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Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum
processors. However, most couplers achieve this by fine tuning circuit parameters and often target specific
couplings, such as the spurious ZZ interaction. We introduce a superconducting coupler that alleviates
these limitations by suppressing all two-qubit interactions with an exponentially large on:off ratio and
without the need for fine tuning. Our approach is based on a bus mode supplemented by an ancillary non-
linear resonator mode. Driving the ancillary mode leads to a coupler-state-dependent field displacement
in the resonator that, in turn, results in an exponential suppression of real and virtual two-qubit interac-
tions with respect to the drive power. A superconducting circuit implementation supporting the proposed
mechanism is presented.
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I. INTRODUCTION

Two-qubit couplers are useful components for quantum
information processing as they enable fast and high-fidelity
operations between qubits while reducing crosstalk during
idle times. Several superconducting coupler designs have
been theoretically proposed and experimentally imple-
mented [1–18]. These devices can, in principle, offer pre-
cise control of two-qubit interactions while helping to
mitigate frequency crowding effects in multiqubit proces-
sors such as to improve gate speed and fidelity. There are,
however, limitations to the performance of current cou-
plers. For instance, while couplers are designed to activate
interactions between qubits on-demand, spurious interac-
tions can remain active when the coupler is tuned to its
off state. A common example is the ubiquitous always-on
cross-Kerr, or ZZ, coupling [3,4,19–22]. A second diffi-
culty is that the coupler’s on:off ratio is often sensitive
to first order in a control parameter, such as an external
magnetic flux, thus requiring fine tuning and frequent cal-
ibration. Couplers that do not rely on frequency tuning do
not suffer from this, but the lack of tunability comes with
its own set of challenges such as large crosstalk errors dur-
ing idle times. Finally, the impact of these effects could be
exacerbated in multiqubit devices where frequency shifts
from spectator qubits can counteract fine tuning.

Here, we alleviate these issues by introducing a tun-
able coupler with an exponentially large on:off ratio and
that does not require fine tuning of the coupler or qubit
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parameters; see Fig. 1. This is realized by adapting some
of the ideas of protected qubits to coupler designs. Broadly
speaking, the large on:off ratio is achieved by connect-
ing a bus mode responsible for qubit-qubit interactions
to an ancillary driven nonlinear resonator, in such a way
that the bus transition matrix elements that control two-
qubit interactions vanish exponentially with respect to the
amplitude of the drive on the ancillary system. This key
feature renders the coupler, which includes the bus and
the driven nonlinear resonator modes, exponentially insen-
sitive to noise and relaxes the need for fine tuning. This
proposal is particularly well suited to processors based on
protected qubits such as Kerr-cat [23,24] and fluxonium
[25,26] qubits where exponential suppression of multiqubit
crosstalk would enhance the intrinsic robustness of the
processor against noise.

This paper is organized as follows. In Sec. II we
describe the physical mechanism enabling the exponen-
tial suppression of two-qubit interactions and introduce a
model Hamiltonian realizing this mechanism. In Sec. III,
we report numerical results demonstrating the exponen-
tial suppression of qubit-qubit interactions mediated by the
coupler and discuss implications in the context of large-
scale processors as well as some of the limitations of the
proposed design. Finally, we introduce a superconducting
circuit implementation of these ideas in Sec. V.

II. WORKING PRINCIPLE AND HAMILTONIAN
MODEL

Figures 2(a) and 2(b) schematically illustrate the pro-
posed device consisting of two qubits, labeled Q1 and
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FIG. 1. Two-qubit coupling strength versus control parameter.
For standard coupler designs, the on:off ratio depends linearly
with respect to a control parameter λ (orange line). This results
in linear sensitivity to noise in the control parameter. Our coupler
design implements a two-qubit coupling that can be exponen-
tially suppressed with respect to the control parameter (green
line). Therefore, sensitivity to noise in the off state of the coupler
is exponentially small, and the need for fine tuning is relaxed.

Q2, which are coupled via a bus mode B also con-
nected to a driven nonlinear resonator mode R. In the
absence of a drive on the nonlinear resonator, the system
reduces to a standard circuit QED setup where the bus
mediates energy-exchange interactions between the qubits
[3,4,20–22,27,28]. We assume that the qubit-bus interac-
tions (full lines) can be modeled by a Jaynes-Cummings-
type Hamiltonian. On the other hand, the bus-resonator
interaction (dashed line) is engineered such that, upon driv-
ing R, the resonator field undergoes a bus-state-dependent
displacement characteristic of a longitudinal interaction
[29–32]. As a result, a distinct resonator coherent state
|αn〉r is associated with each bus eigenstate |n〉b, such that
the states |ψn〉 = |n〉b|αn〉r are stabilized. Then, transitions

between the mth and nth low-energy eigenstates of the bus
are suppressed in the coherent-state amplitude

|n〉〈m|b ⊗ 1r −→ e−|αn−αm|2/2|ψn〉〈ψm|. (1)

Because all two-qubit interactions are mediated by real or
virtual transitions amongst the bus eigenstates, suppressing
these transitions robustly switches off all interactions medi-
ated by the coupler. As discussed below, if the bus mode is
constrained to its ground state, only the virtual transitions
of the form 0 → n need to be suppressed for all n. This
mechanism is reminiscent of the strategy used to protect
cat qubits from spurious bit flips [23,24,33,34].

An effective Hamiltonian realizing this decoupling
mechanism can be put in the form

Ĥ =
2∑

j =1

Ĥ j + Ĥ b + Ĥ r +
2∑

j =1

Ĥ jb + Ĥ br + Ĥ br−nl, (2)

where

Ĥ j /� = ωj q̂†
j q̂j + Kj

2
q̂†2

j q̂2
j , (3)

Ĥ b/� = ωbb̂†b̂ + Kb

2
b̂†2b̂2 (4)

are the qubits (j = 1, 2) and bus Hamiltonians modeled as
Kerr-nonlinear oscillators, and

Ĥ r/� = ωrr̂†r̂ − ε(t)e−iωdtr̂† − ε∗(t)eiωdtr̂ (5)

is the quadratic part of the driven nonlinear resonator
Hamiltonian subject to a drive of amplitude ε(t) and fre-
quency ωd. In these expressions, q̂1, q̂2, b̂, r̂ are the anni-
hilation operators of Q1, Q2, B, and R with mode frequen-
cies ω1,ω2,ωb,ωr, and anharmonicities K1, K2, Kb and Kr,
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FIG. 2. Illustration of the proposed superconducting coupler. (a) In the on state of the coupler the driven nonlinear resonator (R)
does not participate in the two-qubit interactions mediated by the bus mode. Local drives on the qubits or bus activate two-qubit gates.
(b) In the off state, R is subject to a microwave drive that strongly suppresses two-qubit interactions that are mediated by the bus.
(c) Metapotential of R for the bus states |0〉b (orange) and |1〉b (purple). Here δ/2π = −5.0 MHz, χ/2π = −20.0 MHz, and Kr = 0.
To help visualization, the metapotential E(I , Q) is renormalized as E[(δ + nχ)|α0/4|2]−1 for the nth bus state and white corresponds
to unity. The global minima of the metapotentials for n ≥ 2 are close to the global minimum of the n = 1 metapotential, but are not
shown for simplicity.
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respectively. Although our Hamiltonian model is formu-
lated for the case of transmon qubits [35], which can
be described as Kerr nonlinear oscillators, our coupling
scheme is in principle applicable to other qubit modal-
ities. The qubits interact with the bus mode through a
Jaynes-Cummings-type Hamiltonian of the form

Ĥ jb/� = gj (q̂
†
j b̂ + b̂†q̂j ), (6)

where gj is the coupling strength, while the bus mode
interacts with the resonator via the cross-Kerr coupling
Hamiltonian

Ĥ br/� = χ b̂†b̂r̂†r̂, (7)

which makes the resonator frequency conditional on the
bus state via the dispersive shift χ . As will be made clear
below, unlike in common circuit QED setups, a large cross-
Kerr interaction |χ/gj | will be necessary for our protocol.
For the last term of Eq. (2), we assume the form

Ĥ br−nl/� =
∑

n

Kr

2
|n〉〈n|b ⊗ r̂†2

n (t)r̂
2
n(t), (8)

where n runs over all bus states, and r̂n(t) = r̂ −
αn(t)e−iωdt. This interaction corresponds to a displaced
self-Kerr nonlinearity of the resonator and will be shown to
constrain the system dynamics to a low-energy manifold.
This synthetic six-wave mixing can be experimentally
challenging, but we present a circuit implementation in
Sec. V that approximates such a term. Moreover, we show
in Sec. IV how to trade this nonlinear interaction for two
additional drives on the resonator.

Momentarily ignoring the effect of Kr, the drive on the
resonator grows a coherent state of amplitude αn satisfying

iα̇n(t) = (δ + nχ − iκ/2)αn(t)− ε(t), (9)

which, because of the interaction Ĥ br, is conditional on the
bus state |n〉. Here, δ = ωr − ωd is the frequency detuning
between the resonator and the drive, and κ is the single-
photon loss rate of the resonator. Omitting the qubits, the
Hamiltonian of Eq. (2) together with single-photon loss
stabilizes joint bus-resonator states of the form |ψn,k(t)〉 =
|n〉b|αn(t)e−iωdt; k〉r, where |α; k〉r = eαr̂†−α∗ r̂|k〉r is the kth
Fock state displaced by an amplitude α. This can be more
clearly seen by plotting the metapotential associated with
the Hamiltonian Ĥ with the qubit modes traced out and
for Kr = 0, obtained by replacing the operator r̂ (r̂†) with
the complex variable I + iQ (I − iQ). As illustrated in
Fig. 2(c), this metapotential has a single well correspond-
ing to a stable point of the system and whose position in
the I -Q plane is distinct for each bus state |n〉b. More-
over, because the latter states are associated with coherent

states |αn〉r that are disjoint in phase space, bus transitions
are effectively suppressed. If the system is energetically
constrained to the first state |ψn,0(t)〉 of the metapotential
wells, we recover Eq. (1) where the matrix elements of the
bus mode are exponentially suppressed with respect to the
drive amplitude. The nonlinear interaction Ĥ nlbr of ampli-
tude Kr plays the role of a self-Kerr nonlinearity within
each well of the resonator metapotential. As a result, sim-
ilarly as in the Kerr-cat qubit [23], this Kerr nonlinearity
helps constrain the system’s dynamics to the low-energy
states of each of the metapotential wells.

Rapid switching between the on and off states of
the coupler is realized by taking advantage of the
transitionless-quantum-driving (TQD) method to rapidly
displace the coherent state in the resonator starting from
vacuum [36]. In the numerical simulations that are dis-
cussed below, we use the pulse shape

ε(t) =
(
ε0(t)− iε̇0(t)

δ − iκ/2

)
�(τ − t)+ ε0(τ )�(t − τ),

(10)

where ε0(t) is a smooth drive amplitude, ε0(0) = 0, and
�(x) is the Heaviside step function. With this choice of
drive envelope, the steady state reached at time τ takes the
form

ᾱn � ε0(τ )

δ + nχ − iκ/2
(11)

for each bus state |n〉b.
To avoid overlapping metapotential wells and strongly

suppress the bus transitions 0 ↔ n, the system parameters
are chosen such that ᾱ0 is large with respect to any other
ᾱn. This last requirement ensures that the bus ground state
is well separated in energy from the resonator excitations,
maximizing the exponential suppression of the two-qubit
interaction. More precisely, this is achieved for |δ/χ | 
 1
and |κ/χ | 
 1. We note that choosing the drive such as
to make ᾱn�=0 large is also a valid strategy. However, we
numerically find that increasing ᾱ0 performs better for
small to moderate values of Kr. Importantly, the TQD pro-
tocol is reversible and can be used to bring the coupler back
to the on state by emptying the resonator in a time much
faster than 1/κ . The details of this analysis are provided in
Appendix A.

III. NUMERICAL EXPERIMENTS

A. Suppression of bus transitions

We now turn to numerical simulations of the concepts
presented in the previous section. To illustrate the working
principle—the suppression of bus-state transitions in the
presence of a drive on the resonator—we first simplify the
setup by omitting the qubits. In lieu of the qubits, we add
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a drive term of the form

Ĥ Rabi/� = 
(e−iω̃btb̂† + eiω̃btb̂), (12)

where 
 is the drive amplitude and the drive frequency ω̃b
is set to the ac-Stark-shifted 0-1 transition frequency of the
bus

ω̃b = ωb + δ(δ + χ)− (κ/2)2

χ
|ᾱ|2 (13)

with

ᾱ = ᾱ1 − ᾱ0 = − χ

δ + χ − iκ/2
ᾱ0 (14)

being the distance between the metapotential wells associ-
ated with the ground and first excited states of the bus. In
the on state of the coupler, the resonant drive on the bus
will result in Rabi oscillations between |0〉b and |1〉b. In
the off state, bus transitions, and therefore Rabi oscilla-
tions, are exponentially suppressed with the coherent state
amplitude ᾱ0.

Indeed, according to Eq. (1), we expect the Rabi fre-
quency in the presence of a drive on the resonator to take
the form


̃ ≈ 
 exp(−|ᾱ|2/2). (15)

Following Eq. (14), |ᾱ| is bounded by |ᾱ0|. Indeed, 0 ≤
|ᾱ| < |ᾱ0| where the lower bound corresponds to χ = 0 or
ᾱ0 = 0, and the upper bound is reached for |χ | → ∞. As a
result, increasing |χ | results in a stronger suppression of 
̃.

