissonian number
distribution, the fact that the width remains Poissonian and
the amplitude is relatively constant indicates that the initially
well-localized walker continues to be localized with respect
to amplitude in the phase space over time.

IV. LOCALIZATION OF THE WALKER IN PHASE SPACE

We observe from numerical simulations that the walker’s
location in phase space is effectively localized to a circle in
phase space with radial width given by �33�. Here we explain
why this confinement to the vicinity of a circle in phase
space with radius �n̄ is reasonable. This discussion is based
on a theoretical analysis of quantum walks on circles in
phase space �9�.

The evolution of the joint walker+coin system is gov-
erned by the effective Hamiltonian �17�. There are five terms

FIG. 2. Average photon number n̄ vs evolution time t ��s� with
period �tH

�0�+��.
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on the right-hand side of this Hamiltonian. Let us understand
each term and its effect on the dynamics to see why the
walker is localized to a circle in phase space.

�i� The first term involves n̂�̂z, which is responsible for
entangling the evolution of the coin and the walker, effec-
tively to make the walker evolve clockwise or counterclock-
wise at constant amplitude with the orientation entangled
with the state of the coin.

�ii� The second and third terms involve the operators �̂z
and n̂, respectively, which correspond to energies, hence fre-
quencies, for the coin and walker.

�iii� The fourth term, involving �̂x, is responsible for the
Hadamard coin flip and is proportional to the Rabi frequency,
which is itself proportional to the pulsed driving field �, Eq.
�19�.

�iv� The fifth term is a displacement involving the opera-
tor â+ â†, which pushes the walker off the circle, and is pro-
portional to �.

In making the quantum walk work, the goal is to make the
Rabi frequency �R large, but keep � small in order to flip the
coin, but minimally shift the walker from the circle.

We have been able to simultaneously achieve the two con-
ditions of large Rabi frequency and small displacement. By

meeting these two conditions, the evolution is closely ap-
proximated by the unitary evolution

H � D�i�/�2� �34�

for the quantum walk on circles in phase space �9�, with �
=�2�tH the size of the displacements from the circle. The
resultant photon number spread after N steps is �9�

�n ���n̄0�1 + cos ���
2

+

��2 + cos �� − cos N�� +
cos�1 − N���

sin2 ��/2 �
2�2�1 + cos ��

.

�35�

For large n̄0 and small �, �n��n̄. Hence, in the
asymptotic large-mean-photon-number n̄ limit, the reduced
walker state has support almost entirely from coherent states
with amplitude �n̄. This means that the joint state of the
walker+coin can be regarded approximately as an entangle-
ment of a walker in superpositions of coherent states with the
coin state. This approximation guarantees that the walker can
be regarded as being localized to one circle in phase space
with a Poissonian spread in photon number that does not
increase significantly over time provided that the phase steps
are small and n̄ is large.

V. OPEN SYSTEM AND MEASUREMENT

Coupling to additional uncontrollable degrees of freedom
leads to energy relaxation and dephasing in the system. In
the Born-Markov approximation, these effects can be char-
acterized by a resonator photon leakage rate � �determined at
fabrication time by the resonator input and output coupling
capacitances�, an energy relaxation rate �1, and a pure
dephasing rate �� for the qubit. The open system thus
evolves according to

	̇ = − i�Ĥeff,	� + �D�â�	 + �1D��̂−�	 + ��
/2�D��̂z�	 ,

�36�

with

D�L̂�	 � �2L̂	L̂† − L̂†L̂	 − 	L̂†L̂�/2. �37�

TABLE I. The linear regression data ln �H= �s��s�ln t+ �ln �H
0 �� ln �H

0 � of the Holevo standard devia-
tion of phase distribution on a ln-ln scale for lossy cavities.

� /2��MHz� s �s ln �H
0 � ln �H

0 r

0 0.924 0.009 0.442 0.004 0.990

0.05 0.879 0.013 0.362 0.006 0.991

0.1 0.822 0.014 0.279 0.008 0.992

0.3 0.615 0.022 −0.025 0.012 0.993

0.5 0.447 0.030 −0.309 0.017 0.990

FIG. 3. �Color online� Ln-ln plot of walker spread � vs
t ��s� for �a� a phase distribution on the circle in PS and �b�
a QP distribution for different � and fixed �g ,�1 ,��� /2�
= �100,0.02,0.31� MHz.
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Relaxation and dephasing of a charge qubit in circuit QED
were reported in �11� as T1=7.3 �s and T2=500 ns. These
translate to

�1/2� = 0.02 MHz �38�

and

��/2� = ��2 − �1/2�/2� = 0.31 MHz. �39�

The master equation �36� is used to compute 	�t� from
which the reduced state of the walker 	w is obtained and
thence the phase distribution Pw���, Eq. �3�. Empirically the
phase distribution can be obtained by performing full optical
homodyne tomography on the transmission line resonator to
obtain W�x , p� �17� from which Pw��� can be computed and
�H�t� thereby determined. The scaling of �H with t in Eq.
�13� is a convenient empirical signature of the RW vs the
QW.

