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Variational quantum simulation of ultrastrong light-matter coupling
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We propose the simulation of quantum-optical systems in the ultrastrong-coupling regime using a variational
quantum algorithm. More precisely, we introduce a short-depth variational form to prepare the ground state of
the multimode Dicke model on a quantum processor and present proof-of-principle results obtained using an
IBM device. We moreover provide an algorithm for characterizing the ground state by Wigner state tomography.
Our work is a first step toward digital quantum simulation of light-matter systems with potential applications to
few-impurity spin-boson models.
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I. INTRODUCTION

Quantum simulation is one promising application of quan-
tum processors which aims to circumvent the limitations of
classical computers at simulating matter. Recently, a quantum-
classical simulation paradigm exploiting variational principles
has been introduced [1]. Following this work, many other re-
alizations of what is known as variational quantum algorithm
(VQA) have appeared [2–5].

VQAs have some robustness against noise and appear ap-
propriate for noise-intermediate-scale-quantum (NISQ) com-
putation [4,6,7]. Although considerable effort has been de-
voted to solving proof-of-principle problems in chemistry
[2–5] and optimization [8], the applicability of VQAs to other
domains is a subject of debate and interest [9,10]. Here, we
use a VQA to simulate interacting light-matter models. More
precisely, we study the ground state of a set of two-level atoms
coupled to electromagnetic modes, which is of fundamental
interest and has important applications in computing and
sensing [11–15].

The simplest case corresponds to a two-level atom coupled
to a cavity mode, described by the quantum Rabi Hamiltonian

H/h̄ = ωq

2
σ z + ωca†a + gσ x(a + a†). (1)

Here, ωq and ωc are the atomic and the electromagnetic-
mode frequencies, σμ (μ = x, y, z) the Pauli matrices. and
a (a†) the annihilation (creation) operator for the oscillator,
respectively. If the light-matter coupling constant g is small
compared to the systems’ frequencies, Eq. (1) reduces to the
Jaynes-Cummings Hamiltonian [16]. Then, the terms σ+a
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and σ−a†, where σ± = (σ x ± iσ y)/2, lead to an exchange
of a single excitation between the atom and the oscillator
mode. Provided that g is greater than the decoherence rates
of the atom and the cavity, this regime is referred to as strong
coupling, and it is widely exploited for quantum-information
processing purposes [17].

As g approaches a significant fraction of the atom
and cavity frequencies in Eq. (1), or exceeds them,
the atom-cavity system enters the ultrastrong-coupling
(USC) and deep-strong-coupling (DSC) regimes, respectively
[11,14,15,18,19]. Now, the counter-rotating terms (σ+a† and
σ−a) in Eq. (1) need to be taken into account. Perturbation
theory provides an accurate description for g in the range of
10%–30% of the system’s frequencies, but has limited appli-
cability beyond that regime [14]. While an exact analytical
solution exists for the energy spectrum of Eq. (1) [20], systems
with multiple atoms and/or electromagnetic modes can only
be handled numerically.

In the large-g limit, however, the mean cavity-mode photon
number and its quantum fluctuations become large enough
to make the numerical simulation of many-particle systems
difficult or unpractical. This motivates the search for effi-
cient analytical and numerical methods [11–13,21–24] and
quantum-simulation algorithms [14,15,19,25–27].

II. POLARON VARIATIONAL FORM

We consider the generalization of Eq. (1) to N atoms and
M modes, given by [22]

H/h̄ =
N∑

i=1

ωqi

2
σ z

i +
M∑

k=1

ωka†
kak +

N∑
i=1

M∑
k=1

gikσ
x
i (ak + a†

k ),

(2)
where the constants {gik} quantify the coupling strength be-
tween the ith atom (of frequency ωqi ) and the kth cavity mode
(of frequency ωk), referred below to as k mode. For M = 1,
Eq. (2) reduces to the Dicke model, while N = 1 corresponds
to the multimode quantum Rabi model. Digital quantum
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simulation requires the encoding of the bosonic modes into
qubit registers. We use a single-excitation-subspace (SES)
encoding where the Fock space of a k mode is truncated
to a maximum photon number nmax

k and represented by a
qubit register of size nmax

k + 1 [28–31]. A mapping from
the Fock space to the single-excitation subspace is then de-
fined as |nk〉 → |ñk〉 = |00 . . . 0nk−11nk 0nk+1 . . . 0nmax

k
〉 for nk ∈

[0, nmax
k ], where the tilde is used hereafter to indicate en-

coded states and operators. Under SES encoding, quadratic
bosonic Hamiltonians lead to next-neighbor interactions at
most [28]. Indeed, the k-mode annihilation operator maps to
ak → ãk = ∑nmax

k −1
nk=0

√
nk + 1σ+

nk
σ−

nk+1, where σ±
nk

acts on the
nk th qubit of the k-mode register. The 2-local form of ãk

relaxes connectivity requirements on the k-mode qubit register
and leads to a reduced gate count. Other encodings can be
found in Refs. [27,32,33].