Figure 3(a) shows the Rabi frequency 
̃ obtained from
numerical integration of the coupler master equation based
on Eq. (2). The result includes damping in the resonator
but excludes decoherence in the bus, and it is computed for
different equilibrium values of |ᾱ0|2 and cross-Kerr inter-
actions χ . The data points are extracted from fits to the bus
population 〈b̂†b̂〉(t) with the bus and resonator initialized
to the vacuum state; see panel (c). The numerical result
(symbols) is in excellent agreement with Eq. (15) (dashed
lines) and displays the expected exponential suppression of
the bus Rabi oscillations. This suppression becomes more
significant for increasing cross-Kerr coupling |χ |/2π that
is shown here ranging from 5 to 20 MHz. We note that
these results are obtained for Kr = 0. In the absence of the
qubits (gj = 0), choosing small |
/δ| guarantees that the
dynamics is mainly generated by states |ψn,0〉 for which
the exponential suppression of the Rabi frequency is max-
imized. Indeed, the states |ψ0,k〉 are separated in energy
by δ and, thus, to prevent transitions to k �= 0 states dur-
ing a 1 → 0 bus transition, we ideally require the matrix
elements of Rabi drive Hamiltonian in the state basis
|ψn,k〉 to be small relative to δ, i.e., |
〈ψ0,k|b̂|ψ1,0〉/kδ| =
|
̃ᾱk/kδ

√
k!| 
 1 for k �= 0.
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FIG. 3. Renormalized bus (a) Rabi frequency 
̃/2π and (b)
dephasing time T̃ϕ under a resonant 
/2π = 1 MHz microwave
bus drive as a function of the photon number in the res-
onator, |ᾱ0|2. The results are obtained using a 5-ns-long TQD
scheme with κ/2π = 100 KHz, δ/2π = −5 MHz, Kb/2π =
−300 MHz. The cross-Kerr χ/2π is varied in the range −5.0
to −30.0 MHz. Fits are done by comparing the time evolution to
that of an effective two-level system, including both T1 and T2.
Dashed lines correspond to Eqs. (15) and (16). (c) Example of
the time-evolution traces that are fitted for |ᾱ0|2 = 11.

In the presence of single-photon loss in the resonator,
the distinct coherent states associated with the different
bus states lead to bus dephasing. This originates from the
“which-bus-state” information that is carried by the lost
photons, something that is akin to measurement-induced
dephasing in the dispersive readout of circuit QED [37].
With Tϕ denoting the bare bus dephasing time, the coher-
ence time in the presence of the resonator drive takes the
form

T̃ϕ ≈
(

1
Tϕ

+ κ

2
|ᾱ|2

)−1

. (16)

Figure 3(b) shows this dephasing time extracted from the
numerical simulations including κ �= 0 [symbols]. Simi-
larly to the previous case, we find excellent agreement
with the analytical expression (dashed lines). To isolate
the effects of resonator dissipation on the system, we have
omitted intrinsic relaxation and dephasing of the bus mode.
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A key observation is that, while transitions between the bus
states are suppressed exponentially with ᾱ, dephasing only
increases polynomially with this quantity. Moreover, we
demonstrate below that the dephasing induced on the bus
mode does not percolate to the qubits.

B. Suppression of two-qubit interactions

Having numerically confirmed that suppressing the
bus transitions by driving the resonator is possible, we
now reintroduce the qubits to the model and explore
the two-qubit decoupling. In particular, we characterize
the hybridization between the qubit and bus modes as a
function of the resonator drive parameters and demon-
strate how spurious two-qubit couplings, such as the ZZ
interaction, are exponentially suppressed.

We now take Kr �= 0 in Eq. (2). In the presence of
this term, Eqs. (5), (7), and (8) still stabilize displaced
Fock states in the resonator, with displacement αn(t)e−iωdt.
The driven states in the nonlinear resonator are therefore
unchanged under the action of Eq. (8). As is discussed
below, the role of the nonlinearity Kr is instead to constrain
the resonator to low-energy states.

1. Polaron transformation

Analyzing the underlying physics of the model Hamil-
tonian is made easier after a rotating-frame transformation
and a polaronlike transformation that displaces the res-
onator mode conditionally on the state of the bus. Acting
with Eq. (A1) on Eq. (2), the transformed Hamiltonian
takes the form (see Appendix A)

Ĥ P =
2∑

j =1

Ĥ P
j + Ĥ P

br + Ĥ P
κ + Ĥ P

g (17)

with

Ĥ P
j /� = �̃j q̂†

j q̂j + Kj

2
q̂†2

j q̂2
j , (18)

Ĥ P
br/� = (δ + χ b̂†b̂)r̂†r̂ + K̃b

2
b̂†2b̂2 + Kr

2
r̂†2r̂2, (19)

Ĥ P
κ /� = iκ

2

∑

n

(αnr̂† − α∗
n r̂)|n〉〈n|b, (20)

Ĥ P
g /� =

∑

j ,n

gj q̂†
j eiφnD̂n,r

√
n + 1|n〉〈n + 1|b + H.c.,

(21)

where the resonator decay rate κ appears in the displace-
ment transformation according to Eq. (9). In Ĥ P

g we have

defined the bus-state-dependent phases

φn = α∗
n+1αn − α∗

nαn+1

2i
, (22)

the resonator displacement operators

D̂n,r = e(αn+1−αn)r̂†−(α∗
n+1−α∗

n )r̂, (23)

and the ac-Stark-shifted qubit-bus detunings and bus
anharmonicity

�̃j = ωj − ωb − δ|α0|2 + (δ + χ)|α1|2, (24)

K̃b = Kb − δ|α0|2 + 2(δ + χ)|α1|2 − (δ + 2χ)|α2|2,
(25)

respectively. In what follows, we neglect the transients to
focus on times where the polaronic states are fully grown
with αn = ᾱn as defined in Eq. (11).

In the polaron frame Hamiltonian Ĥ P, all modes are
described by a Kerr nonlinear oscillator Hamiltonian.
Moreover, the interaction between the qubits and the bus,
Ĥ P

g , reflects the fact that transitions in the bus are accom-
panied by displacements of the resonator field. Damping
is described by the usual Lindblad master equation, now
expressed in the polaron frame as discussed in Appendix 2.
In particular, the resonator photon-loss Lindblad opera-
tor L̂r = √

κ r̂ in the laboratory frame transforms to L̂P
r =√

κ(r̂ + ∑
n ᾱn|n〉〈n|b) in the polaron frame. The action of

both Ĥ P
κ and L̂P

r ensures the stabilization of the vacuum
state in the resonator for all |n〉b. Under the rotating-
wave approximation, the Lindblad dynamics of the sys-
tem can be further reduced to the effective Hamiltonian
Ĥ P − Ĥ P

κ together with the two Lindblad operators
√
κ r̂

and
√
κ

∑
n ᾱn|n〉〈n|b. By assuming the dynamics to be

restrained to the ground and first excited states of the bus,
the latter operator takes the simpler form (cf. Appendix A)

L̂P
b =

√
κ|ᾱ|2

4
(|1〉〈1|b − |0〉〈0|b). (26)

This result is in agreement with the expression for the bus
dephasing time of Eq. (16).

2. Inverse participation ratio

A useful quantity to further characterize the exponen-
tial suppression of the two-qubit interactions is the mode
hybridization between the qubits and the bus in the off
state. To quantify this effect, we make use of the inverse
participation ratio (IPR) [38,39], which here takes the form

ημ :=
∑

ν |〈ψh,μ|ψb,ν〉|4
|〈ψh,μ|ψh,μ〉|2

, (27)

where |ψb,ν〉 and |ψh,ν〉 are the bare (gj = 0) and
hybridized (gj �= 0) eigenstates of the full system. The IPR
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is a measure of how localized the wavefunctions of the cir-
cuit modes are with respect to the bare modes, and it ranges
from 1/4 (maximally delocalized states) to 1 (maximally
localized states) for our system with four modes.

In the dispersive regime where the qubits are largely
detuned from the bus mode, analytical expressions for
ημ can be obtained by eliminating Ĥ P

g in Ĥ P using a
Schrieffer-Wolff transformation. For the bare states |ψb,ν〉
with ν ∈ {1000, 0100, 1100} and where the state indexing
corresponds to (Q1, Q2, B, R), we obtain in Appendix 2

η1000 ≈ 1 − 2e−|ᾱ|2
(

g1

�̃1

)2

4F4(p1; 1 + p1; |ᾱ|2), (28)

η0100 ≈ 1 − 2e−|ᾱ|2
(

g2

�̃2

)2

4F4(p2; 1 + p2; |ᾱ|2), (29)

and η1100 ≈ η1000 + η0100 − 1, where ᾱ = ᾱ1 − ᾱ0, pFq
is the generalized hypergeometric function, pj = (pj −,

pj −, pj +, pj +) with pj ± = β[1 ±
√

1 + 2�̃jβ
−2/Kr], and

β = (δ + χ)/Kr − 1/2. The expressions for ημ show that
the degree of mode hybridization decreases with increasing
detuning. More importantly, we also see that hybridiza-
tion is exponentially suppressed with increasing photon
population of the resonator mode. At large photon num-
ber, virtual transitions to higher-energy states within the
resonator’s metapotential wells can impact the level of
exponential suppression, something that is represented by
the contribution from the hypergeometric function. These
higher-energy transitions can, however, be prevented by
increasing |δ + χ | and |Kr|.

To verify these observations, we investigate the quantity
1 − η1000 as a function of the photon number |ᾱ0|2 in the
resonator by exact diagonalization of the Hamiltonian of
Eq. (17) for κ = 0 (see Fig. 4). Different colors correspond
to different values of the nonlinearity Kr. Focusing first on
panel (a), obtained for δ/2π = −1.5 MHz, the anticipated
suppression of the hybridization with increasing |ᾱ0|2 is
clearly observed, together with the slowdown of that trend
for larger |ᾱ0| ∝ |ᾱ|.

The shaded region is plotted using the analytical expres-
sion in Eq. (28) for Kr in the range |Kr| → ∞ to Kr = 0.
In the former limit, the dynamics is constrained to the
low-lying polaronic states, i.e., the resonator is constrained
to the displaced Fock states |0〉 and |1〉 in the laboratory
frame, and the exponential suppression persists for large
|ᾱ0|. As a comparison, the dashed line is obtained from the
usual dispersive factor (gi/�̃i)

2, taking into account the
change in qubits-bus detuning due to the ac-Stark shift and
that corresponds to usual qubit-bus-qubit couplers with-
out the driven resonator. The very strong suppression of
1 − η1000 observed in Fig. 4(a) for our coupler design
has an important consequence: because of the very small
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FIG. 4. Suppression of 1 − η1000 with respect to the resonator
photon number |ᾱ0|2 for (a) δ/2π = −1.5 MHz and (b) δ/2π =
1.0 MHz. The data points are obtained from numerical diago-
nalization with a fixed drive amplitude in the resonator. Anal-
ogous plots for 1 − η0100 can be found in Appendix 2. Dashed
lines correspond to the same system but with the resonator
undriven and the bus frequency tuned to the ac-Stark-shifted
frequency found in the driven system. The gray regions are
bounded by the analytical estimates in Eq. (28) for Kr → ∞ and
Kr = 0. Here (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0
MHz, K1/2π = K2/2π = −300.0 MHz, χ/2π = −20.0 MHz,
and g/2π = 2.0 MHz.

hybridization of the qubit eigenstates, all real and vir-
tual qubit-qubit interactions mediated by the coupler are
exponentially suppressed in amplitude; see Appendix 4
for details. Analogous plots for 1 − η0100 can be found in
Appendix 2.

Figure 4(b) also shows 1 − η1000 as a function of the
number of photons |ᾱ0|2 in the resonator but now for a
positive detuning of δ/2π = 1 MHz. In this situation, we
observe a divergence in 1 − η1000 associated with a reso-
nance in the ac-Stark-shifted detunings �̃1. As discussed
in Appendix 6, this resonance can be understood from the
poles of the generalized hypergeometric function appear-
ing in Eqs. (28) and (29), which correspond to frequency
collisions with higher-energy levels of the resonator. For
negative detunings δ, these collisions are avoided and the
suppression is monotonic with photon number. On the
other hand, choosing δ > 0 results in a nonmonotonic 1 −
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η1000, something that can lead to a stronger suppression
of unwanted interactions. See Appendix 6 for a detailed
discussion of these frequency collisions and how to take
advantage of them.

As previously alluded to, the exponential suppression of
qubit-qubit interactions is greatly enhanced at large pho-
ton numbers in the resonator if the |�̃j /χ | or |�̃j /Kr| are
small. These ratios determine the probability of a reso-
nance with higher-energy levels of the resonator. Because
the latter tend to cover a larger area in the phase space of
the resonator than the low-energy states, their occupation
would attenuate the exponential suppression of qubit-qubit
interactions. We highlight that taking |�̃j /χ | or |�̃j /Kr|
small is a natural parameter regime with protected qubits,
which often have small frequencies by design [23,26]. This
feature underlines the compatibility of our coupler with
protected qubits.

