SUPERCONDUCTING QUBITS

BY ALEXANDRE ZAGOSKIN AND ALEXANDRE BLAIS

rom a physicist’s standpoint, the most interesting

part of quantum computing research may well be

the possibility to probe the boundary between the

quantum and the classical worlds. The more
macroscopic are the structures involved, the better. So far,
the most “macroscopic” qubit prototypes that have been
studied in the laboratory are certain kinds of supercon-
ducting qubits [13]. To get a feeling for how macroscopic
these systems can be, the states of flux qubits which are
brought in a quantum superposition corresponds to cur-
rents composed of as much as 10° - 10° electrons flowing
in opposite directions in a superconducting loop. Non-
superconducting qubits realized so far are all essentially
microscopic.

The advantage of quantum superconducting circuits
(QSC) as implementation of qubits is, first and foremost,
due to the macroscopically quantum coherent ground state
of superconductors, which (a) supports non-dissipative
flow of electrical current and (b) suppresses or outright
eliminates low-energy elementary excitations. The latter
property counterweighs the dangerous effects of a huge
number degrees of freedom, which exist in the solid state
and which would otherwise severely limit or totally
destroy the quantum coherence necessary for the operation
of'a quantum computer. In this way the primary advantage
of QSC allows the realization of the secondary one: as a
solid state based device, a superconducting qubit and a
more complex QSC can be more easily scaled up, can
have significant density, and can be produced using a well
developed set of design and fabrication methods.

SUMMARY

In special conditions, global degrees of free-
dom of small electrical circuits can behave
quantum mechanically and could be used as
quantum bits (qubits) for quantum informa-
tion processing. Prime examples are circuits
based on superconducting materials. Such
superconducting qubits have been demon-
strated experimentally with single, and more
recently, two-qubit logical operations being
performed coherently with them. Here, we
will review the three types of superconduct-
ing qubits currently being studied: charge,
flux and phase qubits. Single-qubit gates,
coherent interaction of qubits, as well as the
readout process will be discussed

Moreover, since these circuits are macroscopic, it can be
simpler to manipulate and read their state.

The necessity to operate at low temperatures is not a dis-
advantage of QSC, since almost all the quantum informa-
tion processing requires low temperatures in order to sup-
press the effects of noise.

DiVincenzo criteria

For the following, we will formulate an abbreviated set of
requirements to a QSC serving as a register of qubits, con-
densed from the “DiVincenzo criteria” [°:

1. A qubit is a two-level quantum system, which can be
controlled and read out.

2. A quantum computer is a set of N qubits, where, in
addition, certain two-qubit operations can be per-
formed.

3. The decoherence time (i.e. the time during which the
system maintains quantum coherence) must exceed
the time necessary to perform a single- or two-qubit
operation by a wide margin.

A qubit state can thus be described by a vector in a
2-dimensional Hilbert space spanned by the eigenstates
{0), |1)} of a Pauli operator 6°. Usually these states are
chosen to coincide with distinct classical states of the sys-
tem (e.g., corresponding to different electrical charge on a
capacitor; different directions of current in a circuit) and
which are easily distinguished in a measurement.
“Controlled” means that an arbitrary unitary transforma-
tion U can be applied on an arbritary state |y) of the sys-
tem: |y) - U|y). The “readout” requirement means that
projection of |y) on some directions in {|0), |1)} can be
realised and that the resulting classical states can be distin-
guished. The state of an N-qubit quantum computer
belongs to a 2MN-dimensional Hilbert space,
@ 1{10),,11),}, and the “two-qubit operations” demand
that, for at least some qubit pairs a, b, one could perform
arbitrary unitary transformations in the corresponding
Hilbert subspaces, {|0),,[1),} ® {|0),,[1),} in order to
entangle these qubits. The last requirement, that of a long
enough decoherence time, is necessary in order to pre-
serve the quantum information throughout a computation.

The major success of quantum information theory has
been to show that quantum error correction ! is possible
and that therefore the computation time is not limited by
the coherence time. As long as the error probability per
gate is below a certain threshold, one is able to do arbitrary
long quantum computations. In the literature, the most
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often cited threshold is 1074, but this number is extremely sen-
sitive to the assumptions about the noise and about the struc-
ture of the computer. It can be orders of magnitude smaller [¥]
or bigger [°], depending on the various assumptions that are
made. Unfortunately, the number of 10~* is widely cited, irre-
spective of these important assumptions.

The DiVincenzo requirements 1. and 2. are clearly satisfied by
a system whose “pseudospin” Hamiltonian is

H:ZEa.6ﬂ+26a'Jab'6b+..., (l)
a a,b

where 6, = (o), 0}, c>)is the vector of Pauli operators act-
ing on qubit a. In this expression, /. (the effective field acting
on qubit a) and J, (the strength of qubit-qubit coupling)
should be externally controllable to sufficient extent.

Alternative approaches to quantum computing

It is not our goal to discuss here the origin and the necessity of
DiVincenzo criteria, for which one is better directed to hand-
books on quantum computing (e.g., [10,11]). Nevertheless it is
useful to indicate certain approaches to quantum computing
which allow to simplify these requirements, and would be
especially well suited for an implementation using QSCs.

The standard approach to quantum computing is based on
quantum circuits, meaning the consecutive application of quan-
tum gates (one- and two-qubit unitary operations) to the sys-
tem, leading in the end to a highly entangled and fragile quan-
tum state, where the solution to the problem is encoded. (A
good illustration of the complexity of realizing a quantum cir-
cuit is given by the famous paper ['2], reporting the factoriza-
tion of the number 15 using the room-temperature NMR
approach. The operation required the application of around
300 n-pulses and 30 m/2-pulses) The DiVincenzo criteria
reflect the contradictory requirements to a quantum computer
implementing the quantum circuits approach: on the one hand,
the qubits must be maximally protected from the external influ-
ences to preserve quantum coherence; on the other hand, the
need to do precise time-domain manipulations on them leads to
complex control-and-readout circuitry, which will introduce
decoherence into the system.

