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We present a framework that combines the adjoint state method together with reverse-time back-
propagation to solve otherwise prohibitively large open-system quantum control problems. Our
approach enables the optimization of arbitrary cost functions with fully general controls applied
on large open quantum systems described by a Lindblad master equation. It is scalable, compu-
tationally efficient, and has a low memory footprint. We apply this framework to optimize two
inherently dissipative operations in superconducting qubits which lag behind in terms of fidelity
and duration compared to other unitary operations: the dispersive readout and all-microwave reset
of a transmon qubit. Our results show that, given a fixed set of system parameters, shaping the
control pulses can yield 2x improvements in the fidelity and duration for both of these operations
compared to standard strategies. Our approach can readily be applied to optimize quantum controls
in a vast range of applications such as reservoir engineering, autonomous quantum error correction,
and leakage-reduction units.

Introduction.— Quantum optimal control (QOC)
provides a framework to design external controls for real-
izing arbitrary quantum operations with maximal fidelity
and minimal time [1–3], crucial requirements of useful
quantum error correction [4]. In most practical QOC
applications, like the preparation of complex quantum
states [5–7], or the design of fast, high-fidelity quantum
gates [8–11], only closed-system quantum dynamics are
considered. This simplification relies on the assumption
that minimizing operation time will also reduce the im-
pact of environmental noise. However, these approaches
are limited by the fact that controlling the system’s co-
herent dynamics can drastically alter the impact of some
noise sources, as exemplified by dynamical decoupling
methods [12–14]. Moreover, closed-system approaches
cannot extend to inherently dissipative processes such as
qubit readout and reset. Consequently, optimally con-
trolling open quantum systems emerges as an important
avenue [15, 16]. It addresses both the minimization of
decoherence in quantum information processing [17–19]
and the design of dissipative protocols [20, 21], marking a
significant step towards comprehensive quantum control
in engineered systems.

Over the last decade, several approaches have emerged
for open-system QOC. Methods like Krotov [22] and
gradient-ascent pulse engineering (GRAPE) [23, 24] were
generalized to include dissipation [21, 25] but stay limited
to unitary problems. Closed-loop control methods based
on feedback engineering [26, 27] or reinforcement learn-
ing [28–31] have seen recent success but fall short in scal-
ing to large numbers of parameters. Automatic differenti-
ation [32–35] fulfills most QOC framework requirements,
but suffers from substantial memory demands even for
moderate system sizes and evolution times [36].

In this Letter, we present a framework enabling the re-

alization of QOC on large open quantum systems with a
fully general parametrization over the controls and arbi-
trarily complex cost functions. Our approach combines
the adjoint state method [37–39] with reverse-time back-
propagation [40–44] to solve otherwise prohibitive open-
system quantum control problems defined in Lindblad
form. This approach ensures precise and fast numerical
computation of arbitrary gradients with minimal mem-
ory usage, making it ideal for GPU acceleration. In the
second part of this work, we demonstrate the useful-
ness of this approach by optimizing two critical opera-
tions for the realization of a fault-tolerant quantum com-
puter based on superconducting circuits: dispersive read-
out [45–47] and all-microwave reset [48, 49] of a transmon
qubit [50].

Adjoint state method.— Consider a QOC problem
for which we seek to find a set of parameters minimiz-
ing a cost function C(θ, ρ̂(t0), . . . , ρ̂(tn)). This function,
in general, depends on both the problem parameters
θ = (θ1, . . . , θm) and on the density matrix of the sys-
tem at a set of times, ρ̂(ti). Gradient-based approaches
to optimize the control parameters rely on computing the
derivative of the cost function with respect to each pa-
rameter, dC/dθ. To do so, we apply the adjoint state
method [37] to open quantum systems. In this context,
the adjoint state is defined as ϕ̂(t) = dC/dρ̂(t), and rep-
resents how a change in the density matrix at time t
modifies the cost function. For open quantum systems
under the usual Born-Markov approximations [51], the
evolution of the density matrix is governed by a Lind-
blad master equation (ℏ = 1),

dρ̂

dt
= Lρ̂ ≡ −i[Ĥ, ρ̂] +

∑

k

D[L̂k]ρ̂, (1)
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where Ĥ is the system Hamiltonian, L̂k are jump op-
erators, and D[L̂]ρ̂ = L̂ρ̂L̂† − {L̂†L̂, ρ̂}/2. The adjoint
state is then subject to a dual ordinary differential equa-
tion [52],

dϕ̂

dt
= −L†ϕ̂ ≡ −i[Ĥ, ϕ̂]−

∑

k

D†[L̂k]ϕ̂, (2)

where D†[L̂]ϕ̂ = L̂†ϕ̂L̂ − {L̂†L̂, ϕ̂}/2. This equation can
be integrated numerically over the time interval of in-
terest [t0, tn] with initial condition ϕ̂(tn) = ∂C/∂ρ̂(tn),
computed analytically if a closed form is available, or
directly through automatic differentiation. Notably, the
overall minus sign in Eq. (2) ensures numerical stability
of the integration by generating contracting dynamics in
reverse time. The derivative of the cost function with
respect to the problem parameters is given by

dC

dθ
=

∂C

∂θ
−

∫ t0

tn

∂θ Tr
[
ϕ̂†(t)L(t, θ)ρ̂(t)

]
dt . (3)

This integral is straightforward to compute using the den-
sity matrix and adjoint state at each time t ∈ [t0, tn], as
obtained from Eqs. (1) and (2). In particular, the partial
derivative with respect to θ can be easily computed from
automatic differentiation of the adjoint state equation by
noting that