We conclude this section with a remark regarding
the optimal ramping rate ν of the photon number, i.e.,
|ᾱ0(t)|2 = νt, to minimize the impact of accidental reso-
nances. Frequency collisions in Figs. 4 and 9 correspond
to pairs of qubit-coupler states that are brought into reso-
nance as the coherent state amplitude goes from 0 to ᾱ0.
As detailed in Appendix 3, as the levels go through the
crossing, the state of the qubit leaks to the coupler follow-
ing the Landau-Zener formula [40] and, as a result, the
probability of leakage is exponentially reduced in |ν/g′

j |,
where g′

j is the effective coupling strength between Qj and
B that is exponentially suppressed in |ᾱ0|. However, nona-
diabatic errors in the TQD protocol, determined by ratios
of the pulse’s time derivatives to the cross-Kerr interaction
strength χ (cf. Appendix A), impose an upper bound on ν.
Near that upper bound, the leakage probability is nonethe-
less exponentially suppressed in both |ᾱ0|2 and |χ/g′

j |, as
inferred in Appendix 3. We highlight that |gj /χ | 
 1 was
already a key requirement for the proposed device.

3. Suppression of spurious interactions

We now analyze how the proposed coupler helps to sup-
press the spurious cross-Kerr coupling between the qubits,
which is given by

χ12 = ω1100 − ω1000 − ω0100 + ω0000, (30)

where ωμ = 〈ψh,μ� |Ĥ P − Ĥ P
κ |ψh,μ�〉 is the energy asso-

ciated with the two-qubit eigenstate |ψh,μ�〉 with max-
imal overlap with the bare state |ψb,μ〉, i.e., μ� =
argmaxν |〈ψh,ν |ψb,μ〉|2.

Figure 5 shows |χ12| obtained from numerical diago-
nalization of Ĥ P − Ĥ P

κ as a function of |ᾱ0|2 for different
values of Kr (symbols). As a comparison, the dashed line
shows |χ12| resulting only from the change in detuning
between the qubits and the bus due to the ac-Stark shift,
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FIG. 5. Suppression of the ZZ interaction χ12 between the
qubits as a function of the resonator photon number |ᾱ0|2 for (a)
δ/2π = −1.5 MHz and (b) δ/2π = 1.0 MHz. Data points cor-
respond to numerical diagonalization of the system Hamiltonian
with a fixed drive amplitude in the resonator. Dashed lines cor-
respond to Eq. (31), i.e., the same system but with the resonator
undriven and the bus frequency tuned to the ac-Stark-shifted fre-
quency found in the driven system. Here (ω1 − ωb)/2π = 7.0
MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0
MHz, χ/2π = −20.0 MHz, and g/2π = 2.0 MHz.

and computed using the perturbative expression

χ ac
12 = 1

6
g2

1

�̃1

g2
2

�̃2

(
1

�̃1
+ 1

�̃2

)
, (31)

valid for |�̃j /Kj | 
 1 and |�̃j /K̃b| 
 1. The latter is
obtained from a Magnus expansion to fourth order in the
coupling strengths (cf. Appendix 4). The two resonances
observed in the dashed line and the numerical data in panel
(b) correspond to �̃j = 0.

As first noted for 1 − η1000 in Fig. 4, the suppression
of χ12 is monotonic with photon number for negative
detunings δ [panel (a)], while some nonmonotonic features
appear at positive detuning where the suppression is also
stronger [panel (b)]. See Appendix 6 for a discussion of
the origin of these features.

064062-7



LEROUX, DI PAOLO, and BLAIS PHYS. REV. APPLIED 16, 064062 (2021)

We also note the presence of more features in Fig. 5(b)
for χ12 than in Fig. 4(b) for 1 − η1000. The first two domi-
nant peaks in Fig. 5(b) result from accidental resonances
between each qubit and the bus, i.e., �̃j = 0, in agree-
ment with the peaks observed for 1 − η1000 in Fig. 4
and 1 − η0100 in Fig. 9. Additional features in Fig. 5 not
present in Figs. 4 and 9 result from frequency collisions
with higher-energy levels in the system, activated by the
ac-Stark shifts in the bus.

Importantly, the suppression of 1 − ημ and the result-
ing reduction of the spurious cross-Kerr coupling does
not require fine tuning of the circuit or drive parameters.
Indeed, as illustrated in Figs. 4 and 5, strong suppression is
observed for different choices of circuit parameters, includ-
ing δ and Kr. It is also worth emphasizing that all real and
virtual interactions are suppressed by this scheme. This
fact is in stark contrast to other approaches where cancela-
tion of two-qubit interactions is realized only for a precise
value of a control parameter and where residual virtual
interactions such as χ12 remain present [5,21,22].

Finally, we note that it is possible to combine our
coupler with other approaches for suppressing spurious
interactions, for instance by using qubits with opposite sign
anharmonicities [21,22].

C. Bus-induced qubit dephasing

At the origin of the suppression of unwanted interaction
are the disjoint bus-state-dependent coherent states of the
driven resonator. A photon lost from the resonator carries
the “which-bus-state” information and leads to dephasing
of the bus state. Because there exists hybridization between
the bus and qubit modes, this mechanism can introduce
additional qubit dephasing. However, as shown in more
detail in Appendix A, we find that this is not an impor-
tant contribution to qubit dephasing. Indeed, by expressing
Eq. (26) in the hybridized eigenbasis, the dephasing rate of
the first qubit is given by

γϕ,1 = κ|ᾱ|2
2

( ∞∑

k=0

|〈ψh,1000|ψb,001k〉|2
)2

≈ κ|ᾱ|2
2

1 − η1000

2
, (32)

where the second line follows from a Schrieffer-Wolff
transformation (cf. Appendix 5). The expression above
is obtained with a rotating-wave approximation, which
is valid for |γϕ,1/�̃1| 
 1. An expression for the second
qubit is obtained by simply replacing the subscript 1000
by 0100.

Similarly to measurement-induced dephasing [37], the
prefactor of Eq. (32) scales with the photon number |ᾱ|2 in
the resonator. However, because 1 − ημ is exponentially
suppressed with increasing |ᾱ|2, the qubit dephasing rate
can be made negligible in the off state of the coupler.

Appendix 5 also compares Eq. (32) versus photon number
against the result obtained from numerical diagonalization
of Ĥ P − Ĥ P

κ . As with the suppression of unwanted ZZ
interactions, the reason for this negligibly small dephasing
rate is the very low hybridization of the qubits’ eigenstates
with the bus and resonator modes.

IV. EFFECTIVE PARAMETRIC MODULATION

In the previous sections, we have seen that large nonlin-
ear interaction amplitudes Kr help in the suppression of the
unwanted interactions in the off state of the coupler. Here,
we explore an alternative strategy that relies on a two-tone
drive on the resonator. Moreover, because the nonlinear-
ity is not needed in this case, the resonator can be taken
to be a linear resonator (LR). This might also simplify the
experimental realization of these ideas.

Our starting point is again the Hamiltonian of Eq. (2)
where we now take Kr = 0 and introduce the following
additional drive on the LR:

Ĥ DD = − iλωm

2ᾱ∗ [e−i(ωr−ωm)t − e−i(ωr+ωm)t]r̂† + H.c, (33)

where DD stands for dynamical decoupling.
Here λ is a real-valued amplitude and the frequency ωm
is assumed here to be much larger in magnitude than the
cross-Kerr interaction χ . With this additional two-tone
drive on the LR, the steady-state bus-dependent coherent
state Eq. (11) becomes

ᾱn → ᾱn − iλ cos(ωmt)/ᾱ∗, (34)

where λ plays the role of the amplitude of a modulation
around the steady-state value ᾱn. Crucially, this modu-
lation changes the phase φn that specifies the bus-state-
dependent displacements Hamiltonian Ĥ P

g in Eq. (21),
which can now be written as

φn(t) = φ̄n − λRe
[
ᾱn+1 − ᾱn

ᾱ

]
cos(ωmt), (35)

φ̄n = ᾱ∗
n+1ᾱn − ᾱ∗

n ᾱn+1

2i
. (36)

Moreover, the qubit-bus detunings transform to �̃j =
�̃0

j + �̃t
j , where

�̃0
j = ωj − ωb − δ|ᾱ0|2 + (δ + χ)|ᾱ1|2 + χλ2

2|ᾱ|2 , (37)

�̃t
j = −2χλIm

[
ᾱ1

ᾱ

]
cos(ωmt)+ χλ2

2|ᾱ|2 cos(2ωmt). (38)

An additional rotating-frame transformation such as to
remove the time dependence of the qubit-bus detunings,
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leads to the following approximation for Ĥ P
g :

Ĥ P′
g =

∑

j ,n

gj q̂†
j eiφ′

n(t)D̂n,r
√

n + 1|n〉〈n + 1|b + H.c. (39)

Here we have introduced φ′
n(t) = φn(t)+ ∫ t

0 dt�̃t
j . Except

for the now time-dependent phase φ′
n(t), Eq. (39) has the

same form as Eq. (21).
The role of the time-dependent phase φ′

n(t) can be
understood by using the Jacobi-Anger expansion

eiφ′
n = eiφ̄n

+∞∑

s=−∞
(−i)sJs

(
λRe

[
ᾱn+1 − ᾱn

ᾱ

])
eisωmt, (40)

where Js(z) is the sth Bessel function of the first kind,
and where we considered negligible χ/ωm for simplicity.
Because the bus mode is ideally only virtually excited at all
times, our goal is to dominantly suppress the 0 ↔ 1 transi-
tion in the bus. To achieve this, we adjust the amplitude λ
to reach a zero of J0 in Eq. (40), noting that ᾱ = ᾱ1 − ᾱ0.
Higher harmonics of Eq. (40) oscillate rapidly for ωm �
|χ |, |�̃0

j |, and result in a lower bound on the suppression of
the two-qubit interactions (cf. Appendix C).

To understand how the two proposed implementa-
tion mechanisms compare to each other, we compute in
Appendix 2 the quantity 1 − ημ using a time-dependent
Schrieffer-Wolff transformation to find that

1 − η1000 ≈ 2g2
1e−|ᾱ|2

+∞∑

s1,s2=−∞
is2−s1ei(s2−s1)ωmt

× Js1(λ)Js2(λ)
4F4(p1s1s2

; 1 + p1s1s2
; |ᾱ|2)

(�̃0
1 + s1ωm)(�̃

0
1 + s2ωm)

,

(41)

where pjs1s2
= (pjs1−, pjs2−, pjs1+, pjs2+) with pjs± = β[1 ±√

1 + 2(�̃0
j + sωm)β

−2/Kr] and β = (δ + χ)/Kr − 1/2.
We observe that Eq. (41) is reminiscent of Eq. (28), and
a similar expression for η0100 can be derived. In the large
ωm � |�̃0

1| limit, the dominant contribution to Eq. (41)
arises from the term with s1 = s2 = 0, which is canceled
by adjusting λ to reach a zero of J0. Importantly, because
of the already suppressed interactions, there is no need for
a very fine adjustment of λ. The time averaged 1 − η1000
according to Eq. (41) is illustrated in Fig. 6, where we
take ωm = ω0|ᾱ| such that the drive amplitude in Eq. (33)
is independent of |ᾱ|. The dashed line corresponds to the
absence of dynamical decoupling. The shaded regions cor-
respond to ± 10% error bounds on the drive amplitude. We
observe a strong suppression of 1 − η1000 and of the drive
amplitude sensitivity. As discussed further in Appendix C,
we note that the asymptotic behavior of the suppression
is polynomial in ᾱ. With the very large suppression of

0 5 10 15 20
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10
–3

10
–1 Without DD

FIG. 6. Time-averaged inverse participation ratio against pho-
ton number using a two-tone drive on the LR (Kr = 0) with fre-
quencies ωr ± ωm and amplitudes ωmλ/ᾱ

∗. The shaded regions
are bounded by λ = λ0, where J0(λ0) = 0, and a 10% error on
λ0. The other parameters are δ/2π = −1.0 MHz, χ/2π = −20.0
MHz, (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0 MHz,
K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz. See
Appendix C for 〈1 − η0100〉t.

1 − ημ that is observed in Fig. 6, this is a small price
to pay when trading the nonlinearity Kr for an additional
drive. We finally note that the suppression can be further
enhanced with the help of a longitudinal drive in the LR
(cf. Appendix C).

V. SUPERCONDUCTING CIRCUIT
IMPLEMENTATION

In this section, we introduce a superconducting quan-
tum circuit realizing our coupler. To approach the model
Hamiltonian of Eq. (2), we draw inspiration from the Kerr-
cat qubit that exploits the bifurcation physics of driven
Josephson-based devices [23,24]. A simplification, based
on the idea of dynamical decoupling in Sec. IV, is also
discussed.

A. Kerr-cat-based circuit model

Figure 7(a) shows a possible circuit realization of our
coupler with two transmon qubits interacting through a
transmonlike device playing the role of bus mode. The lat-
ter is connected to a driven nonlinear circuit representing
the resonator and consisting here of a loop formed by two
symmetrical Josephson junctions and a snail-like element
incorporates an array of N ∼ 3 junctions [3]. As mentioned
earlier, although for simplicity we focus here on transmon
qubits, this scheme is applicable to other types of super-
conducting and, in particular, is well adapted to protected
qubits.