The alternative schemes of quantum computing, such as clus-
ter state [13], topological ['41%], and ground state ['7] quantum
computing, avoid some of these difficulties. The most straight-
forward is adiabatic quantum computing (AQC)8191 In
AQC, the solution is encoded in the ground state of the system
evolving under an adiabatically slow change of a control
parameter. There are constructive proofs that for any standard
quantum circuit one can realize the corresponding AQC with a
local Hamiltonian and with no more than polynomial over-
head 29211, Remaining in the ground state to a significant
extent protects the system against relaxation and dephas-
ing 221, The precise time-dependent control over specific
qubits is no longer an issue for AQC. Therefore a solid state-
based, and in particular, QSC-based, implementation of an

AQC is feasible [23-23]. One should keep in mind that an exact
realization of the prescriptions of Refs. [20,21] may prove dif-
ficult in practice, while a deviation from it can lead either to
exponential, instead of polynomial, overhead, or to the system
ending up in one of the excited states. The question whether
useful results can be still obtained in this case was discussed
in [26].

Josephson effect

We have seen that a qubit must have two well-defined levels
that are used as logical states |0) and |1). However, in practice,
very few systems in nature are defined by only two levels. To
get around this, we can take two states in a nonlinear system
and treat them as an effective localized spin 1/2 (qubit). Due
to nonlinearity, the transitions to other states can be made prac-
tically negligible. In electrical circuits, the natural solution is a
superconducting Josephson junction [27-28): the only known
nonlinear and nondissipative electrical element.

Josephson junctions are formed by two superconductors sepa-
rated by a weak link (a tunneling barrier, constriction,
bridge, etc) (see Fig. 1). “Weak” means that the probability
amplitude for an electron to pass through the link (e.g., the tun-
neling matrix element K in case of a tunneling barrier) must be
small enough to be considered as a perturbation. The coherent
nondissipative current is carried by the Bose-condensate of
Cooper pairs of electrons with (in most superconductors) oppo-
site spins. A bulk superconductor is characterized by a posi-
tion-dependent complex superconducting order parameter A,
which up to a factor can be written as \/% exp(ip). In this
expression, 7, is the average density of electrons in the conden-
sate, and ¢ is related to the velocity of supercurrent BS < V¢.

(a)
ns,] ¢1

» X

ns,Z ¢ 2

Fig. 1 Josephson junction and Josephson effect. The state of the jth
superconductor is characterized by the “superconducting
electron density”, n, ., and superconducting phase, ¢,. In case

‘ g2 ST SY e
of tunneling Josephson junction, shown here, both the critical
current /, of the junction and its effective capacitance C
depend on thickness of the insulating layer, through which

the Cooper pairs tunnel.
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The supercurrent density is given by fs=nseﬁs. The order
parameter plays the role of macroscopic wave function of the
superconductor.

Following the approach due to Feynman (see [27]), valid
in case of a low-transparency barrier, we neglect the variation
of the order parameter within each superconductor and
describe the system by a two-component “wave function”,
Y= (\/Z1 exp(if, ), /1, , exp(id,))". Now, assume that there is
a voltage diffence V' between the superconductors, which
means that the energy difference between them is 2el (since
the Cooper pair has charge 2e¢). Then the Schrodinger equation
for ¥ can be written as

. el“Dx

H a ns,lelq’l eV K ns 1
mn— =

at ’ns,z eiq)l K —eV ’ns,Z eiq)z
After a simple calculation we find that dn_ /dt = (2Kn_,/h) sin

(0,=0,); d(®,—,)/dt =2eV/h that is, the celebrated formulae
for the DC and AC Josephson effect:

I, =1 sing; o=2elV/h. 3)

2)
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Here the phase difference ¢ = ¢,—¢,. The first equation in (3)
describes the non-dissipative, equilibrium, coherent flow of
electric current through the barrier, determined only by the
phase difference between the superconductors and the proper-
ties of the junction (all of the later being swept into the critical
current I ). In some cases, other functional dependences than
sin ¢ occur and these have interesting qubit applications that
will be briefly discussed later on. The second equation (3) tells
that if the phase difference is not constant, the current flow will
be accompanied by a finite voltage drop across the junction,
and vice versa.

The equilibrium current can be obtained from the appropriate
thermodynamical potential of the system: /,=0E/J®, where
® = @y /2m has the dimensionality of the magnetic flux, and
®, = h/2eis the superconducting flux quantum. Therefore we
add to the energy of the system its Josephson energy,

£ @=laon0=-"Lrcos0= 5,0 @)

From the AC Josephson effect and according to the relation
V= LI, we see that the Josephson junction can be considered
as a nonlinear inductance L :

(@) (b)

Fig. 2 (a) Simplest charge qubit*!]. (b) RF SQUID (single-junction flux qubit 3#!) and its potential energy, when the external magnetic flux
through the loop @, = ®/2. The flux quantum @ = //2e. (c) Three-junction flux qubit [36] and its Josephson potential profile as a func-
tion of two independent phase differences (see text) when ® = ®./2. Dots mark degenerate states, between which tunneling occurs.
(d) Phase qubit 3%31 and its Josephson energy (“washboard potential”). Two metastable states indicated can be used as qubit states |0) and
|1); Tyand I, >> T are the tunneling rates out of these states into the continuum.

gxx C O
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h
' 2el cos¢’ )

The fact that this inductance can be tuned (and even change
sign) by the stationary phase difference across the junction is
very useful for the applications.

As an example of this quantum inductance, consider the rf-
SQUID (Fig. 2b), i.e., a superconducting loop of inductance L
interrupted by a single Josephson junction. The quantization
condition [27), which follows from the single-valuedness of the
order parameter, connects the phase drop across the junction to
the total magnetic flux through the loop via

0+ 21(®, — LI,)/D, = 27n. (©)

Here ¢ is the total phase drop across all Josephson junctions in
the loop (if there are more than one), @, is the external flux
through the loop, and L is the self-inductance of the loop. The
response of the current in the loop to small changes in @, and
therefore the effective inductance of the SQUID, depends on
the value of @,.