As full tomography is expensive, it would be valuable to
observe a QW directly from optical homodyne detection with
a single choice of local oscillator phase 
 instead of having
to scan over many 
 for full tomography. Our simulations

show both �H�t� for Pw��� and �QP for the QP distribution at

=0, with the choice of 
=0 corresponding to having a
local oscillator that is in phase with the walker at t=0. For
our choices of realistic experimental parameters, the walker’s
phase distribution spreads from −� to � on a scale of 15
steps, so simulations are limited to fewer than 15 steps be-
fore the spreading effectively saturates and our comparison
of the QW vs the RW breaks down.

Simulated evolutions of �H�t� and �QP�t� are presented in
Figs. 3�a� and 3�b�, respectively. Corresponding linear re-
gression data presented in Tables I and II clearly reveals
slopes compatible with the characteristic quadratic decrease
in phase spreading for increasing decoherence of the QW
until the transition to the RW �4�.

These results show the significance of � in decoherence
from the QW to the RW. Moreover, � is much more impor-
tant than �1 and �� with respect to the scaling of �H,QP with
t. The pure dephasing rate �� mainly leads to smearing of the
phase distribution and the phase distribution loses its sym-
metry. Furthermore, the effect of the energy relaxation rate
�1 is small here compared with � because of our realistic
choice of parameters.

Unfortunately � must be low to obtain a QW, yet high to
allow fast readout. This dilemma is resolved by instead using
two modes �18�: one resonator �labeled a� of high Q and
acting as the walker and a second resonator �labeled b� of
low Q and used for fast readout �12�. The microwave radia-
tion from resonator a is coupled into resonator b, and mea-
surements ensue on resonator b. Measurements must be
quick on the time scale of the walker’s steps, so it cannot be
longer than the time scale between pairs of Hadamard pulses.
In the two-resonator system, �b has therefore a lower bound
of O�g2 /��.

Due to coupling to resonator b, the transition frequency of
the CPB in resonator a and the pure dephasing rate are
changing with the cavity field in resonator b, so the master
equation for resonator a and the CPB is modified to �12�

	̇ = − i�Hs
ˆ ,	� + �aD�â�	 + �1D��̂−�	 +

�
 + �m

2
D��̂z�	 ,

�40�

with

Ĥs = �rbn̂ +
���t�

2
�̂z + �gâ†�̂− + ��t�â†e−i�dt + H.c.� .

�41�

where

TABLE II. The linear regression data ln �QP= �s��s�ln t+ �ln �QP
0 �� ln �QP

0 � of the standard deviation of QP distribution on a ln-ln
scale for lossy cavities.

� /2��MHz� s �s ln �QP
0 � ln �QP

0 r

0 0.937 0.006 0.093 0.004 0.988

0.05 0.892 0.009 0.016 0.006 0.989

0.1 0.832 0.013 −0.068 0.008 0.990

0.3 0.634 0.020 −0.372 0.012 0.993

0.5 0.453 0.034 −0.677 0.019 0.990

FIG. 4. �Color online� Ln-ln plot of walker’s phase spread � vs
N �the number of the steps� to N=15 with fixed pulse duration
0.0157 �s for �a� a phase distribution on the circle in PS and �b� a
QP distribution for the classical random walk �solid line� and the
QW �red dots� with 
=3, d=21, and typical system parameters
��a ,�r ,g ,�� /2�= �7000,5000,100,1000� MHz. In comparison,
the blue dotted lines are for the QW with adaptive pulse durations,
which break down after 15 steps.
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���t� = �a + 2�b��
b�t��2 + 1/2� �42�

and

�m = 8�b
2�
b�t��2/�b. �43�

In these expressions, �b=gb
2 / ��a−�rb� is the cavity pull of

the measurement resonator b and 
b�t� is the classical part of
the measurement cavity field. Under these conditions, the
master equation for the CPB and resonator b, Eq. �40�, is
identical to Eq. �36� except for a parameter change. It is
interesting to note that, in this two-resonator case, qubit
dephasing can be tuned by changing the number of photons
injected in the readout resonator �corresponding to
measurement-induced dephasing �10��. As a result, it should
be possible to observe the crossover between the QW and the
RW as a function of this tunable dephasing.