Omitting the qubits for the moment, the Hamiltonian of
the circuit reads

Ĥ = Ĥ b + Ĥ r + Ĥ br, (42)
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Qubit 1 Qubit 2

Resonator

Bus (b)

|0 b |0 b

|1 b

|1 b

|2 b

(c)

|2 b

FIG. 7. Superconducting circuit implementation. (a) Circuit design. The qubits and bus modes are implemented using transmon
qubits; ϕ̂1, ϕ̂2, and ϕ̂b are the phase operators of Q1, Q2, and the bus modes, respectively. Here 2ϕ̂± = −ϕ̂b ± (ϕ̂r − ϕ�), where ϕ� is a
real-valued scalar to be defined. A snail-like element, representing the resonator mode with phase operator ϕ̂r, is linearly driven by a
voltage source Vg . The two external fluxes�0ϕs2/2π and�0(ϕsN − ϕs2)/2π control the bus-resonator interaction. (b) Metapotential of
the resonator for each of the bus states |0〉b (orange), |1〉b (purple), and |2〉b (blue). Here δ/2π = −5.0 MHz, χ/2π = −5.0 MHz, and
Kr/2π = −10.0 MHz. (c) The quantity 1 − η1000 (and 1 − η0100 can be found in Appendix D) estimated by numerical diagonalization
of the full system using the effective Hamiltonian in Eq. (53) with δ/2π = 1 KHz, χ/2π = −5.0 MHz, (ω1 − ωb)/2π = 7.0 MHz,
(ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.

where

Ĥ b = 4ECbn̂2
b − EJb cos(ϕ̂b)

≈ ωbb̂†b̂ + Kb

2
b̂†2b̂2 (43)

is the bus Hamiltonian, which we treat as a weakly non-
linear oscillator of frequency ωb = √

8ECbEJb − ECb and
negative anharmonicity Kb = −ECb . We define the phase
operators of the two modes across the snail-like element as
2ϕ̂± = −ϕ̂b ± (ϕ̂r − ϕ�), where ϕ̂b (ϕ̂r) is the phase oper-
ator of the bus (resonator) and ϕ� is a real-valued scalar
determined from the minimization of the potential energy
of the circuit. We consider two external flux biases: ϕs2 in
the three-node loop and ϕsN − ϕs2 in the snail-like circuits.
Here, ϕs2 (ϕsN ) shifts the cosine potential of the two junc-
tions (N junctions) in the snail-like circuit. Moreover, ϕ̂1
(ϕ̂2) is the phase operator of Q1 (Q2). The resonator and
bus-resonator Hamiltonians take the form

Ĥ r = 4ECrn̂
2
r − NEJN cos

(
ϕ̂r − ϕ′

sN

N

)
+ 2ε(t)n̂r

− 2EJ� cos
(
ϕ̂r − ϕ�

2

)
− 2EJ2 cos

(
ϕ̂r − ϕ′

s2

2

)
,

(44)

Ĥ br = −2EJ�

[
cos

(
3ϕ̂b

2

)
− 1

]
cos

(
ϕ̂r − ϕ�

2

)
, (45)

where ϕ′
s2 = ϕs2 + ϕ� and ϕ′

sN = ϕsN + ϕ�. In these
expressions, ECr is the resonator charging energy, EJ� the

Josephson energy of the symmetrical junctions in the res-
onator’s circuit, EJ2 the Josephson energy of each of the
two smaller resonator’s junctions, and EJN the Joseph-
son energy of each of the N large junctions in the array.
Moreover, ε(t) is the amplitude of the drive of frequency
2(ωr − δ) on the resonator, where ωr is the frequency of
the undriven resonator.

Here we aim at stabilizing cat states in the resonator with
amplitudes that depend on the bus photon number. Just as
in the simplified model discussed in the previous section,
transitions between bus states are associated with displace-
ments in the resonator. An advantage of this proposed
realization is that the large anharmonicity in the resonator
is now determined by the size of the cat state. To this end,
we follow Frattini et al. [3] by choosing the external fluxes
and Josehpson energy such as to obtain a cubic nonlinear-
ity of the form b̂†b̂(r̂† + r̂)3 in Ĥ br. In the presence of a
linear drive on the resonator, the cubic nonlinearity leads
to a nearly resonant, bus-photon-number-dependent two-
photon drive in the resonator. The Kerr nonlinearity in the
resonator can then stabilize bus-photon-number-dependent
cat states.

More precisely, we take EJ2 = EJ� , ϕ� = π − 2ζ , and
ϕ′

s2 = −π − 2ζ , where ζ is a parameter to be defined. With
these choices, we have

Ĥ r = 4ECrn̂
2
r − NEJN cos

(
ϕ̂r − ϕ′

sN

N

)
+ 2ε(t)n̂r (46)
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and

Ĥ br ≈ 9πzbEJ�

4
(2b̂†b̂ + 1)

×
[

cos ζ sin
(
ϕ̂r

2

)
+ sin ζ cos

(
ϕ̂r

2

)]
, (47)

where zb(r) = Zb(r)/RQ is the reduced impedance of the
bus (resonator) mode with RQ � 6.5 k
 the resistance
quantum. In Ĥ br, the sine and cosine terms that depend
on ϕ̂r are key for implementing the bus-photon-number-
dependent cubic nonlinearity b̂†b̂(r̂† + r̂)3 and the cross-
Kerr interaction b̂†b̂r̂†r̂. Our next step is to apply a dis-
placement transformation D̂[ξ(t)] on the resonator mode
to eliminate the drive term that we take to have con-
stant amplitude ε0 for simplicity, ε(t) = ε0 sin[2(ωr −
δ)t]. To achieve this, we take −iξ̇ + ωrξ + iε(t)/

√
πzr =

0 or, equivalently,
√
πzrξ(t) ≈ −
 cos[2(ωr − δ)t] +

(i
/2) sin[2(ωr − δ)t] with the displacement amplitude

 = 2ε0/3ωr. By doing so, we obtain the displaced Hamil-
tonian Ĥ D = Ĥ b + Ĥ D

r + Ĥ D
br with

Ĥ D
r ≈ ωrr̂†r̂ + Kr

2
r̂†2r̂2 + λr

2
r̂†2e−i2(ωr−δ)t + H.c., (48)

Ĥ D
br ≈ χ

(
b̂†b̂ + 1

2

)
r̂†r̂ + λ�

2
(2b̂†b̂ + 1)r̂†2e−i2(ωr−δ)t

+ H.c., (49)

for small ϕ′
sN/N . The above expressions are valid for small

reduced mode impedance πzr ≈ √
2NECr/EJN and assume

the rotating-wave approximation. We have introduced the
resonator frequency ωr = √

8ECrEJN /N − ECr , the self-
Kerr anharmonicity Kr = −ECr/N

2, the two-photon drive
amplitude

λr = − (πzr)
3/2
EJNϕ

′
sN

2N 3 , (50)

the cross-Kerr interaction amplitude

χ = −9πzbπzrEJ� sin(ζ )
8

, (51)

and the bus-number-dependent two-photon drive ampli-
tude

λ� = 9πzb(πzr)
3/2
EJ� cos(ζ )
64

. (52)

We, moreover, set λr = −2λ� by a proper choice of the
flux biases.

Finally, in a doubly rotating frame at ωr − δ for r̂ and
at ωb for b̂, the displaced Hamiltonian Ĥ D then approxi-
mately becomes

Ĥ ′D ≈ Kb

2
b̂†2b̂2 − Krα

4

2
(2b̂†b̂ − 1)2

+ (δ + χ/2 + χ b̂†b̂)r̂†r̂

+ Kr

2
[r̂†2 + α2(2b̂†b̂ − 1)][r̂2 + α2(2b̂†b̂ − 1)],

(53)

where α2 = λ�/Kr. Equation (53) is reminiscent of the
Kerr-cat Hamiltonian [3,23] with the difference that the
amplitude and the orientation of the cat now depend on
the bus Fock state number.

The metapotential associated with this Hamiltonian is
illustrated in Fig. 7(b). As in Fig. 2 for the simplified
system, the different Fock states of the bus mode lead to
displaced wells in the I -Q plane. However, because of the
combination of the Kerr nonlinearity and the engineered
two-photon drive, each Fock state is associated with two
metapotential wells [23]. The central idea of blocking the
bus-state transition by entangling those states to coherent
states in the resonator is, however, unchanged. This is con-
firmed in Fig. 7(c) that shows 1 − η1000 as a function of the
photon number. Apart from additional resonances that can
be avoided, the overall behavior is the one expected: we
see an exponential reduction of the bus-state hybridization
with resonator photon number, as originally predicted by
the model of Eq. (2).

Furthermore, it is useful to note that the ac-Stark shift
on the bus frequency vanishes in this model, i.e., the
ground and first excited states of the bus are both shifted
in energy by Krα

4/2. The bus-resonator entanglement is
therefore entirely responsible for the exponential suppres-
sion observed in Fig. 7(c).

B. Harmonic model with parametric modulation

In Sec. IV we have seen how it is possible to trade
the large nonlinear interaction between the bus and the
resonator by additional drives. Here, we show how this
idea can be realized without modifications to the cir-
cuit of Fig. 7. For this second approach, we take ϕ� =
0, ϕ′

s2 = 2π , EJ2 = λEJ� with λ = 1 − (3/2)2πzb/2, and
ϕ′

sN mod 2πN = 0. With these parameter choices, the
circuit Hamiltonian can now be written as

Ĥ b = 4ECbn̂2
b − EJb cos(ϕ̂b)− 2EJ� cos

(
3ϕ̂b

2

)
, (54)

Ĥ r = 4ECrn̂
2
r − NEJN cos

(
ϕ̂r

N

)
+ 2ε(t)n̂r, (55)

Ĥ br = −2EJ�

[
cos

(
3ϕ̂b

2

)
− λ

][
cos

(
ϕ̂r

2

)
− 1

]
. (56)
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We note that the reduced mode impedance of the resonator,
πzr ≈ √

2NECr/EJN , needs to be made small to prevent the
drive on the resonator from resulting in appreciable non-
linear terms due to the cosine potentials and the nearly
resonant two-photon and cubic terms. More precisely, we
take 1/

√
πzr to be much larger than any displacement

in the resonator field associated with the bus Fock states
n �= 0, and small compared to N/

√
πzr for n = 0.

As above, we treat the bus and resonator modes as
weakly nonlinear oscillators. Importantly, for n = 0, we
find that Ĥ br ≈ 0 and Ĥ r is approximately harmonic
despite a large displacement in the resonator field. More-
over, for n �= 0, Ĥ br effectively implements a large cross-
Kerr interaction that strongly reduces displacements of
the resonator field by rendering the linear drive of the
resonator off-resonant. Particularly, we find that

Ĥ ≈
∑

ν=b,r

(
ωνν̂

†ν̂+ Kν
2
ν̂†2ν̂2

)
+χ b̂†b̂r̂†r̂ + i
(t)(r̂† − r̂).

(57)

In this expression, we have defined the frequencies
ων ≈ √

8ECνELν − ECν , the reduced mode impedances
πzν ≈ √

2ECν /ELν , the inductive energies ELb = EJb +
2(3/2)2EJ� and ELr = EJN /N , the anharmonicities Kb =
−[EJb + 2(3/2)4EJ�]ECb/ELb and Kr = ECr/N

2, and the
linear drive amplitude 
(t) = ε(t)/2

√
πzr.

We also largely reduce the resonator’s anharmonicity Kr
by choosing a small ECr and large N . It is possible with this
model to observe the exponential suppression of two-qubit
coupling by choosing ε(t) to be nearly resonant with the
resonator.

As discussed in Sec. IV, with a reduced anharmonicity
in the resonator, an additional drive, which we choose to
be of the form


(t)= 2δᾱ0 cos[(ωr − δ)t] + ωmλ

ᾱ

∑

ν=±
ν sin[(ωm + νωr)t],

(58)

can serve as a complementary mechanism to suppress
interactions. In the limits |δ/χ | 
 1, |χ/ωm| 
 1, and
|ωm/ωr| 
 1, we find that the bus-state-dependent dis-
placements take the form

αn(t) ≈ δᾱ0

δ + nχ
− iλ
ᾱ

cos(ωmt), (59)

in agreement with Eq. (34). From this point on, the result
of Sec. IV follows.

Finally, we emphasize that even though a cross-Kerr
type interaction between the bus and the resonator could,
in principle, be implemented using a dispersive coupling
[28], the dispersive Hamiltonian is invalid at large pho-
ton numbers and yields virtual qubit-qubit interactions

through the driven resonator. We also note that a discus-
sion of the leading effects of stray couplings can be found
in Appendix D.

VI. CONCLUSION

We have introduced a two-qubit coupler with an expo-
nential on:off ratio, realized by connecting a pair of qubits
to a bus mode complemented by a driven ancillary res-
onator. The cross-Kerr interaction between the bus and
the driven resonator results in a displacement of the res-
onator’s field that is conditional on the bus state. Because
the displaced resonator states have negligible overlap, bus-
state transitions are suppressed exponentially in the ampli-
tude of the drive. In turn, because two-qubit interactions
are mediated by bus transitions, the two-qubit coupling
results are also strongly suppressed, leading to a high on:off
ratio. As a clear demonstration of this mechanism, we
have shown how the inverse participation ratio, which is a
measure of qubit-bus hybridization, and the spurious cross-
Kerr between the qubits are exponentially reduced with the
number of photons in the resonator mode. We have also
proposed two complementary superconducting quantum
circuit implementations of our coupler.