The total energy of a Josephson junction also includes its elec-
trostatic energy:

E=Q12C+E,(®)=E.(N.~N,)" +E, (9). (N

Here Q is the electric charge on the junction’s capacitance, C,
and E = 4¢%/2C the charging energy (the Coulomb energy of
one Cooper pair). The charge O is expressed through N and
N_. The former is the number of Cooper pairs having tunneled
through the junction, while the latter depends on the system’s
configuration and its electrostatic interaction with its surround-
ings. E.g., when there is a voltage biased electrode of voltage
V', and of capacitance C to the junction (see Fig. 2a), we have
Ng =C,V_/2e+3N_ where 6N, is the effective charge on the
L& 8 g g g . . .. .
junction due to any other sources (like charged impurities) in
the proximity. While N is a discrete number, N, ; can take arbi-
trary values.

To certain extent, N and ¢ can be considered as conjugate
variables, similar to momentum and position 281, We can
therefore quantize Eq. (10) by replacing the classical variables
¢ and N, with operators satisfying the commutation relation

[cha)]:_i; ch_iaq); 3

we omit the hats on the operators further on. The situation is
in reality more complex than that, because N cannot take neg-
ative values, and ¢ is only defined modulo 2m (see
e.g., Ref. [29], §1.4.3). Nevertheless for large enough systems
with N> 1, Eq.(8) holds. Given this, the junction
Hamiltonian becomes

H=E.(=id,—N,)* —E, cos . )

Taking N, =0 and expanding the cosine around ¢ =0, we
obtain the Hamiltonian of a linear oscillator with the eigenfre-

quency o - ®20 =¢ = (iny2[[¢,H], H], that is,h@, = \|2EE, .
In practice, this plasma frequency is in the range of tens of
GHz.

BASIC TYPES OF SUPERCONDUCTING QUBITS

Three main classes of superconducting qubits, all based on
Josephson junctions, have been theoretically studied and tested
experimentally. These are phase, flux and charge qubits. The
relation between the parameters ho), £ and £, and the way
these qubits are biased distinguishes between the different

types.

Phase qubit

Phase qubits 3%31] operate in the phase regime, which is
defined by £, > E .. In this situation, the Josephson term dom-
inates the Hamiltonian (9). These qubits consist of a single
current-biased Josephson junction (Fig. 2d). The Hamiltonian
of the system can be written as

H=-E.0,-E, cosq)—[”z—q;o(])s—ECa;—EJ [cos(])+§—b¢} (10)

c

where the last term describes the effect of the external bias cur-
rent /,. This is the Hamiltonian of a quantum particle in a tilt-
ed washboard potential, see Fig. 2d. Since E;> E, in the
absence of bias, [, = 0, each energy well contains many almost
equidistant quantized levels, and the tunneling between differ-
ent minima (¢ =0, + 2w, +4m,...) is negligible. On the other
hand, the Josephson junction cannot support a nondissipative
current exceeding /. Indeed, when I, >/ the potential in (10)
no longer has local minima. The resulting solution with nonze-
ro () is called resistive state: the current is accompanied by
finite voltage [see Eq. (3)], and is dissipative due to the normal
resistance of the junction (which we neglected so far).

In the subcritical regime (in practice, when [, is about
0.951,—0.981 ) there remain only a few quantized levels in
every local minimum. The tunneling out of the first two levels
in a given potential through the barrier is still small enough,
and these can be taken as qubit states |0) and |1) 331 When
I, = I the phase ¢ = /2; expanding the Josephson potential in
(10) to the third order in ¢ = ¢ — n/2, we find

U,(9)=E,[(1-1/1,)0-¢"/6]. (1

The plasma frequency of the resulting cubic oscillator (i.e. the
frequency of small oscillations in the quadratic potential
approximating (11) near its minimum) is o, (/,)=
oy(1= (/1)) The transition frequency between the two
qubit states is w,; = 0.95w, and depends on the bias current.
The effective qubit Hamiltonian (10) becomes simply
H= —%Gz, corresponding to a spin-1/2 in a field along the z
direction. The x- and/or y- components, necessary for unitary
rotations of the qubit, can be implemented by adding an oscil-
lating component to the bias current at the qubit transition fre-
quency g I, =1, ;. +1j . coswyt+1}, sino,t The

. . . R 3 b,ac
effective Hamiltonian becomes [32]
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I I .
H=——hm°1 G+ f_ Lha o'+ h 2, (12)
2 20,C 2 20,C 2

The DC component of the bias current sets o, while the
cosine and sine quadratures produce the rotations around the x
and the y axis, respectively. The nonlinearity of the potential
(11) is crucial, otherwise the AC current pulses would also
excite transitions between higher levels, and out of the Hilbert
space spanned by |0) and |1). In other words, the system would
no longer be a qubit.

Advantages of phase qubits include the simplicity of design,
good control over the parameters in the Hamiltonian, simple
readout, weak sensitivity to charge and flux noise in the sys-
tem, and scalability. One of the relative disadvantages is the
sensitivity to low-frequency (i.e. 1/f) noise of critical and bias
current. This noise can be produced, for example, by micro-
scopic defects in the insulators of tunneling barriers. Another
is the absence of the optimal point, i.e., the degeneracy point
where symmetry would protect the qubit from certain kinds of
noise and, as we will see for other types of qubits, significant-
ly increase its coherence time. This is what has so far limited
the system to short coherence times (7, ~ 80 ns [33).

In phase qubits c*-operations must be realized with AC puls-
es. This has the disadvantage of requiring complex high-fre-
quency low-noise circuitry down to the very low operating
temperatures (~ 10 mK). On the other hand, using AC rather
than DC pulses allows for protection by low-pass filtration of
the qubit from the low frequency (1/f) noise coming from the
bias lines that can be significant.