∂θ Tr
[
ϕ̂†Lρ̂

]
= −Tr

[
∂θ(dϕ̂/dt)

†ρ̂
]
, (4)

which has the form of a vector-Jacobian product.
The QOC optimization is illustrated in Fig. 1 and pro-

ceeds in two steps. First, the forward pass consists in
using the initial set of parameters (e.g. a sequence of dis-
crete pulses) to numerically integrate the master equation
from t0 to tn while saving the density matrix at each time
ti of interest. The cost function C(θ, ρ̂(t0), . . . , ρ̂(tn)) is
then evaluated. To lower the memory footprint, the cost
function can also be evaluated on the fly during the for-
ward pass such that only a single density matrix needs
to be stored. In a second step, the backward pass, both
the master and adjoint equations are simultaneously in-
tegrated in reverse time, starting from t = tn. During
this process, the integral of Eq. (3) is iteratively evalu-
ated, such as to obtain the entire gradients dC/dθ once
the backpropagation is finished. Having access to the
gradients of the cost function, we can now iteratively up-
date the control parameters using standard optimization
algorithms [53–55].

We emphasize how each density matrix (blue) is com-
puted twice: once during the forward pass, and once
during the backward pass. This enables a low memory
footprint for the overall scheme, with at most a single
density matrix and adjoint state needed to be stored at
any given moment. The memory footprint of the method
thus scales as O(N2) with N the Hilbert space dimen-
sion. This is in stark contrast with methods based on

C

Forward pass

Backward pass

Figure 1. Adjoint state quantum optimal control. In the for-
ward pass, the master equation is integrated and checkpointed
for several time points (dark blue). In the backward pass, the
density matrix ρ̂ is recomputed in reverse time (light blue) to-
gether with the adjoint state ϕ̂ (green) and with the gradients
(red) of the cost function C. When a checkpoint is reached,
the density matrix is restored to its forward time trajectory,
and the adjoint state updated with the corresponding cost
function gradient.

automatic differentiation [33], for which the density ma-
trix needs to be stored at each time point of the numer-
ical integration, thus scaling as O(MtN

2), with Mt the
number of numerical integration steps. Such memory re-
quirements can quickly become prohibitive, even for open
quantum systems of intermediate sizes, N ≳ 100.

Note that this large gain in memory comes at the
cost of trading off some numerical runtime. Overall, the
scheme requires the integration of four differential equa-
tions in total [52], against only two for automatic dif-
ferentiation. In addition, the reverse time integration
of Eq. (1) can be numerically unstable due to the expan-
sive dynamics of the system. This can however be fully
resolved with checkpointing the quantum states during
the forward pass [44], thus effectively trading back some
memory for numerical stability. In practice, checkpoint-
ing at the time scale of the largest dissipation operator
is sufficient to ensure numerical stability without adding
significant complexity.

We have implemented this optimization scheme using
PyTorch [56], taking advantage of its automatic differ-
entiation capabilities and GPU support. This framework
allows us to run optimization problems for open quantum
system with hundreds of parameters, arbitrary cost func-
tions, and for Hilbert space dimensions of up to N ∼ 5000
while running on a single GPU with 24 GB of memory.
Our code is available through the dynamiqs open-source
library [57], simplifying replication of this work and its
application to various QOC problems. We now demon-
strate the usefulness of this method by optimizing read-
out and reset of a transmon, two operations that inher-
ently rely on dissipation.

Transmon model.— Let us consider the experimen-
tally realistic model depicted in Fig. 2(a) of a transmon
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coupled to a readout resonator and Purcell filter [58]

dρ̂

dt
= −i[Ĥ, ρ̂] + γD[b̂]ρ̂+ κD[f̂ ]ρ̂, (5)

with transmon relaxation rate γ and filter relaxation rate
κ, and where

Ĥ = 4EC n̂t − EJ cos(φ̂t) + ωrâ
†â+ ωf f̂

†f̂

− ign̂t(â− â†)− J(â− â†)(f̂ − f̂†)

+ Ωtn̂t sin(ωd,tt)− iΩf (f̂ − f̂†) sin(ωd,f t).

(6)

The first two terms denote the free transmon Hamilto-
nian with charging energy EC and Josephson energy EJ ,
with n̂t and φ̂t the charge and phase operators, and with
b̂ the corresponding annihilation operator in the diago-
nal basis. The resonator and filter modes are denoted by
â and f̂ , with respective frequencies ωr and ωf . These
three modes are capacitively coupled in series with cou-
pling strengths g ≫ J . The system can be driven using a
capacitive coupling either through the transmon with a
microwave pulse at frequency ωd,t and envelope Ωt(t), or
through the Purcell filter at frequency ωd,f and envelope
Ωf (t).

For numerical simulation of this model, we first di-
agonalize the free transmon Hamiltonian and identify
the lowest energy eigenstates. We also diagonalize the
resonator-filter subsystem yielding two normal modes,
each coupled to the transmon. Finally, we apply the
rotating-wave approximation (RWA) on couplings and
drives. This allows for larger numerical time steps by
eliminating fast oscillating dynamics thereby simplifying
master equation integration. However, this also implies
that not all of the chaotic or transmon ionization dy-
namics are captured [59–61]. To avoid probing these
regimes, we limit the maximum amplitudes of control
drives, e.g. to 200MHz for transmon readout.