The strong reduction in two-qubit couplings demon-
strated here can be advantageous in multiqubit processors,
where spectator qubits and long-range qubit-qubit inter-
actions can have detrimental effects [38]. For the same
reason, the proposed approach can be particularly useful
in all-microwave frequency-fixed qubits architectures with
interactions mediated by frequency-fixed buses. Further-
more, our device could be used to improve the performance
of a protected-qubit-based processor, where crosstalk
could now be exponentially suppressed on demand. The
parameter exploration in this work further suggests that
exponentially protected qubits, which typically have low
transition frequencies and would therefore be naturally
closely packed in frequency, would yield a stronger expo-
nential suppression of spurious qubit-qubit interactions.

Finally, we note that possible improvements to the cou-
pler include squeezing the resonator mode to further reduce
the overlaps between the resonator states associated with
distinct bus states, and extending the ancillary system to
multiple modes such that the exponential suppression is
now with respect to multiple modes.
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APPENDIX A: POLARON TRANSFORMATION

To gain intuition about the underlying physics of the
model, it is useful to move to a frame defined by the
time-dependent polaron transformation

P̂(t) = e−i
∫ t

0 dτ [ωb+�ac(τ )](b̂†b̂+∑
j q̂†

j q̂j )e−iωdtr̂† r̂

×
∞∑

n=0

D̂r[αn(t)] ⊗ |n〉〈n|b, (A1)

where |n〉〈n|b is the projection operator associated with
the eigenstate |n〉 of the bus mode, and �ac is an ac-
Stark shift that will be defined below. The displacements
{αn(t)} are determined from the damped classical equation
of the resonator [cf. Eq. (9)] that result from the bilinear
Hamiltonian terms only.

1. Transformed Hamiltonian

Under Eq. (A1), Hamiltonian (2) transforms to Ĥ P =
P̂†Ĥ P̂ − iP̂† ˙̂P, where

Ĥ P =
2∑

j =1

Ĥ P
j + Ĥ P

br + Ĥ P
κ + Ĥ P

g , (A2)

Ĥ P
j = (ωj − ωb −�ac)q̂

†
j q̂j + Kj

2
q̂†2

j q̂2
j , (A3)

Ĥ P
br = (δ + χ b̂†b̂)r̂†r̂ + Kb

2
b̂†2b̂2 + Kr

2
r̂†2r̂2

+
∑

n

�ac,n|n〉〈n|b, (A4)

Ĥ P
κ = iκ

2

∑

n

(αnr̂† − α∗
n r̂)|n〉〈n|b, (A5)

Ĥ P
g =

∑

j ,n

gj (q̂
†
j eiφnD̂n,r

√
n + 1|n〉〈n + 1|b + H.c.),

(A6)

with i2φn = α∗
n+1αn − α∗

nαn+1, D̂n,r = D̂r(αn+1 − αn),
D̂r(α) = eαr̂†−α∗ r̂ is the displacement operator in the res-
onator, and

�ac,n = δ|α0|2 − (δ + nχ)|αn|2 − n�ac, (A7)

�ac = δ|α0|2 − (δ + χ)|α1|2. (A8)

As we only consider Jaynes-Cummings-type interactions,
the transformed Hamiltonian can be reduced to the form

in Eq. (17). In addition, driving the resonator mode intro-
duces an ac-Stark shift �C

ac(t) = �C
1 (t)−�C

0 (t) of the bus
frequency given by

�C
ac(t) = δ|α0(t)|2 − (δ + χ)|α1(t)|2. (A9)

2. Transformed master equation

The full system dynamics can be described by the
Lindblad Master equation formalism

˙̂ρ = −i[Ĥ , ρ̂] +
∑

j

L̂j ρ̂L̂†
j − 1

2
{L̂†

j L̂j , ρ̂}, (A10)

where ρ̂ is the density matrix of the system, Ĥ is the
Hamiltonian, and the L̂j are the collapse operators. Under
transformation (A1), the density matrix transforms as ρ̂ =
P̂ρ̂PP̂† . It follows that

˙̂ρP = −i[Ĥ P, ρ̂P] +
∑

j

L̂P
j ρ̂

PL̂P†
j − 1

2
{L̂P†

j L̂P
j , ρ̂P},

(A11)

where we have defined the transformed collapse opera-
tors L̂P

j = P̂†L̂j P̂. As examples, the collapse operators can
take the form L̂r = √

κ r̂, L̂ν,γ = √
γν |0〉〈1|ν , and L̂ν,ϕ =√

γϕ,ν/2(|1〉〈1|ν − |0〉〈0|ν) for ν = {b, 1, 2}. We find that
qubit collapse operators as well as L̂b,ϕ are unchanged
under the polaron transformation. However, we have

L̂P
b,γ = √

γbe−iφ0e−i
∫ t

0 dτ [ωb+�ac(τ )]D̂†
0,r|0〉〈1|b, (A12)

L̂P
r = √

κ

(
r̂ +

∑

n

αn|n〉〈n|b
)

. (A13)

from where it follows that L̂P
b,γ is exponentially suppressed

because of the displacement operator in the resonator. Irre-
spective of this observation, it is worth nothing that L̂P

b,γ
does not prevent the formation of the polaronic states in the
coupler and therefore does not hinder the proposed proto-
col. In addition, L̂P

r corresponds to measurement-induced
dephasing in the coupler. It is possible to further simplify
the master equation within the rotating-wave approxima-
tion to

˙̂ρP = −i[Ĥ P − Ĥ P
κ , ρ̂P] +

∑

j

ˆ̃LP
j ρ̂

P ˆ̃LP†
j − 1

2
{ ˆ̃LP†

j
ˆ̃LP

j , ρ̂P},

(A14)

where ˆ̃LP
j = L̂P

j , except ˆ̃LP
r = √

κ r̂ and we define a new

collapse operator ˜̂Lb,γα = √
κ

∑
n αn|n〉〈n|b that captures

measurement-induced dephasing in the bus.
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3. Transitionless driving

Large conditional displacements in the resonator (off state) can be prepared by controlling the phase of the envelope
in Eq. (10) in time. The same mechanism makes it possible to empty the resonator quickly (on state). Imperfections in the
envelope lead to deviations in the intended displacements, which we characterize in this section. Using Eq. (9), we find
the displacements

αn(t) = i
∫ t

0
dz ε(z)ei(δ−iκ/2+nχ)(z−t) + αn(0)e−i(δ−iκ/2+nχ)t. (A15)

Extending the envelope in Eq. (10) to include both switching-off and switching-on events

ε(t) =
(
ε0(t)− iε̇0(t)

δ − iκ/2

)
�(τ − t)+ ε0(τ )�(t − τ)�(T + τ − t)

+
(
ε0(τ )− ε0(t − T − τ)+ iε̇0(t − T − τ)

δ − iκ/2

)
�(t − T − τ)�(T + 2τ − t), (A16)

where τ is the ramping time to switch off or on the device and T is the time during that the drive is on, we find that

αn(t) = 1
δ − iκ/2 + nχ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for t = 0,
ε0(t) for 0 ≤ t ≤ τ ,
ε0(τ ) for τ ≤ t ≤ τ + T,
ε0(τ )− ε0(t − τ − T) for τ + T ≤ t ≤ 2τ + T,
0 for t ≤ 2τ + T

− inχ
δ − iκ/2

( ∫ t

0
dz�(τ − t)−

∫ t

T+τ
dz�(T + 2τ − t)

)
dε0(z)

dz
ei(δ−iκ/2+nχ)(z−t)

(−i)(δ − iκ/2 + nχ)

= 1
δ − iκ/2 + nχ

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for t = 0,
ε0(t) for 0 ≤ t ≤ τ ,
ε0(τ ) for τ ≤ t ≤ τ + T,
ε0(τ )− ε0(t − τ − T) for τ + T ≤ t ≤ 2τ + T,
0 for t ≤ 2τ + T

− nχ
δ − iκ/2

∞∑

k=1

dkε0(z)
dzk

ei(δ−iκ/2+nχ)(z−x)

(−i)k(δ − iκ/2 + nχ)k+1

∣∣∣∣
z=x

z=0

× [δ(t − x)�(τ − t)− δ(t − τ − T − x)�(2τ + T − t)], (A17)

where we have assumed that αn(0) = 0. It follows that, for
∣∣∣∣
dkε0(z)

dzk

∣∣∣∣
z=0

∣∣∣∣,
∣∣∣∣
dkε0(z)

dzk

∣∣∣∣
z=τ

∣∣∣∣ 
 |δ − iκ/2||χ |k,

(A18)

Eq. (A17) simplifies to Eq. (11) for τ ≤ t ≤ τ + T, and
vanishes for t ≥ 2τ + T. Ultimately, the derivatives of the
pulse at the endpoints of the ramp would contribute the
most to deviations in the conditional displacements αn.
If one has perfect control over the pulse envelope, the
ramping time can be made arbitrarily small, but limitations
could arise from pulse imperfections. To see this, we define

the perturbed envelope

ε(t) → ε(t)+ εerr(t), (A19)

where εerr(t) is a small time-dependent perturbation. Using
integration by parts, we find that

αn(t) → αn(t)+ i
∞∑

k=0

dkεeff(z)
dzk

ei(δ−iκ/2+nχ)(z−t)

(−i)k(δ − iκ/2 + nχ)k

∣∣∣∣
t

0
.

(A20)

The effects of nonadiabatic errors are quantified by the
ratio between the time derivatives of the drive envelope at
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the endpoints and powers of |δ − iκ/2 + nχ |. These errors
result in time-dependent fluctuations of αn(t), which can
change the conditional displacements αn and the ac-Stark
shift of the bus. When switching on, TQD errors could
result in residual photons in the resonator and ac-Stark
shifts in the bus that can affect two-qubit interactions in
the on state. It is therefore desirable to have a reset scheme
for the resonator.

APPENDIX B: NUMERICAL EXPERIMENTS AND
ANALYTICAL ESTIMATES

In this section, we provide details regarding the numeri-
cal simulations, the derivations for the analytical estimates
associated with the inverse participation ratio, and the
spurious two-qubit interactions. We also report additional
numerical results for the inverse participation ratio and
measurement-induced dephasing.

1. Rabi drive experiment

The envelope in Eq. (10) used in Fig. 3 is shown in
Fig. 8. The ramping time τ is set to 5 ns independently
of ᾱ0.

2. Inverse participation ratio

In analogy to Fig. 4, the inverse participation ratio
for the second qubit, η0100, is computed numerically and
reported in Fig. 9. The observations made in Fig. 4 can be
extended to Fig. 9. The only difference here is the emer-
gence of a second divergence at small photon numbers
for Kr = 0. This peak results from the frequency collisions
with higher-energy levels in the resonator and the specific
choice of parameters. This effect is, however, absent in the
presence of anharmonicity in the resonator.

0 2 4 6

Time (ns)

−60

−40

−20

0

 (
M

H
z)

Re part

Im part

FIG. 8. Envelope ε(t) in Eq. (10) used for Fig. 3 to turn off the
coupler. The drive can be turned off after some arbitrary time in
order to turn the coupler back on with the time-reversed pulse
shape shown here (cf. Appendix A3).
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(b)

FIG. 9. Suppression of 1 − η0100 with respect to the resonator
photon number |ᾱ0|2 in the stabilized ground state for (a)
δ/2π = −1.5 MHz and (b) δ/2π = 1.0 MHz. Each data point
is computed from numerical diagonalization with a fixed drive
amplitude in the resonator. Black lines correspond to the same
system but with no drive on the resonator and the bus fre-
quency tuned to the ac-Stark-shifted frequency found in the
driven system. The gray regions are bounded by the analytical
estimates in Eq. (29) for Kr → ∞ and Kr = 0. We also note
the presence of a resonance in (b) for Kr = 0 only for a small
photon number for this specific choice of system parameters.
This results from frequency collisions with higher Fock states
in the resonator that can be otherwise prevented by the addition
of a resonator anharmonicity. Here (ω1 − ωb)/2π = 7.0 MHz,
(ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz,
χ/2π = −20.0 MHz, and g/2π = 2.0 MHz.