Flux qubit

Another possibility to realize a qubit in the phase limit £, > £,
is by using a degeneracy between two current-carrying states of
an RF-SQUID (see Fig. 2b) 34l. In writing the Hamiltonian of
the system, the only difference with respect to the Hamiltonian
of Eq. (9) is that we now must take into account the magnetic
energy, but can neglect the effect of off-set charges N o

H=-E.0,—E,coso+E, ($—0,)/2. (13)

Here ¢, =2n® /@, is the reduced flux through the loop, and
the inductive energy scale is given by £, = ® (2)/475L. The situ-
ation differs from the previous case because now, if ¢, = , the
potential energy formed by the last two terms of Eq. (13) has
two almost degenerate minima. As illustrated in Figure 2b,
these states correspond to persistent current in the loop circu-
lating in opposite directions, and are conveniently used as the
|0) and |1) states of a qubit.

Tunneling between the two potential wells is enabled by the
charge term in Eq. (13). As a result, in the subspace {|0),/1)}
the effective qubit Hamiltonian is

A

H=—Ecz+—c’, (14)
2 2
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where ¢ o (1|H|1) — (0|H]|0) is the energy bias between the two
states, which is tuned by the external flux; A « (0|H|1) is the
tunneling amplitude. When ¢ >A, the eigenstates of (14) coin-
cide with [0) and [1). At the degeneracy point, &€ = 0 (¢, = 1),
these eigenstates are “bonding/antibonding” states |+) =
(0)£| 1))/ V2. The expectation value of the current circulating
in the SQUID loop, I, is the same in [+) and |-): (+|I+) =
(—[i]-). As a result, these two states cannot be distinguished by
observing the current, or the magnetic field it produces.
Therefore no external degrees of freedom that couple to mag-
netic field can interfere with the qubit when it is operated at this
optimal point; the coherence time of the qubit can thus be sig-
nificantly enhanced. Therefore it is convenient to always work
at this special operating point and use the corresponding eigen-
states as effective logical states of the qubit: [0,) =[+), |1,) =
|-). While the Hamiltonian (14) enables all qubit rotations with
DC pulses only, transitions between these states can also be
realized by applying RF flux pulses at the transition frequency,
same as in a phase qubit.

Note that no difference in observed current means that it is
impossible to read out the state of the qubit by looking at cur-
rent or magnetic field produced by the loop. One can either
move away from the optimal point for the read out, as was done
in earlier experiments, or to use dispersive readout discussed
later.

The major problem with the RF-SQUID design is that in order
to have a potential energy landscape with two well-defined
minima, both the inductance of the SQUID loop and the
Josephson energy must be large. First, this suppresses the tun-
neling; in the experiment [34] it was impossible to produce
coherent superpositions between the lowest states in the wells,
and instead the higher states, close to the top of the barrier, had
to be used; transitions to these states were induced by resonant
RF pulses. Second, due to large inductance the states |0) and
[1) produce quite large magnetic fields (these two states differ
by about one flux quantum @) and the minute deviations from
the optimal point lead to strong coupling to the environment
and fast dephasing. This problem is solved in the flux qubit
design of Ref. [35,36], Fig.2c, where the RF SQUID is
replaced by a loop of negligible inductance L but with three
Josephson junctions. In this case the total flux through the loop
practically coincides with the external flux, and the flux quan-
tization condition (6) becomes ¢, + ¢, + ¢ + 21D /D, = 2nn
(here the phase drop across junction 7 is ¢;). It leaves only two
independent phases (e.g., ¢, and ¢,). The Josephson energy of
the system provides a 2D potential landscape, £,(¢,0,; ¢,) =
- Ejcosh, — E , cosd, — E ;5 cos(¢,+ ¢, +¢,), plotted in Fig. 2¢
and containing suitable double well structures. The two qubit
states again produce circulating currents in the qubit loop.
However, the generated flux is now much smaller, and the two
states are separated by only ~10’3<I)0‘ As a result, unwanted
coupling to the environment is much weaker, with appropriate-
ly longer coherence times. The tunneling barrier can be also
lowered, enabling tunneling between the lowest states in each
minimum. The Hamiltonian of this qubit can be also cast in the
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form (14), and the same optimal point considerations apply.
Note that a consistent derivation of the limit L~ 0 from
Eq. (13) is rather involved B71.

While the fluxes produced by the persistent currents in |0)
and |1) only differ by about 10~ 3(1) , the difference of currents
themselves still involves ~10° — 106 single-electron states. A
state of the form (| 0)%|1))/v/2 V2 thus involves a superposition of
millions of charges flowing in two directions at once.
Superconducting flux qubits are truly macroscopic quantum
systems. (A more detailed analysis of how to define what is a
macroscopic quantum system is given in [38,39].)

Advantages of flux qubits are their weak sensitivity to charge
noise, comparatively easy readout, the ability to work at or near
the degeneracy point (optimal point). Moreover, in principle,
all operations on the qubit can be performed using DC pulses
only. Their main disadvantage is a very strong dependence on
the junction parameters. The tunneling splitting A is propor-
tional to \/EJEC exp[—\/EJ/EC ], while £, itself depends expo-
nentially on the barrier thickness. Such fluctuations as 1/f
noise in the critical current will thus have a big effect on the
qubit.

Charge qubit

The charge qubit (Fig. 2a) operates in the opposite regime from
the previous two types of qubits, the charge limit £, > E.
Now the states with definite charge, differing by a single
Cooper pair, are the working states of the qubit, and the
Josephson term is the perturbation. Historically, this the first
superconducting qubit to have been experimentally implement-
ed %411 This is not completely surprising given that, in a
way, it is the “most microscopic” of them all.