Unless stated otherwise, we use EC/2π = 315MHz,
EJ/EC = 51, corresponding to a bare transmon fre-
quency ωt/2π = 6GHz and to an anharmonicity α/2π =
−349MHz. The resonator and filter frequencies are
ωr/2π = 7.2GHz and ωf/2π = 7.21GHz with couplings
g/2π = 150MHz and J/2π = 30MHz. This yields a
transmon-resonator detuning of ∆/2π = 1.2GHz, a crit-
ical photon number of n̄crit = (∆/2g)

2
= 16 [45] and dis-

persive rates of χ/2π = 3.8MHz and 8.1MHz with the
lower and higher normal modes, respectively. Finally,
the filter loss rate is κ/2π = 30MHz and the transmon
relaxation rate is γ/2π = 8kHz, i.e. T1 = 20µs.

Transmon readout.— Readout of transmon qubits
is realized through the dispersive coupling to a res-
onator [45]. In this case, the resonator frequency is
shifted by the average occupancy in the transmon, and
can be measured by driving the resonator at its bare fre-
quency and monitoring the output field, see Fig. 2(b).
In the presence of a Purcell filter, either normal mode of
the hybridized resonator-filter subsystem can be used for
readout [62].

The metric we use to maximize the measurement fi-
delity is the signal-to-noise ratio (SNR). Accounting for
optimal weighting functions, it reads [63]

SNR(τm) =

√
2ηκ

∫ τm

0

dt |βe(t)− βg(t)|2, (7)

where η ∈ [0, 1] is the measurement efficiency, τm is the
readout integration time, and βe/g = Tr

[
f̂ ρ̂g/e

]
is the

average field value in the filter mode, with ρ̂g/e the den-
sity matrix obtained after initializing the transmon in the
|g/e⟩ state. To obtain results that can be compared to ex-
periments, we use η = 0.6 [46]. The optimization objec-
tive is to maximize the SNR, and thus maximize the dis-
tance between the pointer states |βe−βg| in the shortest
possible time. Further assuming that the pointer states
βg,e are Gaussian, one can link the SNR and the trans-
mon lifetime to the readout assignment error [52, 62, 64].

To optimize the transmon readout, we discretize the
control pulse envelopes Ω(t) with 1 ns time bins and use a
250MHz gaussian filter to interpolate between these pix-
els during numerical integration and to model realistic ex-
perimental distortions [65]. In addition to the discretized
drive amplitudes, the optimization parameters θ include
the carrier frequency ωd of each drive. Contrary to the
drive amplitudes, the latter are kept constant through-
out the pulse duration, in accordance with typical exper-
iments. The cost function used to optimize the transmon
readout is principally composed of the SNR of Eq. (7),
with additional cost terms constraining the control pulses
in order to regularize the optimization and avoid out-of-
model dynamics. For example, we limit the number of
photons in the hybridized resonator-filter modes, penalize
unwanted transitions to higher excited transmon states,
and limit the maximal available pulse amplitudes. The
full cost function is detailed in [52]. We perform gradi-
ent descent using Adam [54] and use the adjoint state
method previously described to compute gradients.

Figure 2(c) shows the SNR and the assignment error
as a function of the integration time τm obtained by our
approach, and panel (d) shows the corresponding pulse
envelopes for τm = 40ns optimizations. As a point of
comparison, we first consider the two non-optimized ref-
erence pulses labelled ‘flat’ and ‘two-step’. The former
consists of a constant pulse with 2 ns ramp-up and ramp-
down times (dark blue squares), and the latter of a two-
step pulse meant to rapidly populate the readout mode
(blue circles) [46]. In both cases, the amplitude is cal-
ibrated to reach n̄ = n̄crit photons in the steady state.
The SNR versus τm for these two pulses is fitted with
the function (full blue and dark blue lines) [58]

SNR(τm) = α
√
2ηκ

(√
τm −√

τm,0

)
, (8)

where α = 2|Ωf sin(2ϕ)|/κ is the effective resonator dis-
placement in the steady state, with ϕ = arctan(2χ/κ)
and χ the dispersive shift obtained from exact diagonal-
ization of Eq. (6). In this expression, √τm,0 accounts for
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Figure 2. (a) Lumped-element model of a transmon coupled to a readout resonator and Purcell filter. The transmon and filter
are driven, and the filter output field is measured through its transmission line. (b) Dispersive readout of a transmon. The
mean field in the filter depends on the transmon state. Signal-to-noise ratio of readout increases with the integrated difference
of mean fields. (c) Signal-to-noise ratio and assignment error of transmon readout for several drive envelopes: a flat envelope,
a 4 ns two-step envelope [46], and optimized envelopes (QOC) with optional additional drives on the transmon at frequencies
ωd,t ≃ ωr (green) and ωd,t ≃ ωef (red). The flat and two-step data points are fitted according to Eq. (8). The black line shows
the T1 limit given by τm/2T1. (d) Reference and optimized pulse envelopes at 40 ns of integration time.

an initial delay for the resonator to populate, and is nu-
merically fitted to τm,0 = 19ns and τm,0 = 13ns for the
flat and two-step pulses, respectively. As the integration
time increases, the SNR (assignment error) of both ref-
erences pulses increase (decrease), up until the transmon
T1 limit is reached (solid black line). Minimum assign-
ment errors of 2.1× 10−3 and 1.8× 10−3 are obtained at
80 ns and 65 ns respectively. This is similar performance
to state-of-the-art readout experiments [46, 47, 62, 66], as
expected from our choice of realistic experimental param-
eters. Our objective is now to obtain smaller assignment
errors in shorter measurement times.

The light blue symbols in Fig. 2(c) are obtained by
optimizing the pulse envelope and drive frequency us-
ing our QOC approach. The gain is modest and mainly
limited by the dispersive coupling with the transmon.
Interestingly, the optimized pulses follow a two-step-like
shape with a strong initial drive and a weaker subsequent
drive, see panel (d). We attribute the small oscillations
in the envelope to the rotational gauge freedom of the
resonators, which the optimizer is arbitrarily choosing.