We now provide an analytical estimate for the inverse
participation ratio based on a Schrieffer-Wolff (SW) trans-
formation on Eq. (17), where the Hamiltonian takes the
form

Ĥ I = ei
∫

dt(ĤP−ĤP
κ )Ĥ P

g e−i
∫

dt(ĤP−ĤP
κ ). (B1)

To this end, we define the generator

ŜI = i
∫

dt Ĥ I , (B2)

under which the Hamiltonian transforms to Ĥ S =
eŜI Ĥ I e−ŜI + i ˙̂SI = O(g2

j ). In what follows we describe
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different cases where Ĥ P
g and Ĥ P − Ĥ P

κ have a particu-
lar time dependence used for parametric modulations in
Appendix C. Furthermore, we compute the generator back
in the polaron frame as

Ŝ = e−i
∫

dt(ĤP−ĤP
κ )ŜI ei

∫
dt(ĤP−ĤP

κ ). (B3)

This transformation holds for ||Ŝ|| 
 1, i.e., if the tran-
sition amplitudes are much smaller in magnitude than the
energy gaps. Then, the hybridized states are approximately
given by |ψh,ν〉 = eŜ|ψb,ν〉 ≈ [1 + Ŝ + O(g2

j )]|ψb,ν〉 with
|ψb,ν〉 the bare eigenstates of the full system for gj = 0.
An estimation of Eq. (27) using the SW transformation
follows as

ημ ≈ 1 − 2〈ψb,μ|Ŝ†Ŝ|ψb,μ〉. (B4)

However, as Ŝ can be time dependent, it is useful to also
define the time-averaged quantity

〈ημ〉t ≈ 1 − 2〈ψb,μ|Ŝ†Ŝ|ψb,μ〉t

= 1 − 2 lim
t→∞

1
t

∫
dt 〈ψb,μ|Ŝ†Ŝ|ψb,μ〉. (B5)

We now identify the generator of the SW transformation
for the different cases considered in this manuscript.

a. Static Ĥ P
g and Ĥ P − Ĥ P

κ

The generator of the SW transformation in this case is

Ŝ =
∑

j ,n,m,k,�

√
(n + 1)(m + 1)〈k|D̂n,r|�〉gj eiφn/�̃j

1 + (mKj − nK̃b)/�̃j + qj ,n,k − qj ,n+1,�

× |m + 1〉〈m|j |n〉〈n + 1|b|k〉〈�|r − H.c., (B6)

qj ,n,k = δ + nχ

�̃j
k + Kr

�̃j

k(k − 1)
2

. (B7)

Given that |〈k|D̂n,r|�〉| is more strongly suppressed for
small Fock state numbers {k, �}, it is clear that the parame-
ters (δ + nχ)/�̃j and Kr/�̃j , which control the probability
of virtually populating larger Fock states of the resonator,
play an important role in the efficiency of the suppression
of two-qubit interactions. More precisely, we find that

〈ψ1000|Ŝ†Ŝ|ψ1000〉 = e−|ᾱ|2
(

gj

�̃j

)2 ∞∑

�=0

|ᾱ|2�/�!
(1 − qj ,1,�)2

= e−|ᾱ|2
(

g1

�̃1

)2

4F4(p1; 1 + p1; |ᾱ|2).
(B8)

Throughout this work, we consider the two limiting cases
Kr = 0 and Kr → ∞. In these limits, it is possible to
derive asymptotic expressions for the inverse participation
ratio as

η
|Kr|→0
1000 = 1 − 2

g2
1

�̃2
1

e−|α̃|2
2F2(q1; 1 + q1; |α̃|2), (B9)

η
|Kr|→∞
1000 = 1 − 2

g2
1

�̃2
1

e−|α̃|2
(

1 + |α̃|2
(1 + ζj )2

)
, (B10)

where qj = (1/ζj , 1/ζj ) and ζj = −(δ + χ)/�̃j . This can
be easily generalized to the states 0100 and 1100.

b. Time dependent Ĥ P
g and static Ĥ P − Ĥ P

κ

We now consider a time-dependent phase

eiφn =
+∞∑

s=−∞
ζn,seisωmt, (B11)

where ζs and ωm are free time-independent parameters. In
this case, the generator takes the form

Ŝ =
∑

j ,n,m,k,�,s

√
(n + 1)(m + 1)〈k|D̂n,r|�〉gj ζn,seisωmt/�̃j

1 + sωm/�̃j + (mKj − nK̃b)/�̃j + qj ,n,k − qj ,n+1,�
|m + 1〉〈m|j |n〉〈n + 1|b|k〉〈�|r − H.c. (B12)

It then follows that

〈ψ1000|Ŝ†Ŝ|ψ1000〉 = e−|ᾱ|2
(

gj

�̃j

)2 ∑

�,s1,s2

ζ0,s1ζ
∗
0,s2

ei(s1−s2)ωmt|ᾱ|2�/�!
(1 + s1ωm/�̃j − qj ,1,�)(1 + s2ωm/�̃j − qj ,1,�)

(B13)

with time average

〈ψ1000|Ŝ†Ŝ|ψ1000〉t = e−|ᾱ|2
(

gj

�̃j

)2 ∑

�,s

|ζ0,s|2|ᾱ|2�/�!
(1 + sωm/�̃j − qj ,1,�)2

. (B14)
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c. Static Ĥ P
g and time dependent Ĥ P − Ĥ P

κ

Here we consider a time dependent δ → δ − zωm sin(ωmt). The generator takes the form

Ŝ =
∑

j ,n,m,k,�,s

√
(n + 1)(m + 1)〈k|D̂n,r|�〉gj eiφnζk,�,seisωmt−i(k−�)z cos(ωmt)/�̃j

1 + sωm/�̃j + (mKj − nK̃b)/�̃j + qj ,n,k − qj ,n+1,�
|m + 1〉〈m|j |n〉〈n + 1|b|k〉〈�|r − H.c., (B15)

where the parameters ζk,�,s are defined with

ei(k−�)z cos(ωmt) =
+∞∑

s=−∞
isJs[(k − �)z]eisωmt =

+∞∑

s=−∞
ζk,�,seisωmt, (B16)

where we have used a Jacobi-Anger expansion. We thus arrive at

〈ψ1000|Ŝ†Ŝ|ψ1000〉 = e−|ᾱ|2
(

gj

�̃j

)2 ∑

�,s1,s2

(−1)s1+s2Js1(�z)Js2(�z)i
s1−s2ei(s1−s2)ωmt|ᾱ|2�/�!

(1 + s1ωm/�̃j − qj ,1,�)(1 + s2ωm/�̃j − qj ,1,�)
(B17)

and the time-averaged version

〈ψ1000|Ŝ†Ŝ|ψ1000〉t = e−|ᾱ|2
(

gj

�̃j

)2 ∑

�,s

J 2
s (�z)|ᾱ|2�/�!

(1 + sωm/�̃j − qj ,1,�)2
. (B18)

d. Time dependent Ĥ P
g and Ĥ P − Ĥ P

κ

Finally, we combine the two previous cases, namely we consider a time-dependent phase

eiφn =
+∞∑

s=−∞
ζ φn,se

isωφmt (B19)

and a time dependent δ → δ − zωδm sin(ωδmt) with

ei(k−�)z cos(ωδmt) =
+∞∑

s=−∞
isJs[(k − �)z]eisωδmt =

+∞∑

s=−∞
ζ δk,�,se

isωδmt. (B20)

The generator takes the form

Ŝ =
∑

j ,n,m,k,�,s,r

√
(n + 1)(m + 1)〈k|D̂n,r|�〉gj ζ

φ
n,sζ

δ
k,�,re

i(sωφm+rωδm)t−i(k−�)z cos(ωδmt)/�̃j

1 + (sωφm + rωδm)/�̃j + (mKj − nK̃b)/�̃j + qj ,n,k − qj ,n+1,�
|m + 1〉〈m|j |n〉〈n + 1|b|k〉〈�|r − H.c.

(B21)

With this we find that

〈ψ1000|Ŝ†Ŝ|ψ1000〉 = e−|ᾱ|2
(

gj

�̃j

)2 ∑

�,s1,s2,r1,r2

is1−s2+r1−r2ei(s1−s2)ω
φ
mt+i(r1−r2)ω

δ
mt

× (−1)r1+r2ζ0,s1ζ
∗
0,s2

Jr1(�z)Jr2(�z)|ᾱ|2�/�!
[1 + (s1ω

φ
m + r1ωδm)/�̃j − qj ,1,�][1 + (s2ω

φ
m + r2ωδm)/�̃j − qj ,1,�]

, (B22)

which, under time averaging, reduces to

〈ψ1000|Ŝ†Ŝ|ψ1000〉t = e−|ᾱ|2
(

gj

�̃j

)2 ∑

�,s,r

|ζ0,s|2J 2
r (�z)|ᾱ|2�/�!

[1 + (sωφm + rωδm)/�̃j − qj ,1,�]2
. (B23)

Here we have assumed that sωφm + rωδm = 0 only for s = 0 and r = 0.
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3. Sweeping through frequency collisions

To understand the impact of frequency collisions
between the qubits and the bus as the photon number in the
resonator is increased, it is useful to consider the toy-model
Hamiltonian Ĥϑ(t) = ϑei

∫ t
0 dt′�ϑ(t′)q̂†

1b̂ + H.c. between Q1
and the bus in the interaction picture, where we ignore
Q2 for simplicity. Here, �ϑ(t) as defined in Eq. (24) is
the instantaneous detuning between these systems includ-
ing ac-Stark shifts, and ϑ is an effective coupling strength.
To simplify the discussion, we focus on the case where
�ϑ = �1 − δνt with �1 the initial detuning between Q1
and the bus, δ = ωr − ωd as before, and the rate ν =
|ᾱ0(tf )|2/tf is set to a constant, where tf is the final
time.

Assuming that δν/�1 > 0 such that there is a cross-
ing at some time τ = �1/δν, an excitation in Q1 leaks to
B with probability 1 − e−2π |ϑ |2/|δ|ν , i.e., the Landau-Zener
formula [40,41]. A fast sweep ν � 2π |ϑ |2/|δ| naturally
minimizes leakage to the bus.

Given that ᾱ0(t) = ε0(t)/δ in our TQD protocol (cf.
Appendix A), the envelope is therefore ε0(t) = δ

√
νt.

It follows that dkε0(t)/dtk = (1/2)(k)νkε0(t)/ᾱ2k
0 (t) must

be much smaller in magnitude than χ k+1 to prevent
nonadiabatic errors in the TQD protocol for k ≥ 1
(cf. Appendix A). In other words, |2χ2ᾱ0(t)/δ| � ν �
π |ϑ |2/|δ|. Here we emphasize that ϑ is an effective cou-
pling strength between Q1 and B near the resonance,

which we expect to be exponentially suppressed with ϑ ∼
g1e−|ᾱ0(t)|2/2.

Finally, setting ν = η2χ2|ᾱ0/δ|, where 0 < η < 1 (with
η = 1 corresponding to the upper bound defined above),
we estimate the leakage probability to be of the order of

P ∼ 1 − exp[−η−1π |ᾱ0(τ )|−1e−|ᾱ0(τ )|2 |g1/χ |2], (B24)

where ᾱ0(τ ) is the coherent state amplitude at the crossing
at time t = τ . For η ∼ 1.0, |g1/χ | ∼ 0.2, we find that P ∼
0.001 for |ᾱ0(τ )| ∼ 2.0 and P ∼ 5 × 10−6 for |ᾱ0(τ )| ∼
3.0. We can further suppress P for even larger |ᾱ0(τ )| and
smaller |g1/χ |. Note that, for smaller sweeping rates, it
is possible to further reduce to the leakage probability by
dynamically decoupling the bus using, for example, a flux
modulation of the bus frequency [42] that is compatible
with our scheme. In the presence of this modulation, only
processes that do not conserve the bus excitation number
are exponentially suppressed.

4. Two-qubit interactions

In this section we demonstrate how the matrix elements
of the displacement operator in Ĥ P

g [cf. Eq. (17)] yields
exponentially suppressed two-qubit interactions by deriv-
ing an upper bound based on the inverse participation ratio.
Consider the time-evolution operator in the interaction
picture

ÛI (t) = T e−i
∫ t

0 dτ Ĥ I (τ ) =
∞∑

n=0

(−i)n

n!

∫ t

0
dτ1 · · ·

∫ t

0
dτnT Ĥ I (τ1) · · · Ĥ I (τn), (B25)

where T is the time-ordering operator and we have used the interaction picture Hamiltonian defined in Eq. (B1). It is
convenient to approximate Eq. (B25) using a Magnus expansion,

ÛI = e−i
∫ t

0 dτ ĤM
I (τ ), (B26)

where Ĥ M
I is an effective Hamiltonian. Up to fourth order in gj we have

Ĥ M
I (t) ≈ Ĥ I (t)− 1

2 [Ĥ I (t), ŜI (t)] + i
6

∫ t

0
dτ1{[Ĥ I (t), Ĥ I (τ1)ŜI (τ1)]] + [ŜI (τ1)[Ĥ I (τ1), Ĥ I (t)]}

+ 1
12

∫ t

0

∫ τ1

0
dτ1dτ2{[Ĥ I (t)Ĥ I (τ1)Ĥ I (τ2), ŜI (τ2)] + [Ĥ I (t), Ĥ I (τ1)Ĥ I (τ2)ŜI (τ2)]}

+ 1
12

∫ t

0

∫ τ1

0
dτ1dτ2{[Ĥ I (t), Ĥ I (τ1)Ĥ I (τ2)ŜI (τ2)] + [Ĥ I (τ1), Ĥ I (τ2)ŜI (τ2)Ĥ I (t)]}, (B27)

where, based on Eq. (B2), we have introduced ŜI (t) = i
∫ t

0 dτ Ĥ I (τ ).
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To compute effective two-qubit interactions, we project
Ĥ M

I in the ground state of the coupler, valid in the dis-
persive coupling limit. Because of the form of Ĥ I [cf.
Eq. (B1)], only terms of even order in gj remain in Ĥ M

I .
Defining the projection operator P̂ = |0b, 0r〉〈0b, 0r|, we
compute the effective two-qubit Hamiltonian

Ĥ q−q
I (t) = Trc[Ĥ M

I (t)P̂], (B28)

corresponding to Ĥ M
I , where the coupler mode is traced

out assuming that it is stabilized in its ground state.
For compactness, we define Ĥ M

I = ∑4
n=1 Ĥ M

I ,n, where Ĥ M
I ,n

incorporates the couplings gj at nth order. In what fol-
lows we approximate the qubits and coupler as two-level
systems. This approximation is valid in the limit where
the qubit-coupler detunings are small compared to the
anharmonicities of the qubits and the coupler. Our results
can, however, be extended to include the effects of finite
anharmonicity. We therefore write