In order for a single Cooper pair to make a difference, two con-
ditions must be met 28] The charging energy E ~ ¢2/C must
far exceed both the thermal energy, kT, and the linewidth of
the charge states, AE ~ %/RC, due to their finite lifetime deter-
mined by the effective resistance and capacitance of the sys-
tem. Otherwise, the charge states are smeared out and cannot
form a good basis for a qubit. The second condition leads to
the requirement R > h/e2 ~ 6 kQ). As noted in Ref. 28, §7.1,
this becomes a problem, because at GHz frequencies dictated
by small capacitances C, the tunneling resistance will be effec-
tively shunted by small impedance ~ 50 - 100Q of the con-
necting leads (that is, bulk superconductors forming the banks
of the Josephson junction). The charge states will be washed
out by the quantum particle number fluctuations. As a result, it
is easier to observe charge effects in a small superconducting
island separated by high-impedance tunnel barrier from the
bulk superconductor, as shown in Fig. 2a. The Hamiltonian for
a charge qubit can be written as the sum of the electrostatic
energy and of the Josephson energy:

H=E.(N.—N,)’—E, cos¢. (15)

In the absence of Josephson energy, the states |[N,=0) and
INc=1) are degenerate when N,=C,V,/2e=1/2. Higher-

energy states can be neglected; then on the Hilbert subspace
spanned by these two states, the operator N, takes the form
N=1/2 (1-6°). The Josephson term lifts the charge degener-
acy; in this basis it can be written as £,6/2. The Hamiltonian
again takes the pseudospin form

H:—%EC(I—ZNg)GZ—%G", (16)

allowing all unitary rotations with DC pulses only. At the
charge degeneracy point, N, = 1/2, the ecigenstates of this
Hamiltonian are coherent superposmons of states (| 0) £ | 1))/~/2
differing by a single Cooper pair. Like in the flux case, it is
best to operate at this optimal point, and it is convenient to
make a transformation to the basis of logical qubit states
(10)£[1))/v/2: 6* - — 67 and 6 ~ 6. Then, denoting N, = 1/2
+N, 4 Cos(0t), we have

H= %oz + EcN, . cos(wr)c™. 17)
Now the Josephson energy plays the role of transition frequen-
cy for the qubit and AC voltage N, ,. can be used to induce
transitions between these states.

The advantages of the charge qubit operating at the optimal
point are similar to those of the flux qubit. The former howev-
er does not have the exponential dependance on parameters
that the flux qubit has. One of its main disadvantages is very
strong sensitivity to charge noise. This can be mitigated to
some extent by working in the intermediate regime, £, < E.
which was realized in the so-called “quantronium” ty and
more recently, the “transmon” qubit [43],

COUPLING QUBITS

Coupling by passive elements

By passive elements, we refer to the circuit elements with res-
onance frequency much higher than the |0) to |1) transition fre-
quency of the qubits they are coupling. As a result, the cou-
pling element willremain in its ground state at all times. In this
category, the most commonly studied (and experimentally
exploited) coupling elements are the usual linear elements of

(@) (b) ()

% k1 [
MIMNNY

S

| Te |
S | ©® “

Fig. 3 (a) Phase qubits and (b) charge qubits coupled through a
capacitor. (c) Flux qubits coupled through the mutual induc-
tance M.

220 ¢ PHysics IN CANADA / VoL. 63, No. 4 ( Oct.-Dec. 2007 )



electrical circuits: capacitances and inductances. Simplest pas-
sive couplings for phase (a), charge (b) and flux (c) qubits are
shown in Fig. 3. For phase qubits, joining one electrode of
each junction by a capacitance C, yields an interaction term [44]

_ h\/ wOl,a(DOI,be v

Yy
int C a~b?

(18)

between the qubits ¢ and b. Here oy, . is the transition fre-
quency of qubit j. If the difference between the qubit eigenfre-
quencies, ®g; ,— ®,; > 1S much bigger than the coupling

strength 7,/a,, o, ,C,/C, then this interaction term acts as a
perturbation on the qubits and can, for all practical purposes, be
ignored. Indeed, by moving to the interaction representation
with respect to the Hamiltonian of noninteracting qubits, we
will see that this term is fast oscillating and averages to zero,
and is therefore negligible (so called Rotating Wave
Approximation, RWA). On the other hand, if ), La— Qo1 the
term (18) cannot be neglected and leads to the qubit-qubit cou-
pling. Therefore the coupling can be turned on and off by tak-
ing the qubits in and out of resonance with each other (for
phase qubits, by tuning the qubit bias currents). If we use only
DC controls, there is an important difference betweenthe diag-
onal couplings (o’ c7) and off-diagonal ones (c'c} and 6)c)).
While the latter can be turned on and off by tuning the qubits,
the former is always on.

In practice, one cannot neglect finite inductances of connecting
elements (roughly L ~1nH per 1 um). Therefore even in
Fig. 3a the qubits are coupled through a harmonic oscillator of
frequency @, =/I/LC, . Taking the capacitance to be 1 {F [33]
and L =1 nH, its frequency is ~ 100 GHz, about 10-20 times
larger than the typical qubit transition frequencies. Therefore
we have indeed a passive coupling and can safely neglect the
finite inductance. In one experiment on capacitively coupled
phase qubits with large C, ~ 5 pF the effects of the excited LC
mode were observed [4],

The capacitive coupling of two charge qubits, Fig. 3b, leads to
a similar coupling term
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2
€ X X
Hint = 2C Gaob’ (19)

x

to which the same considerations apply.

Finally, Figure 3¢ shows two flux qubits coupled through a
mutual inductance M. Since external flux leads to a change in
energy bias £6,/2 in the single qubit Hamiltonian Eq. (14), this
coupling is

H,, =2MI 1,6°0;, (20)

where /. is the circulating current in qubit j. In the eigenbasis
of the qubits at the optimal point, this also takes the form
0,0}

One can use a bona fide LC circuit as a passive coupler [46-48]
(like in Fig. 4b); now several qubits can be connected to a sin-
gle circuit (quantum bus), and only those in resonance with
each other will couple. If the qubits themselves cannot be
tuned, one needs more complex passive coupling elements
(e.g., [49,50]). For flux qubits, coupling with tunable sign was
recently realized experimentally [31-52. The coupling scheme
used in [51] is shown in Fig. 4c. The external flux through the
coupler loop, @, = f®,, changes the phase shifts across the
junctions shared between the coupler and the qubits @ and b.
The resulting shift in the Josephson energy of the whole system
leads to the (diagonal) qubit-qubit coupling Jo o3 with

_h T(f)

R ey @1
Here 1, is the critical current of the shared junctions, and /(f,.),
I'(fc) are the circulating current in the coupler loop and its
derivative with respect to the coupler flux resp.; I, are the per-
sistent currents in the qubits. The couplingsign changes with
the sign of the derivative I'(fc), and the experimental dots in
Fig. 4c are in a good agreement with the formula.