Significant improvements are, however, obtained by
adding a drive on the transmon concurrently to the read-
out drive on the resonator. Interestingly, the optimizer
converges on two distinct frequencies for the transmon
drive. The first strategy found by the optimizer is to drive
the transmon at a frequency close to the resonator fre-
quency (green symbols). In that case, the assignment er-
rors decreases faster with integration time than with the
above approaches, leading to a minimal assignment error
of 1.6×10−3 at 60 ns. The effectiveness of this optimized
readout strategy stems from the fact that driving the
qubit at the resonator frequency creates a longitudinal-
like interaction that can be combined with the usual dis-
persive interaction to improve readout, as demonstrated
in Refs. [67–69].

The second strategy found by the optimizer employs a
transmon drive at the (ac-Stark shifted) |e⟩-|f⟩ transition

frequency (red symbols). Given that the cavity response
differs more significantly between the transmon states |g⟩
and |f⟩ than between |g⟩ and |e⟩ [58], transferring pop-
ulation into the |f⟩ state leads to a significant improve-
ment of the assignment error, which reaches 1.0×10−3 in
40 ns. Interestingly, this shelving approach has already
been used to improve readout in circuit QED [70–73].
There, a π-pulse between |e⟩ and |f⟩ is applied to the
transmon followed by the measurement drive. In con-
trast, the optimized strategy found here applies the π-
pulse while the cavity is loaded with measurement pho-
tons leading to a considerable reduction in the measure-
ment time, see Fig. 2(d). This is possible because the
optimizer accounts for the time-dependent ac-Stark shift.
The optimized π-pulse features a DRAG-like envelope [8]
and achieves a gate fidelity over 99 % in less than 10 ns,
even while the readout mode is being strongly driven.
Importantly, we note that this approach could achieve
significantly higher fidelities by increasing the modest
transmon lifetime of 20 µs used here, as shown by the
high SNR in Fig. 2(c).

Transmon reset.— As a second demonstration of the
adjoint state method, we consider the optimization of
the f0-g1 reset of a transmon [48, 49, 74]. This is an
all-microwave reset protocol based on a Raman transi-
tion between states |f00⟩ and |g01⟩. For the ket |ijk⟩,
|i⟩ stands for the qubit state and |jk⟩ the resonator-filter
normal modes. Given the large photon loss rate of the fil-
ter, the state |g01⟩ quickly decays to |g00⟩, thus ensuring
a fast reset of the transmon |f⟩ state. An additional drive
at the |e⟩-|f⟩ transition frequency allows to reset both |e⟩
and |f⟩ states of the transmon. We use the adjoint-state
method to find optimal controls for both the f0-g1 and
e-f drives simultaneously, in a similar fashion as for opti-
mizing the readout. The cost function is now principally
maximizing the transmon population in the |g00⟩ state at
the end of the protocol, along with smaller contributions
for regularizing the pulses, see [52] for details.



5

0 250 500

 1
¡
P
g0

0

Prepare

0 250 500
Reset time (ns)

Prepare

0 250 500

Prepare

10-1

10-2

10-3

100

10-4

Flat
QOC
QOC (200 ns)

Re
sid

ua
l e

xc
ita

tio
n,

Figure 3. Residual excitation out of |g00⟩ after f0-g1 reset
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hollow markers illustrate the population dynamics at shorter
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The results of the reset optimization are summarized in
Fig. 3. The three panels show the residual excitation out
of |g00⟩ against the reset time for a reference flat pulse
(blue) and an optimized pulse (red) for different initial
transmon states. The reference pulse is composed of two
constant drives at the f0-g1 and e-f transitions, where
amplitudes and frequencies are calibrated numerically in
a similar fashion to what is done in experiments, see [52].
The QOC pulse is obtained by optimizing the carrier fre-
quency and envelopes of both drives, for several total
reset times. The optimized pulses show significant im-
provement over the reference, with a residual excitation
of less than 0.05 % at 100 ns (200 ns) for the |e⟩ (|f⟩) state
preparation. Note that this delay in the |f⟩ reset time is
due to a larger relative weight for the reset of |e⟩ chosen
in the cost function, and could be adjusted to achieve the
most experimentally relevant reset scheme. This repre-
sents a notable improvement over the reference pulses,
which reach a steady state after more than 300 ns with
larger residual excitations of about 0.07 %. Our results
also favourably compare to state-of-the-art experimen-
tal realizations of this protocol that reach 1.7 % residual
excitations in 100 ns [47], or 0.3 % in 300 ns [49].

Conclusion.— We obtained a fully general framework
to optimize open quantum system dynamics in large
Hilbert spaces by combining the adjoint state method
and reverse-time back-propagation. We have demon-
strated the applicability of this method to complex open-
system optimization problems using the example of su-
perconducting transmon readout and reset. We stress
that our method can readily be applied to optimiz-
ing a wide range of quantum control problems where
the dissipative dynamics play a significant role such as
reservoir (dissipation) engineering [75, 76], autonomous
QEC [77, 78], leakage-reduction units [79], quantum cool-
ing, and more. We encourage readers to apply this frame-
work on their own optimal control problems using the
open-source library dynamiqs [57].
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S1. ADJOINT STATE METHOD FOR OPEN
QUANTUM SYSTEMS

A. Adjoint state master equation

In this section, we prove that the adjoint state follows
the differential equation shown in the main text, follow-
ing a similar derivation as in Ref. [1]. Starting from a
general Lindblad master equation

dρ̂

dt
= Lρ̂ ≡ −i[Ĥ, ρ̂] +

∑

k

D[L̂k]ρ̂, (S1)

we can write that for an ε change in time, the evolved
quantum state takes the form

ρ̂(t+ ε) = ρ̂(t) +

∫ t+ε

t

L(τ, θ)ρ̂(τ)dτ

= ρ̂(t) + εL(t, θ)ρ̂(t) +O(ε2).