Ĥ I (t) ≈
∑

j ,k,�

gj ei�̃j (1+qj ,0,k−qj ,1,�)tÂk,�σ̂+,j + H.c., (B29)

Âk,� = eiφ0〈k|D̂0,r|�〉|k〉〈�|rσ̂−,b, (B30)

qj ,n,k = δ + nχ

�̃j
k + Kr

�̃j

k(k − 1)
2

= rn,k

�̃j
, (B31)

where σ̂−,j (σ̂−,b) is the spin ladder operator, the two-level
approximation of q̂j (b̂). The interaction picture generator
ŜI and the polaron frame generator Ŝ then take the form

ŜI (t) ≈
∑

j ,k,�

gj

�̃j
ei�̃j (1+qj ,0,k−qj ,1,�)t

Âk,�σ̂+,j

1 + qj ,0,k − qj ,1,�
− H.c.,

(B32)

Ŝ ≈
∑

j ,k,�

gj

�̃j

Âk,�σ̂+,j

1 + qj ,0,k − qj ,1,�
− H.c., (B33)

in analogy to Eqs. (B2) and (B3). Our goal is to find
an upper bound on the amplitude of two-qubit interac-
tions in Eq. (B28) corresponding to a partial trace over
Eq. (B27). This upper bound can be obtained from the
Cauchy-Schwartz inequality,

|Tr(ÂB̂)| ≤
√

Tr(Â†Â)
√

Tr(B̂†B̂) = |Â|F |B̂|F , (B34)

where |·|F stands for the Frobenius norm. We separate
the two-qubit interactions by the order in the coupling
strengths gj and stop at fourth order. However, the fol-
lowing analysis can be extended to higher orders in the
coupling strengths.

a. Second-order interactions

We now focus on the two-qubit interactions of second
order in the coupling strengths in Eq. (B28). To this end, it
is convenient to expand

Tr[Ĥ M
I ,2(t)P̂] = − 1

2 Trc[Ĥ I (t)ŜI (t)P̂] + H.c., (B35)

where

Trc[Ĥ I (t)ŜI (t)P̂] =
2∑

s1,s2=1

ei(�̃qs1
−�̃qs2

)tgs1Tr

×
( ∞∑

�=0

Â0,�
gs2

�̃qs2

Â†
0,�

1 − qs2,1,�
P̂
)

× σ̂+,s1 σ̂−,s2 . (B36)

Interestingly, applying Eq. (B34) yields

∣∣∣∣Tr
( ∞∑

�=0

Â0,�
gs2

�̃qs2

Â†
0,�

1 − qs2,1,�
P̂
)∣∣∣∣

≤
∣∣∣∣

∣∣∣∣
∞∑

�=0

Â0,�

∣∣∣∣

∣∣∣∣
F

∣∣∣∣

∣∣∣∣
∞∑

�=0

gs2

�̃qs2

Â†
0,�

1 − qs2,1,�
P̂
∣∣∣∣

∣∣∣∣
F

, (B37)

where

∣∣∣∣

∣∣∣∣
∞∑

�=0

Â0,�

∣∣∣∣

∣∣∣∣
F

= ||0〉〈0|reiφ0D̂0,r|F |σ̂−,b|F = 1. (B38)

Furthermore,

∣∣∣∣

∣∣∣∣
∞∑

�=0

gs2

�̃qs2

Â†
0,�

1 − qs2,1,�
P̂
∣∣∣∣

∣∣∣∣
F

=
√√√√

(
gs2

�̃qs2

)2 ∞∑

�=0

|〈�|D̂0,r|0〉|2
(1 − qs2,1,�)2

≈
√

1 − η
(s2)

2
(B39)

with 
(s2) = 1000 for s2 = 1 and 0100 for s2 = 2, and
where we have used the dispersive limit expression for
1 − ημ [cf. Eq. (B8)]. Since each term in Eq. (B35) is
bounded in magnitude by maxν∈{1000,0100}

√
1 − ην , it fol-

lows that Eq. (B35) is equally bounded in magnitude by
maxν∈{1000,0100}

√
1 − ην . Intuitively, this means that the

virtual interaction is always smaller in magnitude than
|gigj /�̃j |.
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b. Fourth-order interactions

We now demonstrate that the maxν∈{1000,0100}
√

1 − ην bound holds for higher-order two-qubit interactions. First, we
expand the commutators such that

Trc(Ĥ M
I ,4P̂) = 1

12

∫ t

0

∫ τ1

0
dτ1dτ2(2Trc[Ĥ I (t)Ĥ I (τ1)Ĥ I (τ2)ŜI (τ2)P̂] − Trc{[Ĥ I (τ1), Ĥ I (t)]Ĥ I (τ2)ŜI (τ2)P̂}

− Trc{[Ĥ I (τ2), Ĥ I (t)]Ĥ I (τ1)ŜI (τ2)P̂} − Trc{[Ĥ I (τ1), Ĥ I (τ2)]Ĥ I (t)ŜI (τ2)P̂}
− Trc{[Ĥ I (t), Ĥ I (τ1)]ŜI (τ2)Ĥ I (τ2)P̂} − Trc{[Ĥ I (t), Ĥ I (τ2)]ŜI (τ2)Ĥ I (τ1)P̂}
− Trc{[Ĥ I (τ1), Ĥ I (τ2)]ŜI (τ2)Ĥ I (t)P̂}) + H.c. (B40)

Second, we find that

Trc[Ĥ I (t1)Ĥ I (t2)Ĥ I (t3)ŜI (t4)P̂] =
2∑

s1,...,s4=1

ei�̃qs1
t1e−i�̃qs2

t2ei�̃qs3
t3e−i�̃qs4

t4gs1gs2gs3

× Tr
( ∞∑

k,�,m=0

e−ir1,k(t1−t2)−ir0,�(t2−t3)−ir1,m(t3−t4)Â0,kÂ†
�,kÂ�,m

gs4

�̃qs4

Â†
0,m

1 − qs4,1,m
P̂
)

× σ̂+,s1 σ̂−,s2 σ̂+,s3 σ̂−,s4 (B41)

and, similarly,

Trc[Ĥ I (t1)Ĥ I (t2)ŜI (t3)Ĥ I (t4)P̂] = −
2∑

s1,...,s4=1

ei�̃qs1
t1e−i�̃qs2

t2ei�̃qs3
t3e−i�̃qs4

t4gs1gs2gs4

× Tr
( ∞∑

k,�,m=0

e−ir1,k(t1−t2)−ir0,�(t2−t3)−ir1,m(t3−t4)Â0,kÂ†
�,k

gs3

�̃qs3

Â�,mÂ†
0,m

1 + qs3,0,� − qs3,1,m
P̂
)

× σ̂+,s1 σ̂−,s2 σ̂+,s3 σ̂−,s4 . (B42)

As was done in the previous section, we apply Eq. (B34) to find an upper bound on Eq. (B41):

∣∣∣∣Tr
( ∞∑

k,�,m=0

e−ir1,k(t1−t2)−ir0,�(t2−t3)−ir1,m(t3−t4)Â0,kÂ†
�,kÂ�,m

gs4

�̃qs4

Â†
0,m

1 − qs4,1,m
P̂
)∣∣∣∣

≤
∣∣∣∣

∣∣∣∣
∞∑

k,�,m=0

e−ir1,k(t1−t2)−ir0,�(t2−t3)−ir1,m(t3−t4)Â0,kÂ†
�,kÂ�,m

∣∣∣∣

∣∣∣∣
F

∣∣∣∣

∣∣∣∣
∞∑

m=0

gs4

�̃qs4

Â†
0,m

1 − qs4,1,m
P̂
∣∣∣∣

∣∣∣∣
F

≤
∣∣∣∣

∣∣∣∣
∞∑

k,�,m=0

Â0,kÂ†
�,kÂ�,m

∣∣∣∣

∣∣∣∣
F

∣∣∣∣

∣∣∣∣
∞∑

m=0

gs4

�̃qs4

Â†
0,m

1 − qs4,1,m
P̂
∣∣∣∣

∣∣∣∣
F

, (B43)

Here it can also be verified that |∑∞
k,�,m=0 Â0,kÂ†

�,kÂ�,m|
F

= 1 and where

∣∣∣∣

∣∣∣∣
∞∑

m=0

gs4

�̃qs4

Â†
0,m

1 − qs4,1,m
P̂
∣∣∣∣

∣∣∣∣
F

≈
√

1 − η
(s4)

2
. (B44)
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Similarly, Eq. (B34) can be applied on Eq. (B42):

∣∣∣∣Tr
( ∞∑

k,�,m=0

e−ir1,k(t1−t2)−ir0,�(t2−t3)−ir1,m(t3−t4)Â0,kÂ†
�,k

gs3

�̃qs3

Â�,mÂ†
0,m

1 + qs3,0,� − qs3,1,m
P̂
)∣∣∣∣

≤
∣∣∣∣

∣∣∣∣
∞∑

k,�=0

e−ir1,k(t1−t2)−ir0,�(t2−t3)Â0,kÂ†
�,k

∣∣∣∣

∣∣∣∣
F

∣∣∣∣

∣∣∣∣
∞∑

�,m=0

e−ir1,m(t3−t4)
gs3

�̃qs3

Â�,mÂ†
0,m

1 + qs3,0,� − qs3,1,m
P̂
∣∣∣∣

∣∣∣∣
F

≤
∣∣∣∣

∣∣∣∣
∞∑

k,�=0

Â0,kÂ†
�,k

∣∣∣∣

∣∣∣∣
F

∣∣∣∣

∣∣∣∣
∞∑

�,m=0

gs3

�̃qs3

Â�,mÂ†
0,m

1 + qs3,0,� − qs3,1,m
P̂
∣∣∣∣

∣∣∣∣
F

, (B45)

where |∑∞
k,�=0 Â0,kÂ†

�,k|F = 1 and

∣∣∣∣

∣∣∣∣
∞∑

�,m=0

gs3

�̃qs3

Â�,mÂ†
0,m

1 + qs3,0,� − qs3,1,m
P̂
∣∣∣∣

∣∣∣∣
F

=
√√√√

∞∑

�,m,m′=0

(
gs3

�̃qs3

)2 〈0|D̂0,r|m′〉〈m′|D̂†
0,r|�〉〈�|D̂0,r|m〉〈m|D̂†

0,r|0〉
(1 + qs3,0,� − qs3,1,m′)(1 + qs3,0,� − qs3,1,m)

. (B46)

Considering this norm to be bounded from above by the limiting cases δ = 0 and Kr = 0, we find that

∣∣∣∣

∣∣∣∣
∞∑

�,m=0

gs3

�̃qs3

Â�,mÂ†
0,m

1 + qs3,0,� − qs3,1,m
P̂
∣∣∣∣

∣∣∣∣
F

�

√√√√
∞∑

�,m=0

(
gs3

�̃qs3

)2 |〈m|D̂0,r|0〉|2
(1 − qs3,1,m)2

≈
√

1 − η
(s3)

2
. (B47)

As previously found for second-order interactions, all con-
tributions are bounded in magnitude by maxν∈{1000,0100}√

1 − ην . These observations can be straightforwardly
extended to higher orders in a similar fashion.

This implies that exponentially suppressing 1 − ημ will
equally exponentially suppress virtual two-qubit inter-
actions. However, we stress that this only provides an
estimate for the order of magnitude.

5. Measurement-induced dephasing

In order to quantify the dephasing induced by the cou-
pler drive, we express Eq. (26) in the hybridized eigenbasis

L̂P
b =

√
κ|ᾱ|2

4

∑

ν,ν′
cν;ν′ |ψh,ν〉〈ψh,ν′ | (B48)

with

cν;ν′ = 〈ψh,ν |(|1〉〈1|b − |0〉〈0|b)|ψh,ν′ 〉. (B49)

To study the effects of bus dephasing on Q1 alone, we first
trace out Q2, B, and R in the hybridized basis where all
three have zero excitation

L̂P
1 ≈

∑

i,j

〈ψh,i000|L̂P
b |ψh,j 000〉|ψh,i000〉〈ψh,j 000|. (B50)

We then apply a rotating-wave approximation to obtain

L̂P
1 ≈

√
κ|ᾱ|2

4

∑

i

ci000;i000|ψh,i000〉〈ψh,i000|. (B51)

Because the total excitation number in Q1, Q2, and B is
conserved under Eq. (17) and the interaction in Eq. (17)
dominantly yields hybridization between 1 and B, we
neglect 〈ψh,1000|ψb,010k〉 ≈ 0. We also use the fact that∑

k |〈ψh,0000|ψb,000k〉|2 = 1 due to total excitation num-
ber conservation, and, finally,

∑
k |〈ψh,1000|ψb,100k〉|2 ≈

1 − ∑
k |〈ψh,1000|ψb,001k〉|2. It follows that c1000;1000 ≈

2
∑

k |〈ψh,1000|ψb,001k〉|2 − 1 and c0000;0000 ≈−1, leading to

L̂P
1 ≈

√
κ|ᾱ|2

4

∞∑

k=0

|〈ψh,1000|ψb,001k〉|2(|ψh,1000〉〈ψh,1000|

− |ψh,0000〉〈ψh,0000|). (B52)

The dephasing rate of Q1 can be estimated by computing
the dephasing rate associated with Eq. (B52), which takes
the form

γϕ,1 = κ|ᾱ|2
2

( ∞∑

k=0

|〈ψh,1000|ψb,001k〉|2
)2

≈ κ|ᾱ|2
2

1 − η1000

2
, (B53)
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FIG. 10. Measurement-induced dephasing rates in qubits 1 and 2. Dephasing rate for (a),(b) qubit 1, and (c),(d) qubit 2. The gray
regions correspond to the analytical estimates in Eq. (32) with Eqs. (B9) and (B10). The δ/2π = −1.5 MHz (a),(c) and δ/2π = 1.0
MHz (b),(d) correspond to two different parameter regimes set by the sign of δ. Here (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0
MHz, K1/2π = K2/2π = −300.0 MHz, χ/2π = −20.0 MHz, g/2π = 2.0 MHz, and κ/2π = 100.0 kHz.

where the second line follows from the Schrieffer-Wolff
transformation [cf. Eq. (B4)]. The expression above is
obtained under a rotating-wave approximation, which is
valid for |γϕ,1/�̃1| 
 1. An expression for the second
qubit is obtained by simply replacing the subscript 1000 by
0100. Measurement-induced dephasing rates in the qubits
are estimated numerically from diagonalization and are
reported in Fig. 10.