Use of AC controls opens still more possibilities. The diagonal
coupling can be effectively cancelled by the techniques of refo-
cusing borrowed from NMR [33]. The off-diagonal coupling

can be tuned with RF puls-
es while staying at the

@ (6) X

40t

—~

20 -

J (mK)

L s

60

0 optimal point. The general
idea is to use the frequency
. control.  For example,
detune the qubits from
FM each other, so that
! 8 =w); , — W), exceeds
E the coupling strength; the
: coupling is effectively off.
; 1 RF irradiation of each

Fig. 4 (a) Charge qubits coupled through a tunable bus circuit (dashed) (adapted from Ref. [44]). (b) Flux
qubits coupled through an LC circuit (dashed). (¢) Tunable coupling of two flux qubits (adapted from Ref.
[51]). The coupling is tuned between ferro- and antiferromagnetic by changing the magnetic flux,
@ = fD,, through the coupler (dashed). Dots show the experimental data.

030 025 020 015 -0.10 qubits at the difference
T frequency & will effective-
ly turn on the interac-
tion [54]. Several different
frequency-control schemes
have been recently pro-

posed [35-601,
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Coupling by active elements

By these we understand the circuit elements whose typical
transition frequency are comparable to those of the qubits they
couple, and which therefore undergo transitions to excited
states. In other words, now the coupling between the qubits is
realized through their exchange of real, rather than virtual,
excitations with the coupler. Examples of couplers which can
be used in the active regime are shown in Figure 4. In Fig. 4a,
charge qubits are coupled through a current-biased Josephson
junction (CBJT) [#+01] Like in the case of a phase qubit, the
junction can be considered a tunable nonlinear oscillator, with
only the two lowest states involved, and is coupled to either
qubit through 8510 bse" The coupling strength g depends on
the coupling capacitance C; between the qubit and the oscilla-
tor. Since this interaction is off-diagonal, when the oscillator is
strongly detuned from the qubits, the oscilator-qubit interaction
is turned off. By sequentially tuning the oscillator in and out
of resonance with the two qubits, it is possible to entangle these
qubits while leaving the oscillator unentangled 4. In this
way, several qubits can be coupled to the same oscillator,
which plays the role of the data bus. Since it is the coupling
bus and not the qubits that are tuned, the qubits can remain at
their optimal point throughout the manipulations. The same
approach works for other types of qubits as well (Fig. 4b).

For a more exhaustive review of coupling schemes the reader
is directed to Ref. [62].

Qubits coupled to oscillators: circuit QED

The natural way superconducting qubits and oscillators couple
to each other led to the insight that superconducting quantum
circuits allow to realize an analogy to quantum optics in gener-
al [93] and to strong coupling cavity quantum electrodynamics
(cavity QED) [64:95] in particular. This was pointed out by sev-
eral authors [44:60-091  In this section, we will focus on the work
of Ref. [70]. As shown in Fig. 5, this proposal is based on a
charge qubit fabricated inside a high quality superconducting
transmission line resonator. In the lumped element description,

Fig. 5 Circuit QED (adapted from Ref. [70]): a charge qubit coupled
to a strip line, and the simplified scheme of the system
(inset).

the transmission line resonator can be seen as a series of LC
circuits connected to external leads by capacitances C,. The
finite length / of the resonator sets up its characteristic frequen-
cy. The electromagnetic field transmission between the input
and output ports of the resonator is maximal at this frequency
and its harmonics; with / = 25 mm, these resonances are in the
microwave range.

Close to one of these resonances, the resonator Hamiltonian is
H.=%o.ata, where @, =1/J/LC, and a (a") are the annihila-
tion (creation) operators. The qubit is biased not only by a DC
or AC current (that can be applied on the input port of the
resonator), but also biased by the voltage across the LC circuit.
This voltage can be written as V.= V2 (a'+a), where
Vo =hw,/2C is the rms value of the voltage in the ground
state. In practice, this rms voltage can be as large as a few
wV 43 71-83] - Inserting this in the Hamiltonian of a charge
qubit DC-biased at the optimal point (17), we find
H=30"-g(a" +a)o", where g=eV{ C/Cy is the qubit-
oscillator coupling strength, with C, the oscillator-qubit cou-
pling capacitance and Cy total capacitance of the qubit.
Writing 6¥=c" + o~ and neglecting fast oscillating terms
(RWA), we can write the qubitt+oscillator Hamiltonian as

H= h(orafa + h%cz —hg(a'o™ +06%a), (22)

with hw, =E. This expression is the Jaynes-Cummings
Hamiltonian of quantum optics [63] which is traditionally used
to describe the physis of a two-level atom of frequency ®  cou-
pled to the photon field inside a cavity of frequency o, (64651,
Due to this correspondence one calls this architecture circuit

QED.

Circuit QED has several advantages over cavity QED. First,
due to the small volume of the transmission line resonator and
to the large effective dipole moment of the charge qubit, the
coupling strength g can be made much bigger. Second, the
positions of real atoms inside a 3D cavity fluctuate in space,
leading to a fluctuations in the coupling g, which interfere with
quantum information processing. In circuit QED, the position
of the qubit in the resonator is fixed. Third, it is possible to fab-
ricateseveral qubits inside a single resonator and to entangle
these qubits by using the resonator as a quantum bus [74],
Circuit QED is thus interesting both for quantum information
processing applications and as a tool to study new regimes of
quantum optics.