(S2)

Using the definition of the adjoint state and applying the
chain rule, we find

ϕ̂(t) =
dC

dρ̂(t)
=

dC

dρ̂(t+ ε)

dρ̂(t+ ε)

dρ̂(t)

= ϕ̂(t+ ε)
(
1 + εL(t, θ) +O(ε2)

)
.

(S3)

Then, the proof of the adjoint state master equation fol-
lows directly from the definition of the derivative,

dϕ̂(t)

dt
= lim

ε→0

ϕ̂(t+ ε)− ϕ̂(t)

ε

= − lim
ε→0

(
ϕ̂(t+ ε)L(t, θ) +O(ε2)

)

= −ϕ̂(t)L(t, θ)

(S4)

or equivalently, using the fact that the adjoint state is
hermitian, ϕ̂† = dC/dρ̂† = dC/dρ̂ = ϕ̂, we get the fol-
lowing result thus completing the proof

dϕ̂(t)

dt
= −L†(t, θ)ϕ̂(t). (S5)

B. Explicit expression of gradients

To derive an explicit expression for dC/dθ, we also fol-
low Ref. [1] and introduce an augmented density matrix
ρ̂aug(t) = [ρ̂(t), θ(t)]T which includes a second block row
with time-dependent parameters. In practice, parame-
ters are constant throughout the integration, but this
fictitious time-dependence will allow us to isolate the sen-
sitivity of the cost function to an infinitesimal change of
parameters at each point in time. The augmented density
matrix follows the differential equation

dρ̂aug(t)

dt
= Laug(t, θ)ρ̂aug(t) =

(
L(t, θ)ρ̂(t)

0

)
. (S6)

We can also introduce the augmented adjoint state,
ϕ̂aug(t) = [ϕ̂(t), dC/dθ(t)], where the parameter sensitiv-
ity dC/dθ(t) represents the cost function gradient with
respect to the parameters at a given time. We then fol-
low a similar derivation as in the previous section. The
main difference comes in the application of the chain rule
of Eq. (S3) which now yields,

ϕ̂aug(t) =
dC

dρ̂aug(t)
=

dC

dρ̂aug(t+ ε)

dρ̂aug(t+ ε)

dρ̂aug(t)

= ϕ̂aug(t+ ε)
(
1 + εM(t, θ) +O(ε2)

) (S7)
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where

M(t, θ) =
d(Laug(t, θ)ρ̂aug(t))

dρ̂aug(t)

=

(
L(t, θ) ∂θL(t, θ)ρ̂(t)

0 0

)
,

(S8)

and where ∂θ denotes the partial derivative with respect
to θ. Similarly as before, we can rearrange this expres-
sion, reinsert it in the definition of the derivative and
take the limit of ε → 0. Then, selecting only the second
block of the resulting differential equation yields

d

dt

(
dC

dθ(t)

)
= −∂θ Tr

[
ϕ̂†(t)L(t, θ)ρ̂(t)

]
. (S9)

We have thus obtained a straightforward differential
equation on the parameter sensitivity. Integrating this
equation from t = 0 to T , with the initial condition that
dC/dθ(T ) = ∂C/∂θ yields

dC

dθ
=

∂C

∂θ
−
∫ 0

T

∂θ Tr
[(

L†(t, θ)ϕ̂(t)
)
ρ̂(t)

]
dt, (S10)

which is Eq. (3) in the main text. We can also get the
derivative of the loss function with respect to the inte-
gration time T from a simple application of the chain
rule

dC

dT
=

dC

dρ̂(T )

dρ̂(T )

dT
= Tr

[
ϕ̂†(T )L(T, θ)ρ̂(T )

]
. (S11)

Finally, between Eqs. (S5), (S10) and (S11), we obtain
the gradients of the loss function with respect to all rel-
evant objects involved in the computation, thus allowing
one to perform gradient descent for the desired parame-
ters from arbitrary cost functions.

C. Practical implementation

The full implementation in Python of the approach de-
scribed in the main text is available on the freely avail-
able open-source software dynamiqs [2]. To summarize
the structure of a numerical implementation of the ad-
joint state method for open quantum systems, we present
a pseudo-code implementation in Alg. 1. It involves a
function ODEstep(f, t, y, θ) that computes a single step
of the integration of a linear ordinary differential equa-
tion, ẏ = f(t, θ)y, at time t. The CostFn(θ, Lρ) function
computes the cost function from the parameters θ and a
list of density matrices Lρ. It can also be computed on
the fly in the for loop to avoid storing these matrices.
Finally, the AutoDiff(g, xout, xin) function computes the
partial derivative ∂xout/∂xin through automatic differ-
entiation of g, where xin and xout are given inputs and
outputs of the function g. Note that lines 17 and 18 can
be merged in a single computation of a vector-Jacobian
product to avoid storage of δϕ.

Algorithm 1: Adjoint state method for open
quantum systems.