Finding the ground state |G〉 of Eq. (2) by means of a VQA
requires first to construct a proper variational form [1,6]. That
is, a unitary U (θ) parametrized by a real-valued vector θ, such
that

|G̃〉 � U (θ∗)|ṽac〉, (3)

where |ṽac〉 = |0q〉 ⊗M
k=1 |̃0k〉 is the (encoded) noninteract-

ing vacuum state, and θ∗ minimizes the energy E (θ) =
〈ṽac|U †(θ)H̃U (θ)|ṽac〉. A convenient choice of U (θ) can be
motivated by approximate disentangling transformations for
Eq. (2) [22,23], which we refer to as polaron Ansätze. The
simplest transformation is obtained for the case of N = 1,
where it is useful to rotate H → H ′ = P†HP by means of a
qubit-state-dependent displacement of the k modes [23]

P =
M∏

k=1

exp[gkσ
x(ak + a†

k )/(ωk + ω′
q)], (4)

where ω′
q is a renormalized atom frequency. As illustrated in

Appendix A 1, the ground state of H ′ approaches |vac〉 in most
coupling regimes. Therefore, the state P|vac〉 approximates
|G〉 in the laboratory frame.

Exploiting this fact to prepare |G̃〉 on a quantum computer
requires compiling P̃ from single- and two-qubit gates, for
instance, using a Trotter decomposition. The need for reduc-
ing the Trotter error, however, can lead to quantum circuits
of large depth. Moreover, this approach is sensitive to errors
arising from imperfect qubit control and noise. As a way
around this problem, we propose to leverage the structure of
the polaron transformation to obtain a short-depth variational
form. We do this by parametrizing the Trotter decomposi-
tion of P̃ and letting the VQA adjust the unitary such that
the energy is minimized. The variational form has not only
the purpose of discovering short-depth quantum circuits for
synthesizing the USC ground state, but also to potentially
improving on the disentangling capabilities of Eq. (4).

We construct the variational form by choosing a convenient
Trotter decomposition of P̃, first for the case of N = 1. We
introduce two k-mode operators, X̃ e

k and X̃ o
k , defined such

that P̃ = ∏M
k=1 exp[ fkσ

x(X̃ e
k + X̃ o

k )], where { fk = gk/(ωk +
ω′

q)} is a set of constants that will latter play the role of
variational parameters. Although [X̃ e

k , X̃ o
k ] �= 0, X̃ e

k and X̃ o
k

are, respectively composed of commuting terms that act on

even and odd sites of the k-mode qubit register, the 2-local
form of the encoded bosonic operators leads to an efficient
implementation of the Trotter-expanded unitary

P̃d �
M∏

k=1

dk∏
s=1

exp

(
fk

dk
σ xX̃ e

k

)
exp

(
fk

dk
σ xX̃ o

k

)
, (5)

where dk is the number of Trotter steps that may vary with
the k-mode index. As shown in A, the exponentials in this
equation exactly factorize into a product of nmax

k controlled-
exchange gates acting on next-neighbor qubits of the k-mode
register, with the atom register being the control. The im-
plementation of Eq. (5) requires nmax

k × dk such gates per k
mode, adding to a gate count of

∑M
k=1 nmax

k dk . This number
grows linearly with the number of k modes, their Fock-space
dimension, and the order of the Trotter expansion (Trotter
depth). Since Eq. (5) parallelizes over the k modes, its depth
does not scale with M.

For N > 1, our variational form incorporates blocks of the
form of Eq. (5) where the operator σ x → σ x

i is now indexed
by i ∈ [1, N] (see Appendix A 3), arriving at

Varform =
N∏

i=1

M∏
k=1

dik∏
s=1

exp

(
f s
ik

dik
σ x

i X̃ e
k

)
exp

(
f s
ik

dik
σ x

i X̃ o
ik

)
,

(6)
where the coefficients fk → f s

ik are variational parameters that
depend on the Trotter step s ∈ [1, . . . , dik]. Additionally, f s

ik
can also be made a function of the k-mode photon number, i.e.,
f s
ik → f s

ik (nk ). As argued below, this trades shorter circuits for
longer optimization runtime.