READOUT OF SUPERCONDUCTING QUBITS

To be useful as qubits, the quantum states of QSCs must allow
an efficient readout. In practice, the readout circuitry will be
microfabricated in a proximity to the qubit. The challenge is
thus to have this circuitry strongly coupled to the qubit during
measurements (to have a fast measurement on the scale of the
qubit’s T) but strongly decoupled during computations (to pre-
vent additional decoherence and relaxation of the qubit).

For phase qubits, the readout circuitry is an integral part of the
qubit design. The measurement is based on the large difference
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between the tunneling rate T'; of the logical states [i) [39. As
illustrated in Fig. 2d, to realize a measurement, the DC bias
current is rapidly increased in such a way that while levels |0)
and |1) remain in the well, the level becomes very close to the
top of the potential barrier, so that I'; > I';. As a result, if the
qubit is in the state |1), it will rapidly decay in the continu-

m 73], producing the resistive state and thus a voltage of the
order of the superconducting gap (~ 1 mV) across the junction.
Detection of this voltage measures the qubit state. An impor-
tant drawback of this is the generation of quasiparticles due to
the finite voltage. These will affect the qubit itself and lower
the coherence time of neighboring qubits. Therefore, in more
recent experiments the junction forming the qubit was embed-
ded in a loop of finite inductance. Now the system tunnels
from the local potential minimum not into the continuum of
states, but in a large but finite potential well. As a result, there
is no voltage drop across the junction, but a change of flux in
the qubit loop by @, The latter is detected by a DC-
SQUID [76], Remarkably, if the qubit is not kept biased long
enough for the state |1) to decay with certainty, a partial meas-
urement is realized [77], accompanied by the probability ampli-
tude concentrating in the state |0).

For charge and flux qubits, the first readout methods to be
experimentally realized detected directly the charge (flux)
associated with the qubit states. For charge qubits [*!], this was
first realized by capacitively coupling a superconducting sin-
gle-electron transistor (SET) [*%), a highly sensitive charge
meter, to the island of the qubit. The radio-frequency version
of the superconducting SET (RF-SET) [7#] has also been used
in more recent experiments [7%-81]. By working at RF rather
than at DC, the RF-SET can be much faster than regular SETs
and is also less sensitive to 1//noise due to charge fluctuations.
For flux qubits, the direct readout was realized by inductively
coupling a DC-SQUID to the qubit 34301,

A problem with the above mentioned approaches is that they do
not work at the optimal point, where, as discussed earlier, the
observable values of currents (fluxes) or charges in both qubit
states coincide. Away from the optimal point the system is
exposed to extra decoherence and relaxation, especially if the
qubit’s environment is highly structured [7®]. A partial solution
is provided by the phase-charge readout developed by the
Saclay group [*21. A different approach, dispersive readout, is
based on the observation that, while the currents (charges) at
the optimal point are the same in both qubit states, their deriv-
atives with respect to the control parameters are not. This can
be done by coupling the qubit to a resonator and measuring the
latter’s susceptibility, dependent on the quantum state of a
qubit. In case of a relatively low-Q lumped LC circuit far away
from resonance (strong detuning) this approach was developed
and implemented for flux qubits by the Jena-Vancouver collab-
oration 3182841 (with direct inductive coupling) and by the
Delft group [33-87] (with the coupling through a DC SQUID).
In a similar way, measurement of the quantum capacitance was
also realized with lumped resonators in the very strong detun-
ing regime with charge qubits [88:89],
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In the remainder of this section, we will discuss in more detail
the dispersive readout in circuit QED, where this approach is
especially effective 4371731, Tt works by going to the disper-
sive  regime, where the qubit-resonator detuning
A =h(ow,— ®,)is much larger than the coupling strength g.
In this situation, the Jaynes-Cummings Hamiltonian of
Eq. (25) can be replaced, at the optimal point (%, = 1/2) and to
second order in the small parameter g/A, by the effective
Hamiltonian

H, :h(cor+xcsz )a*a+h%cz, (23)

where @, =, +y and hy, = g%A. The term yoata in (23) acts
as a shift of the cavity frequency that depends on the state of
the qubit. Indeed, in this situation the effective resonator fre-
quency is no longer w,, but is now ®,*y depending on
(6%) ==+1. Using this frequency pull, it is possible to read out
the state by measuring the phase and amplitude of an RF signal
transmitted between the ports of the resonator. These quanti-
ties indeed contain information about the state of the
qubit [70:90]

Dispersive readout has several important advantages over the
approaches that directly measure charge or flux. First, the
qubit can be operated and measured at the optimal point. This
is because it measures not the charge on the qubit’s island but
rather the resonator frequency pull which is related to the guan-
tum capacitance of the qubit [7%. Second, it is actually at the
optimal point that this quantum capacitance (or quantum induc-
tance in the flux case) is maximally different for the two states
of the qubit. Thus, with this dispersive measurement, there is
maximal signal at the optimal point. Third, there is no energy
exchange between the qubit and the resonator systems during
readout, and the resonator is measured in its eigenstate. This
leads to what is known as quantum non-demolition (QND)
measurement [3] and is ideally suited for quantum information
processing. Last, but not least, the readout is only active when
signal is sent at the input port of the resonator, which realises
the desired coupling/decoupling requirement for a quantum
readout.

FURTHER READING

The short format of this review allows us neither to include all
the important topics concerning superconducting quantum cir-
cuits, nor to cover the ones included in due detail. We try to
remedy this by providing here a list of additional sources,
which should be accessible based on what have been discussed
here so far.

Reviews on SQC

A concise and accessible description of different types of
superconducting qubits is provided in [1] and, with a varied
degree of generality, in [2-5]. The first comprehensive review
is Ref. [47]. Recent pedagogical reviews are Refs. [62,91].
The paper °!] describes all qubits as examples of a nonlinear
quantum circuit, with an emphasis on the phase qubit. The
review [92] contains also a description of abstract qubit manip-
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ulations (Sect.IV) and of the theoretical formalism necessary to
analyze classical and quantum superconducting circuits (Sect.
V and VI). Recent advances are reviewed in Refs. [92,93].