6. Parameter regimes

We have seen in Figs. 4 and 5 that the choice of fre-
quency detuning between the resonator and the drive δ,
which controls the sign of the ac-Stark shift between the
qubits and the bus, has both a quantitative and qualitative
impact on the system. To better understand this behav-
ior, we consider again Eqs. (28) and (29) where we now

express the generalized hypergeometric functions as

4F4(pj , 1 + pj ; |ᾱ|2) =
∞∑

n=0

|ᾱ|2n

n!

∏

k=±

(
1 + n

pjk

)−2

.

(B54)

We recall that in this expression pj ± = β[1 ±√
1 + 2�̃jβ

−2/Kr] with β = (δ + χ)/Kr − 1/2 and where
�̃j is the ac-Stark-shifted detuning given in Eq. (24). Phys-
ically, Eq. (B54) corresponds to a weighted sum over all
virtual transitions to higher-energy levels in the resonator
for a displacement ᾱ during a 0 → 1 transition in the bus.
The poles 1 + n/pjk in Eq. (B54) correspond to frequency
collisions with these higher-energy levels.

Given that we wish to maximize the exponential sup-
pression of 1 − ημ [i.e., the exponential factor in Eqs. (28)
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and (29)], we want 4F4(pj , 1 + pj ; |ᾱ|2) to be as close
as possible to unity. To have a monotonic suppression
with respect to |ᾱ|2, this parameter should be chosen
such as to avoid frequency collisions corresponding to
the poles of Eq. (B54). With these constraints, we define
two key parameter regimes below. In what follows we
take (κ/2)2 
 |δ(δ + χ)|, but we note that κ also plays
a role in controlling the ac-Stark shift of the bus and
can be seen as an additional knob. To simplify the anal-
ysis below, it is useful to note that, for Kr = 0, we
find that pj + → ∞ and pj − → −�̃j /(δ + χ), while for
|Kr| � {|�̃j |, |δ + χ |}, we find that pj + → −1 + 2(δ +
χ − �̃j )/Kr and pj − → 2�̃j /Kr.

a. Monotonic suppression

We first focus on the situation illustrated in panels (a)
of Figs. 4 and 5 where there are no frequency collisions
between the different modes of the system and the sup-
pression factor is a smooth function of the photon number.
There are two possible sources of frequency collisions: (i)
the ac-Stark-shifted qubit-bus detuning �̃j of Eq. (24) and
(ii) higher-energy levels in the resonator as captured by
Eq. (B54).

First, to avoid a collision where �̃j = 0, the ac-Stark-
shifted qubit-bus detuning should ideally grow in magni-
tude with respect to ᾱ. This, in turn, implies that ωqj − ωb
and δ(δ + χ)/χ ≈ δ should have opposite signs. Consid-
ering the second source of frequency collisions, pj ± > 0
in Eq. (B54) suppresses frequency collisions with higher-
energy levels in the resonator. For Kr = 0, this condition is
achieved with pj − = −�̃j /(δ + χ) > 0, meaning that �̃j
and δ + χ have opposite signs. Combining this with the
above finding, it follows that δ and χ have the same signs,
and opposite signs to ωqj − ωb. We stress that this choice
of parameters is equally compatible with the large-|Kr|
limit because |1/pj −| is then large.

Combining the above with the fact that |δ/χ | 
 1 for
large conditional displacements allows us to define the
parameter regime for monotonic suppression of 1 − ημ as

|δ/χ | 
 1, (ωj − ωb)δ < 0, (ωj − ωb)χ < 0.
(B55)

Because the nonlinearity of Josephson junctions is nega-
tive, in panels (a) of Figs. 4 and 5 we choose χ < 0 and
ωj − ωb > 0.

b. Nonmonotonic and strong suppression

As illustrated in panels (b) of Figs. 4 and 5, working in
a parameter regime where the behavior of 1 − ημ with the
photon number is nonmonotonic can lead to stronger sup-
pression. A first observation to understanding this effect
is that, taking pj − ∝ �̃j and pj − → 0, forces Eq. (B54)

to be unity. Moreover, we can exploit the fact that sym-
metric two-qubit interactions, such as the ZZ interaction,
are suppressed when the bus frequency lies between the
qubit frequencies. As a result, the choice �̃1 + �̃2 = 0
minimizes the ZZ interaction in Eq. (31) in the limit of
large anharmonicities with respect to the detunings, i.e.,
|�̃j /Kj | 
 1 and |�̃j /K̃b| 
 1.

Based on these arguments, we define a second parameter
regime according to

|δ/χ | 
 1, (ωj − ωb)δ > 0, (ωj − ωb)χ < 0.
(B56)

The essential difference with respect to Eq. (B55) is that
δ has now changed sign. In this regime, the ac-Stark shift
of the bus mode changes the sign of the qubit-bus detun-
ings for some ᾱ, something that can help suppress spurious
interactions.

It is worth highlighting that the protocol presented here
works best for small qubit-bus detunings |�̃j | relative to
|χ |. This is because the drive on the resonator, close to
its resonance frequency, renders the energy gaps between
the stabilized states in the resonator smaller in magnitude
than in the bare energy spectrum of the resonator. With-
out anharmonicity in the resonator, these energy gaps are
predominantly set by |χ |.

Finally, although we have focused on ᾱ0 with the TQD
protocol, one could have chosen to grow ᾱ1 for example,
such as to still suppress the dominant 0 ↔ 1 transition in
the bus. The main reason for the focus on ᾱ0 is that, in this
case, δ is made small but δ + χ is large, thus preventing
transitions to higher-energy states of the resonator.

APPENDIX C: EFFECTIVE PARAMETRIC
MODULATION

In this section we provide supporting analytical deriva-
tions and numerical results for the parametric modulation
(PAM) scheme presented in Sec. IV and discuss another
decoupling scheme based on a longitudinal drive (LD)
in the resonator to mimic the effects of an anharmonic-
ity. We also show that the two schemes can be poten-
tially combined to offer stronger suppression of qubit-qubit
interactions.

1. PAM: additional tones in the resonator drive

We comment on the effects of the fast-oscillating con-
tributions in Eq. (40). As previously stated, these terms
impose a lower bound on the time averaged 1 − ημ. For
large ωm as compared to δ and χ , this lower bound is
approximately 2(g/ωm)

2. In the particular case of ωm =
ω0|ᾱ|, such that the voltage drive amplitude in the res-
onator is displacement independent, we observe that the
asymptotic behavior in the suppression is polynomial in
|ᾱ|. We also stress that an appreciable anharmonicity Kr
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FIG. 11. Dynamical decoupling in the bus: time-averaged
inverse participation ratio against photon number in the ground
state. Here we assume two additional tones ωr ± ωm with ampli-
tude ωmλ/ᾱ, and we choose ωm such that the voltage-drive
amplitude is fixed for all ᾱ. The regions are bounded by λ = λ0,
where J0(λ0) = 0, and a ±10% error on λ0. Note that we exclude
anharmonicity in the resonator (Kr = 0). The parameters are
δ/2π = −1.0 MHz, χ/2π = −20.0 MHz, (ω1 − ωb)/2π = 7.0
MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0
MHz, and g/2π = 2.0 MHz.

in the resonator could in principle result in additional fre-
quency collisions due to negative sωm/�̃1, where s is an
integer. Finally, and in addition to Fig. 6, we report the
inverse participation of the second qubit in Fig. 11. For
both Figs. 6 and 11, we plot the time-averaged inverse
participation ratio obtained in Appendix B2b.

2. LD: longitudinal drive in the resonator

We now discuss how a longitudinal drive in the res-
onator can help recover a strong suppression in the absence

of large anharmonicity and without the need for fine tun-
ing. Our starting point is Eq. (B18). In the z → ∞ limit,
the asymptotic behavior of the Bessel functions is

Jν(z) ∼
√

2
πz

cos
(

z − 2ν + 1
4

π

)
, (C1)

and we also have Jν(−z) = (−1)νJν(z). It follows that
the matrix elements of Eq. (B15) are renormalized by
|(k − �)z|−1/2 for k �= �. This result is appealing given that
the suppression of two-qubit interactions is strongest if the
resonator is constrained to Fock states of small photon
number and it is desirable to suppress 0 → k transitions
in the resonator, as shown in Fig. 12.

A key advantage of this scheme is that it might be
possible to relax parameter constraints for �̃q and χ due
to the simulated anharmonicity. Regarding the physical
implementation, it can range from a modulated detuning
in the voltage drive to flux modulating a superconducting
loop with junctions. The results shown in Fig. 12 corre-
spond to the time-averaged participation ratio obtained in
Appendix B2c.

3. PAM and LD in parallel

A key challenge in combining PAM and LD is to prevent
frequency collisions. Having simultaneously large mod-
ulation frequencies for both schemes is therefore not a
good option. Given that the lower bound on 1 − ημ is
dominantly set by the modulation frequency in PAM, we
choose this frequency to be the largest. Since the modula-
tion frequency in LD is small, we can choose z to be large.
We indeed observe in Fig. 13 that it is possible to grow
stronger suppression factors by increasing z. Figure 13
illustrates the time-averaged inverse participation obtained
in Appendix D.
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FIG. 12. Dynamical decoupling in the resonator: time-averaged inverse participation ratio against photon number in the ground state
for the states (a) 1000 and (b) 0100. We assume an additional longitudinal drive δ → δ − zωm sin(ωmt) in the resonator with ωm = 1.0
GHz. Note that no anharmonicity is considered for the resonator (Kr = 0). The parameters are δ/2π = −1.0 MHz, χ/2π = −20.0
MHz, (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.
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FIG. 13. Dynamical decoupling in the bus and in the resonator: time-averaged inverse participation ratio against photon number
in the ground state for the states (a) 1000 and (b) 0100. Here we assume two additional tones ωr ± ω

φ
m in the voltage drive with

amplitude ωφmλ/ᾱ, and we choose ωφm = 0.5ᾱ such that the voltage-drive amplitude is fixed for all ᾱ with λ = λ0, where J0(λ0) = 0.
We assume an additional longitudinal drive δ → δ − zωδm sin(ωδmt) in the resonator with ωδm = 10.0 MHz. The parameters are δ/2π =
−1.0 MHz, χ/2π = −20.0 MHz, (ω1 − ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π = K2/2π = −300.0 MHz, and
g/2π = 2.0 MHz.

APPENDIX D: SUPERCONDUCTING
IMPLEMENTATION

The inverse participation ratio for the second qubit is
illustrated in Fig. 14 and should be contrasted to that of
panel (c) in Fig. 7.

We conclude with a remark on stray couplings, not
captured by Eq. (2), but most likely present in a super-
conducting circuit implementation. For instance, direct
coupling g1−2 between the qubits cannot be suppressed
by manipulating the coupler and, in that case, ημ includes
an additional term −2g2

1−2/(ω1 − ω2)
2 that bounds

1 − ημ. However, this bound can be conveniently low-
ered by detuning the qubits and improving circuit design
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FIG. 14. The quantity 1 − η0100 estimated with the numerical
diagonalization of the full system with the effective Hamilto-
nian in Eq. (53) with δ/2π = 19.9 MHz, χ/2π = −20.0 MHz
[parameter regime of Fig. 7(c), where |α0| → 0]. Here (ω1 −
ωb)/2π = 7.0 MHz, (ω2 − ωb)/2π = 14.0 MHz, K1/2π =
K2/2π = −300.0 MHz, and g/2π = 2.0 MHz.

such that g1−2 is minimized. It is also worth noting that
this interaction is typically very small compared to desired
couplings. Another possibility for the presence of stray
couplings is to have spurious qubit-resonator interactions.
In this case, virtual two-qubit transitions mediated by the
resonator are not exponentially suppressed. However, if
the resonator is far detuned in frequency with respect
to the qubits, these interactions can be greatly reduced.
Finally, stray dispersive coupling between the bus and the
resonator can also exist. However, this type of nonideali-
ties are not particularly detrimental, as the resulting weak
hybridization between the bus and the resonator does not
prevent the suppression of two-qubit interactions.
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