Additional details apply, however, between the cases N =
1 and N > 1. Indeed, N > 1 requires Eq. (6) to be com-
plemented by a short-depth variational form on the atoms’
registers. This extra step initializes the polaron variational
circuit to the state |ṽac′〉 = ∏M

k=1 |ψa〉|0̃k〉, where |ψa〉 is an
entangled state of the atoms, determined by an auxiliary
optimization loop.

III. VARIATIONAL QUANTUM ALGORITHM

Figure 1 shows the results for the (a) single- and (b) two-
mode Rabi Hamiltonian, and (c) single- and (d) two-mode
Dicke model for N = 2. The atoms and k-modes frequencies
are set to ωqi = ωk ≡ ω and gik ≡ g is swept in [0, ω]. The
resonance condition favors entanglement between the atoms
and cavity modes due to the energetically allowed exchange
of excitations. To quantify the VQA performance, we define
the error metric �en = |(Evqe − Een )/Een| accounting for the
relative difference between the ground-state energy found
by the VQA, Evqe, and the energy of the encoded ground
state Een. Additionally, �ex = |(Een − Eex)/Eex| quantifies the
difference between Een and the numerically exact ground-
state energy. We evaluate �en and �ex as a function of g/ω
for circuits with dik = d . The chosen Fock space truncation
(see figure caption) leads to a small number of qubits while
ensuring a relatively small �ex. This choice seeks to reduce
the quantum-hardware resources needed for simulation.

Results in Fig. 1(a) show that errors �en below 1% are
achieved by circuits containing three variational parameters
(d = 3). Same accuracy is obtained for circuits with d = 2
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FIG. 1. Ground-state-energy estimation for the single- and two-
mode Rabi and Dicke models in resonance. The Fock-space trun-
cation in (a)–(d) is set to nmax

k = 3, 3, 5, and 4 corresponding to
5, 9, 8, and 12 qubits, respectively. The legend is shared between
all panels, although (a) and (d) display results only for di < 4 and
dik < 5, respectively. We show the error metrics �en (left scale) and
�ex (light blue dashed line and right scale), along with 〈H ′〉vac|nmax

k

(triangular markers). The inset in (b) shows 〈H ′〉vac|nmax
k

converging
to a 4% in the limit of large nmax

k (pink baseline) for g/ω = 0.8.
Simulations do not include noise and are done using QISKIT [34].

if additional parameters, dependent on the k-mode photon
number, are incorporated (not shown). For d > 1, the energy
of the variational Ansatz is significantly lower than the ex-
pectation value 〈H ′〉vac|nmax

k
of Eq. (2) on the state P|vac〉|nmax

k

within a truncated Fock space. This indicates that the VQA
leverages the Trotter error to outperform the full polaron
Ansatz under the same Fock-space restrictions and with very
low circuit depth. The energy of the variational state also
falls below 〈H ′〉vac|nmax

k →∞ in the full range of g/ω ∈ [0, 1]
(not shown). This suggests that refining Eq. (4) to allow
for a more extensive parametrization can lead to a better
approximation for the ground state of Eq. (1). However, while
the optimal parametrization of Eq. (4) is found efficiently
by semianalytical methods, the parameters of our variational
form are determined by a quantum algorithm. Finally, we note
that the error metric �ex remains below ∼2% in all cases.

We observe a similar behavior for the two-mode simula-
tions in Fig. 1(b), although �en increases to ∼2.5% for d = 4.
Same accuracy is reached for circuits with d = 2 when more
variational parameters are introduced (not shown). We find
that the accuracy limit is due to truncation errors and the
disentangling capabilities of the polaron Ansatz. Increasing
the number of two-level atoms in the model, while keeping
the number of qubits of the order of 10, leads to the results
in Figs. 1(c) and 1(d) for which we find a maximum error of
�en � 5% for d = 5 in the first case, and of �en � 8% for
d = 4 in the second case. These results, however, are limited
by Fock-space truncation errors and can be improved by
increasing the number of qubits in the simulations. It is worth
noticing that, similarly to the case of N = 1, these variational
circuits outperform the polaron Ansatz significantly for the
same conditions.