In summary, we have introduced the following protocol to
implement the QW on circles in PS using circuit QED. �i�
Solve the Schrödinger equation from t=0 to t=N�tH

�0�+��, to
obtain the mean photon number n̄�t� from which the se-
quence �n̄j
 and �tH

�j�
 are obtained. �ii� Prepare a high-Q reso-
nator in its vacuum state �by simply cooling�. �iii� When the
vacuum state is prepared, inject a microwave field with a
Gaussian pulse shape and temporal width TG in order to pre-
pare the high-Q resonator in a coherent state �
	. �iv� After
t=2TG, implement the Hadamard pulse on the CPB by in-
jecting a square pulse of frequency �d into resonator b over
time scale tH

�j� for step j. �v� Terminate the external driving of
the resonator to allow free evolution over time scale �. �vi�
Repeat steps �iv� and �v� N times. �vii� Perform full tomog-
raphy on resonator b by performing homodyne measurement
over many values of � and use standard inversion technique
on the data.

In circuit QED, the amplifier thermal noise is significant,
with more thermal photons present than the mean resonator
photon number �11�. However, the signal QP distribution and
full Wigner function can be obtained from the resultant ho-
modyne detection statistics by convolving the readout with a
thermal function �which is a Gaussian mixture of Gaussian
states centered at the PS origin�. The spread of the convolu-
tion is determined by the mean thermal photon number,
which is typically 20.

The result is expected to be noisy quadrature phase read-
out, but repetition will yield, on average, the desired linearity
of ln � vs ln t. We can use a filter algorithm �19� which takes
the inversion formula for the measured Radon transform of
the Wigner function with thermal noise and reconstruct the
Wigner function of the corresponding noiseless signal.
Hence we can achieve the noiseless phase distribution and
QP distribution with the Wigner function of the noiseless
signal.

VI. CONCLUSIONS

We have shown that the QW on circles in PS can be
implemented via circuit QED with and without open-system
effects using realistic parameters and find that the signature
of the QW is evident under those conditions. Moreover, full

tomography may not be required because direct homodyne
measurements over few quadratures reveal an unambiguous
QW signature, and the RW can controllably emerge by tun-
ing decoherence. Our scheme shows how a QW with just one
walker can be implemented in a realistic system, and con-
trollable decoherence can be performed, thereby allowing
continuous tunability between the quantum and classical re-
gimes.

Our scheme allows only a finite number of steps before
the quadratic enhancement in phase spreading breaks down.
As the phase step �� must be strictly greater than 1 /�n, the
number of steps, N, has an upper bound because of the desire
to avoid wraparound effects �the walker going around the
circle�; then, N�2� /��. Therefore, N�2��n�2��n̄ pro-
vides an upper bound on N.

Hence the number of steps has an upper bound that is
determined by n̄. If the mean number of photons in the reso-
nator is increased, so is the allowed number of steps. Physi-
cally, however, the mean number of photons cannot be too
large because the dispersive approximation that we exploit
fails for large cavity photon number: this breakdown occurs
for critical photon number �10,20�

n̄crit =
�2

4g2 . �44�

Equation �44� yields an upper bound of photon number in
the resonator and limits the number of steps the walker can
take and exhibits a quadratic enhancement of spreading. In
our example, �=2000 MHz and g /2�=100 MHz, so n̄crit
=100. Here we have treated the case of just nine photons and
seen strong evidence of a quadratic enhancement of phase
diffusion, so the quantum quincunx effectively works well
below this critical photon number where the dispersive ap-
proximation breaks down.

In our scheme, the pulse duration tH is adjusted each time
according to the predicted mean photon number, but precise
control of the Hadamard pulse may be difficult to achieve in
experiments.

In Fig. 4 we have shown a simulation of the cases with
and without adjusting the duration of the Hadamard pulse
sequence. Not adjusting the Hadamard pulse durations still
yields a quadratic enhancement of the phase distribution due
to the quantum walk, but it breaks down earlier. In our simu-
lation, the breakdown occurs after 10 steps rather than 15 for
the adaptive pulse duration. For the first 10 steps, the nu-
merically simulated standard deviation for the QP distribu-
tion and the Holevo standard deviation on ln-ln scale are,
respectively, shown to be approximately linear in ln N:
ln �QP= �0.939�0.007�ln N+ �−2.090�0.005�, the r coeffi-
cient being 0.99, and ln �H= �0.890�0.006�ln N
+ �−1.563�0.003�, the r coefficient being 0.96.
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