1 t← t0;
2 ρ← ρ0;
3 Lρ ← {ρ0}; // checkpoint storage list (optional)
4 for ti ∈ {t1, . . . , tn} do // forward pass
5 while t < ti do
6 ρ, δt← ODEstep(L, t, ρ, θ);
7 t← t+ δt

8 end
9 Lρ ← Lρ + {ρ};

10 end
11 C ← CostFn(θ, Lρ);
12 ϕ← AutoDiff(CostFn, C, Lρ[n]);
13 ∇ ← AutoDiff(CostFn, C, θ);
14 for ti ∈ {tn−1, . . . , t0} do // backward pass
15 while t > ti do
16 {ρ, ϕ}, δt← ODEstep

(
{−L,L†}, t, {ρ, ϕ}, θ

)
;

17 δϕ← AutoDiff(ODEstep, ϕ, θ);
18 ∇ ← ∇− Tr[δϕ · ρ];
19 t← t− δt;
20 end
21 ϕ← ϕ+ AutoDiff(CostFn, C, Lρ[i]);
22 ρ← Lρ[i];
23 end
24 return ∇

S2. OPTIMAL CONTROL OF A TRANSMON

A. Optimization process

In this work, we optimize transmon readout and reset
by simulating the Lindblad master equation of Eq. (S1)
with the Hamiltonian of the main text which contains
three modes: the full transmon Hamiltonian, a readout
resonator and a Purcell filter. In our simulations, we first
diagonalize the transmon Hamiltonian in the charge basis
using 300 charge states and then truncate the subsystem
to Nt = 5 eigenstates of lowest energy. In parallel, we
also diagonalize the resonator-filter subsystem yielding
two normal modes – each coupled to the transmon – and
keep Nd Fock states for the mode used to readout/reset
the transmon (driven mode) and Nu Fock states in the
other mode (undriven mode). For readout, we typically
take Nd = 85 and Nu = 4. For reset, we instead use
Nd = Nu = 4 since neither mode is actively driven.

Note that we intentionally select small Hilbert space
sizes to lower the simulation runtime: a typical gradi-
ent descent on such transmon readout/reset simulations
takes a few days per data point using a single GPU [3].
To avoid probing unphysical simulations with such low
Hilbert space sizes, we actively steer the optimizer in
two ways. First, we engineer the cost function such
as to avoid large populations in boundary Fock states
and limit the pulse amplitudes. See Table I for detailed
cost function contributions. Second, we validate all opti-
mized simulations with a single additional simulation in
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Description Analytical formula Weight Hyperparameters

Signal-to-noise ratio 1/
√

2ηκ
∫ τm
0
|βe(t)− βg(t)|2 dt 1 η = 0.6, κ/2π = 30MHz

Pulse amplitude (filter) 1
τm

∫ τm
0

ReLU(|Ωf (t)| − Ωmax)dt 0.1 Ωmax/2π = 200MHz

Pulse amplitude (transmon) 1
τm

∫ τm
0

ReLU(|Ωt(t)| − Ωmax)dt 0.1 Ωmax/2π = 200MHz

Forbidden states (transmon)
∑

i=g,e

∑Nt−1
k≥n

1
τm

∫ τm
0

Tr
[
|k⟩⟨k|t ρ̂i(t)

]
dt 1.0 n = 2 or 3, Nt = 5

Forbidden states (undriven normal)
∑

i=g,e

∑Nu−1
k≥n

1
τm

∫ τm
0

Tr
[
|k⟩⟨k|u ρ̂i(t)

]
dt 5000 n = 2, Nu = 4

Critical photon number (resonator)
∑

i=g,e
1

τm

∫ τm
0

ReLU(Tr
[
â†âρ̂i(t)

]
− n̄crit) dt 0.1 n̄crit = 16

State reset |g⟩ log10(1− |⟨g00| ρ̂g(τm) |g00⟩|2) 0.3 –

State reset |e⟩ log10(1− |⟨g00| ρ̂e(τm) |g00⟩|2) 1.0 –

State reset |f⟩ log10(1− |⟨g00| ρ̂f (τm) |g00⟩|2) 0.3 –

Pulse amplitude (transmon) 1
τm

∫ τm
0

ReLU(|Ωt(t)| − Ωmax)dt 0.1 Ωmax/2π = 600MHz

Table I. Summary of readout (top) and reset (bottom) cost functions. Each line corresponds to a different contribution to
the total cost function, with an overall weight tuned heuristically. All contributions are functions of the problem parameters
and/or of the density matrix at certain times. Time integrals are numerically discretized in 1 ns time bins. ReLU denotes a
rectified linear unit function such that ReLU(x) = 0 for x ≤ 0 and ReLU(x) = x for x ≥ 0. The states |k⟩t and |k⟩u denote the
k-th Fock state in the transmon and undriven normal mode respectively. Finally, ρ̂i denotes the density matrix for a transmon
initialized in state |i⟩t.

a larger Hilbert space, using pulses as obtained by the
optimization process. For such simulations, we typically
take Nt = 6, and Nd = 90 and Nu = 8 for readout, or
Nd = Nu = 8 for reset. All data points shown in the
main text correspond to such validated simulations, and
do not deviate significantly from the results obtained on
the reduced Hilbert space simulations.

B. Numerical integration scheme

Regarding the integration scheme of the ordinary dif-
ferential equation (ODE), we used a second-order Rou-
chon solver [4] with a fixed integration time step of
δt = 0.003 ns. Such a method ensures preservation of
the positivity and trace of the density matrix at all times
during the integration, contrary to standard ODE inte-
gration schemes. This is particularly interesting in the
context of the adjoint state method to avoid divergence
during the reverse-time integration of the master equa-
tion. Later on in this work, we have also used a standard
order-4/5 Dormand-Prince integration scheme [5] which
provided better runtimes in the forward pass and similar
ones in the backward pass, even considering the stiffness
of the reverse-time integration. In any case, several thou-
sands of integration steps are typically required in our
simulations. This makes the use of standard automatic
differentiation prohibitive in computer memory. A simple
pen-and-paper estimation of memory with the previously
stated Hilbert space size and Mt = 10 000 time steps
yields a memory footprint of 8Mt(NtNdNu)

2 = 215 GB
where 8 is the number of bytes used to store a single-
precision complex number.