Superconductivity

Introductory information on theory of superconductivity and
Josephson effect can be found in Ref. [27]. The classic
book [28] devotes a whole chapter (Ch.7) to the effects in small
Josephson junctions highly relevant for the qubit theory. This
topic is also covered in Ref. [29], Ch.4.

Theoretical formalism

Detailed explanation of the formalism allowing a uniform
description of arbitrary quantum superconducting circuits,
based on a Lagrangian approach, is given in Refs. [94,95]. The
formalism is linked to the graph description of complex cir-
cuits, standard in electrical engineering. Effective
Hamiltonians for qubit manipulations and qubit-qubit coupling
are derived in Refs. [37,96].

Decoherence and dissipation

Sources of decoherence in various superconducting qubits are
discussed in Refs. [32,76,97-109].

Recent experimental progress

After significant improvements to the initial design, two-qubit
quantum operations (equivalent to a universal JiSWAP gate)
were demonstrated in two capacitively coupled phase
qubits 331101 In particular, in Ref. [33], quantum state tomog-
raphy [''!] was realized to extract the density matrix represent-
ing the state of the coupled qubits. An experiment with two
phase qubits capacitively coupled through a series LC res-
onator showed the evidence for entanglement between the
qubits and the resonator mode [*3]. In single phase qubits the
behaviour of quantum two-level systems (TLS), which are
believed to be the main source of 1/f noise, was investigated,
and coherent beats between a TLS and a qubit were
observed [76:196] " This led to a proposal [*®] to use such TLSs
as naturally formed qubits, with the phase qubit playing the
role of a quantum bus.

With flux qubits, much effort was devoted to the development
of structures suitable for adiabatic quantum computing. After
the initial proposals [23-24] coupling between two [112],
three 231 and four [34 flux qubits was realized in the quantum
regime, and entangled eigenstates were formed. We already
mentioned tunable coupling between two flux qubits 1521131,
Time- domain tunable coupling betweenflux qubits and a sim-
ple quantum protocol were experimentally realized in
Ref. [114]. Multiphoton Rabi oscillations were observed in a
flux qubit [!13]. In Ref. [116] a flux qubit was measured using
the Andreev probe, that is, measuring the electrical conduc-
tance in a non-superconducting (in this particular case, silver)
wire connected by superconducting leads to two points of the
qubit loop. The normal current through the wire is carried by
so-called Andreev levels in a normal conductor sandwiched

between superconductors (see Ref. [29], §A.2). The conduc-
tance is therefore sensitive to the phase difference, and allows
to determine the state of the qubit with a minimal backaction.

The longest relaxation and dephasing times for charge qubits
(8us and 500 ns, respectively) were measured with a qubit fab-
ricated inside a transmission line resonator (circuit QED) [73].
Recently, the same design was used to non-destructively meas-
ure the photon number population of a resonator [*3]. In flux
qubits dephasing times as long as 4 s 117 were observed.

A new latching readout based on the non-linear dynamics of a
large  Josephson  junction was implemented ['18],
Distinguishing features of this approach are that it is dispersive
and that, once the readout as occurred, information about the
logical state of the qubit is encoded in the dynamical state of
the junction for a long time. This allows, in principle, to accu-
mulate enough signal about the state of the qubit to overwhelm
any noise in the circuitry. This type of latching readout was
also applied to flux qubits 371,

Exotic superconducting qubits

“Phase slip” qubit proposed in Ref. [119] replaces the tunnel-
ing Josephson junction of an rf SQUID qubit by a thin super-
conducting wire (bridge), which plays the role of the tunnel
barrier. The geometric inductance of the loop can be kept
small, because now the main role is played by the kinetic
inductance L, which relates the supercurrent increase to the
change in the superconducting phase difference, L, I, :q;—jf’.
“Andreev level” qubit ['2%] replaces the tunneling Josephson
junction by another type of weak link, a quantum point contact,
i.e., a constriction, in which only a few conducting modes can
fit (see Ref. [29], Ch.4). The Andreev levels are formed inside
the constriction and carry the Josephson current. In either case,
the effective tunneling matrix element should not exponential-
ly depend on the microscopic properties of the wire (point con-
tact). It is therefore expected that such qubits would be easier
to fabricate, and they would be less sensitive to 1/fnoise, than
a flux qubit. “d-wave qubits” using high-T , superconductors
were proposed in Refs. [121-123]. Due to their d-wave pairing
symmetry, the Josephson junctions with such superconductors
may have an intrinsically degenerate ground state and there-
fore do not require external circuitry to stay at the optimal
point. The ground state degeneracy in YBCO Josephson junc-
tions was experimentally verified in Ref. [124]. The feared
decoherence from nodal quasiparticles could have been overes-
timated (). Recent observations of macroscopic quantum tun-
neling in d-wave junctions based on YBCO [!25] and
BiSCCO [126:127] 35 well as coherent transitions in an YBCO
junction ['28] lend credibility to these conclusions and make
the possibility of high-T , qubits more realistic. Interestingly,
YBCO junctions with n-phase shifts were also recently incor-
porated in RSFQ devices ['29], which, of course, work in a clas-
sical regime. Due to the interplay of magnetic and supercon-
ducting ordering, a Josephson junction with a ferromagnetic
barrier can have an equilibrium phase difference m [96:130],
Inserting such a junction in a flux qubit loop (a “SFS qubit”) is

224 « PHysics IN CANADA / VoL. 63, No. 4 ( Oct.-Dec. 2007 )



SUPERCONDUCTING CUBITS (A. ZAGOSKIN ET A. BLAIS)

equivalent to putting in it a ®/2-flux quantum and thus pro- ing the boundaries between quantum and classical behaviour of
duces the intrinsic degeneracy of the ground state. nature, which makes them so attractive objects of research.

In conclusion, we can confidently state that superconducting ACKNOWLEDGEMENT
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