C. Gaussian filtering

As stated in the main text, all simulated pulse en-
velopes are first discretized in τ0 = 1ns time bins and
then gaussian filtered according to Ref. [6]. Each com-
plex amplitude of the discretized pulse then corresponds
to an additional parameter in the optimization. Con-
cretely, the time-dependent pulses read

Ω(t) = Fg



⌊τm/τ0⌋−1∑

j=0

ΩjΠj(t, τ0)


 (t) (S12)

where

Πj(t, τ0) ≡ Θ(t− jτ0)−Θ(t− (j + 1)τ0) (S13)

is the rectangle function, with Θ is the Heaviside unit
step function, and where Fg is a gaussian filter of band-
width ωB/2π = 250MHz. Commuting Fg with the sum
of Eq. (S12), we get the simpler expression

Ω(t) =

⌊τm/τ0⌋−1∑

j=0

Ωjζj(t), (S14)

where

ζj(t) =
1

2

[
erf

(
ω0

t− jτ0
2

)
− erf

(
ω0

t− (j + 1)τ0
2

)]
,

(S15)
with erf the error function and ω0/2π = 425.5MHz [6].

D. Cost function contributions

Designing appropriate cost functions is essential to ob-
tain useful quantum optimal control results from numeri-
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cal optimizations. In this work, we define composite cost
functions with a principal component and several smaller
regularizing contributions. The cost functions used for
transmon readout and reset are summarized in Table I.
Let us describe each cost function separately.

For transmon readout, the main contribution is the in-
verse of the SNR. We use the inverse (instead of e.g. the
negation) such that the optimizer focuses on other cost
function contributions increasingly more as the SNR
grows large. There are five regularizing cost functions
on top of this main component. The first two correspond
to a maximum pulse amplitude on the filter and trans-
mon respectively, at Ωmax/2π = 200MHz. These cost
functions use a rectified linear unit function, or ReLU,
such that ReLU(x) = 0 for x ≤ 0 and ReLU(x) = x for
x ≥ 0. As such, no hard limits are set on the pulse am-
plitudes to allow the optimizer to explore a larger param-
eter space in case interesting solutions can be found at
larger amplitudes. Two other contributions correspond
to forbidden states in the transmon and undriven nor-
mal mode respectively. As previously discussed, these
costs are used to avoid probing unphysical pulses that
would make use of boundary Fock states sitting close to
our artificial numerical truncation. Finally, the last con-
tribution to the cost function is a soft upper bound on
the number of photons in the resonator. Indeed, accord-
ing to the standard theory of dispersive qubit readout [7],
non-QND readout can be probed by driving the readout
resonator above its critical number of photons n̄crit. This
cost function also allows for a fair comparison between
all readout strategies by limiting the effective speed of
pointer state separation, given by n̄χ in the absence of
additional transmon drives.

For transmon reset, the main contributions are the log-
arithms of residual population outside the |g00⟩⟨g00| sub-
space, for a transmon initialized in either |g⟩, |e⟩, or |f⟩.
In particular, we weight these three contributions non-
uniformly with a larger weight on the |e⟩ state reset.
This is a choice motivated by experimental designs for
which population inside the qubit subspace is typically
much larger than leaked population at the beginning of
resets. However, these weights can be freely adapted to
the experiment. The only regularizing cost function for
transmon reset is an upper bound on the pulse ampli-
tude, similar to that of transmon readout. Because reset
attempts to evacuate the system photons, additional cost
functions are not required.

In Fig. S1, we show how typical cost function con-
tributions evolve as a function of the optimization epoch
(i.e. iteration). Panel (a) shows a 40 ns transmon readout
optimization where only the filter is driven, while panel
(b) shows a 200 ns reset optimization. In both cases,
we find a clear decrease in the total cost in the first 20
to 50 epochs, and convergence to a steady value after-
wards. For readout, the cost function is dominated by
the SNR cost function. The inset highlights the smaller
cost contributions in log scale. For these regularizing cost
functions, we regularly see peaks indicating that the op-
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Figure S1. Cost function as a function of the optimization
epoch for (a) transmon readout QOC with no transmon drive
at 40 ns, and (b) transmon reset QOC at 200 ns. The inset of
panel (a) shows the cost function contributions in log scale,
with the main contribution being the inversed SNR. Other
contributions are meant to regularize the pulse and to avoid
unphysical regions. See Table I for the detailed cost function
contributions.

timizer is generating dynamics close to the Hilbert space
boundaries before retracting away, all the while achieving
increasingly better SNR.

S3. TRANSMON READOUT

A. Assignment error

In Fig. 2(c) of the main text, we show the assignment
error of transmon readout as a function of the integration
time. This assignment error is computed in Refs. [8, 9]
assuming that the transmon pointer states stay gaussian
during readout. This assumption is verified to a very
good approximation for all of our simulated readout se-
quences. Given this structure, the assignment error reads

εa(τm) ≃ 1

2
erfc

(
SNR(τm)

2

)
+

τm
2T1

, (S16)

where εa = 1−F = [P (e|g) + P (g|e)]/2, with P (i|j) the
probability of measuring state |i⟩ when |j⟩ is prepared,
F the readout fidelity, and erfc the complementary error
function.
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Figure S2. (a) Mean phase-space trajectories of the Purcell filter during a 40 ns readout. Each panel shows βe and βg against
time for a different readout strategy, where βe/g = Tr[f̂ ρ̂g/e] is the filter mean field after initializing the transmon in the |e⟩ or
|g⟩ state. Lines that join each trajectory represent 1 ns intervals. The optimal control algorithm attempts to maximize SNR,
which corresponds to the integrated distance between both trajectories. (b) Phase-space distance against time for the same
readout strategies as in (a).

B. Phase-space trajectories

Figure S2(a) shows the readout trajectories obtained
by our three optimized control strategies, in compari-
son with the flat and two-step readout references. No-
tably, we see that pulse shaping the microwave drives on
the cavity and qubit, while still using an experimentally-
realistic bandwidth, makes the readout dynamics devi-
ate from the usual dispersive trajectories. As quanti-
fied in Fig. S2(b), optimizing the control drives leads to
both a faster and a larger separation between the qubit
pointer states, which directly translates into better read-
out SNR. The red curve, which corresponds to adding
the transmon drive at the |e⟩-|f⟩ transition frequency
such as to achieve shelving, shows how beneficial that
approach is for the system parameters considered here,
compared to standard dispersive readout. The discov-
ered scheme of simultaneously shelving and populating
the readout mode with photons could straightforwardly
be implemented with the typical controls available in cur-
rent transmon experiments.

S4. TRANSMON RESET

A. Calibration

Since the f0-g1 reset of the transmon |e⟩ and |f⟩ states
requires two concurrent microwave drives on the trans-
mon, the frequency and amplitude of these drives need
to be calibrated in a self-consistent way. In order to get
the best reset performance using flat drives on which to
compare our optimal controls, we perform a numerical
calibration procedure that follows closely what is done in
typical experiments [10, 11].

Namely, for a given f0-g1 drive amplitude Ωf0g1, we
first scan the reset drive frequency ωf0g1 to find the ac-
Stark shifted resonant frequency that maps the prepared
|f⟩ transmon state back to |g⟩ after 100 ns. The results
of this simulated experiment are illustrated in Fig. S3(a,

e) for the lower and higher normal readout mode, re-
spectively, and for different drive amplitudes Ωf0g1/2π
between 50 and 650MHz. Once the frequency ωf0g1 is
fixed on resonance, we calibrate the |e⟩-|f⟩ drive fre-
quency ωef . This is achieved by performing a similar
experiment as before, but in which the transmon is pre-
pared in |e⟩ instead of |f⟩, and both the f0-g1 drive and
e-f drives are on. The amplitude ratio Ωf0g1/Ωef between
both drives is kept constant such that the effective f0-g1
Rabi rate yields g̃(Ωf0g1) = Ωef [11, 12]. The results of
this second calibration are shown in Fig. S3(b, f) for the
lower and higher modes, respectively. Finally, the |e⟩-|f⟩
drive amplitude Ωef is calibrated from a 1D parameter
sweep while performing the same |e⟩ reset experiment.
This sweep is shown in Fig. S3(c, g). In the end, this
whole procedure yields a single set of calibrated param-
eters (ωf0g1, ωef , Ωef ) for every value of Ωf0g1 and for
each normal mode. We simulate the corresponding re-
set of each set of calibrated parameters, and show the
corresponding results in the panels of Fig. S3(d, h).

Out of all of the calibrated sets of parameters, we se-
lected the best performing reset (both in terms of speed
and fidelity) to compare with our optimal controls in
Fig. 3 of the main text. This corresponds to a f0-g1
amplitude of Ωf0g1/2π = 350MHz driving the higher fre-
quency normal mode of the coupled resonator-filter sub-
system. This mode has a larger dispersive coupling to the
transmon than the lower frequency normal mode. This
particular reset is shown with a red title in Fig. S3(h).

B. Pulses

In Fig. S4, we present the optimal reset pulse shapes
found using our quantum optimal control approach. The
200 ns pulse of panel (b) produces the transmon popula-
tion dynamics illustrated with the pink markers in Fig. 3
of the main text. Interestingly, in the 100 ns pulse of
panel (a), we see that the numerical optimization yields
an initial π-pulse to transfer population from |e⟩ to |f⟩
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calibrated. See the protocol description in Sec. S4 for more details. (d) Resulting f0-g1 reset performance after preparing the |g⟩,
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which quickly decays back to |g⟩ because of the f0-g1
drive. This behaviour can be understood by the fact that
our chosen cost function puts more weight into resetting
the |e⟩ state. As such, the optimal drive scheme with this
constraint initially resets the |e⟩ state, and subsequently
resets the population that was initially in the |f⟩ state
at the beginning of the protocol. This behaviour is con-
sistent with the fact that the residual population when
initializing in |e⟩ converges after 100 ns whereas it con-
verges after 200 ns for the |f⟩ initial state, as reported in
the main text. Our choice of relative weights between the
different residual populations is motivated by the ther-
mal population of a high frequency transmon (5GHz) in
a relatively cold environment (20mK ∼ 417MHz), but
is arbitrary and could easily be adapted to other exper-
imentally relevant scenarios, e.g. a low-frequency fluxo-
nium qubit (<1GHz) in contact with the same thermal
bath.
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Figure S4. Optimal pulse shapes for reset durations of (a) 100 ns, (b) 200 ns, and (c) 300 ns. The f0-g1 drive Ωf0g1 is illustrated
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