The performance of the variational form may be improved
further by means of simple modifications. For instance, a layer

0.0 0.2 0.4 0.6 0.8 1.0
g/ω

−1.0

−0.8

−0.6

−0.4

E
g
s
/h̄

ω

Reference
VQE
avg. expval
min. expval

FIG. 2. Variational simulation of the Rabi model on a quantum
processor. Shown is the ground-state energy as a function of g in
units of ω. The light blue bands enclose the range of results that are
expected for 150 SPSA trials with levels of noise in the order of 0.1
and 1.0 relative to calibrated values (dotted lines). The black dashed
line corresponds to the encoded-ground-state energy obtained by
exact diagonalization. The star-shaped markers are the result of VQA
runs for up to 150 SPSA trials on the quantum device. The pointing-
up (pointing-down) triangular markers are the minimum (average)
expectation value on quantum hardware of states that have been
previously optimized in the classical processor. The dispersion of
such values is due to fluctuations in the level of noise of the quantum
device between runs. Further details are provided in Appendix B.

of a hardware-efficient (HE) gates [3] could be appended
after a Trotter step. Ideally, gates on such HE layers should
conserve the number of excitations in the k-mode registers
[30]. Generalizations of Eq. (4) are also a possibility [35].
Circuits of larger depth and number of qubits could also
benefit from quantum devices tailored to compile the polaron
Ansatz using fewer gates, as illustrated in Appendix E.

The results of Fig. 1 suggest that the polaron variational
form is a promising tool for investigating the USC ground
state in near-term quantum devices. We now implement
the aforementioned strategy in currently available quantum
hardware. We use the IBM Q Poughkeepsie chip via the
open-source framework QISKIT,1 taking advantage of the built-
in SPSA optimizer [3,36] and readout-error-mitigation tech-
niques [34]. We use three qubits for the quantum simulation,
two of them encoding the bosonic mode. The ground-state
energies found this way, shown in Fig. 2 (star-shaped data
points), are in good qualitative agreement with the theoretical
estimations.

We find that the main limitations on the accuracy of
the VQA are due to noise in the quantum processor
and the performance of simultaneous-perturbation-stochastic-
approximation (SPSA). To investigate the effect of the latter
against the former, we perform the VQA on a desktop com-
puter, assuming a larger number of optimization steps and
the calibrated noise model of the device. This produces a set
of variational states with optimal parametrization. We then
evaluate the energy expectation value of such states on the

1IBM Q, Qiskit are trademarks of International Business Machines
Corporation, registered in many jurisdictions worldwide. Other prod-
uct or service names may be trademarks or service marks of IBM or
other companies.
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quantum processor. The result of this experiment (triangular-
shaped data points) reach better accuracies than those ob-
tained by means of the quantum-classical VQA, indicating
that noise in the quantum processor prevents SPSA from
achieving high-accuracy solutions in a reasonable number of
steps (150 trials). By controlling the level of noise in classical
simulation, we find that quantum-classical VQA solutions
with �en ∼ 1%–2% and 150 SPSA trials could be achieved
with noise levels one order of magnitude smaller than the
present value. Note that in absence of noise, the number of
optimizer steps required to reach numerical accuracy with
respect to the reference value is very small in comparison,
below 30 in the entire g/ω ∈ [0, 1] range.

IV. STATE TOMOGRAPHY AND THE EFFECT OF NOISE

Following this proof-of-principle demonstration, we
present an alternative method for characterizing the prepared
ground state. This technique could be useful to probe entan-
glement metrics and to distinguish between nearly degenerate
states. The latter situation appears, for instance, approaching
the DSC regime [20,37]. We thus introduce the joint Wigner
function for a set of N qubits and M modes as

Wl (α) = Tr
[
ρσ

l1
1 . . . σ

lN
N 2M�(α)/πM

]
, (7)

generalizing the definition given in Ref. [38] for N =
M = 1. Here, {σ li

i , li ∈ [0, x, y, z]} are the Pauli matri-
ces for the ith atom with σ 0

i = 1. �(α) = D(α)�D†(α),
where α = (α1, . . . , αM ) is a joint-parity operator with � =∏M

k=1 exp(iπa†
kak ) and D(α) = ∏M

k=1 exp(αka†
k − α∗

k ak ) for
αk ∈ C. The inversion of Eq. (7) allows for the reconstruction
of ρ [38].

Expanding Eq. (7) using the SES encoding, we arrive at

W̃l (α) =
ñmax∑
ñ=0

(−1)
∑M

k=1 ñk Trq
[
2M
ñ(α)σ l1

1 . . . σ
lN
N /πM

]
, (8)

where Trq is the trace operator over the atoms and 
ñ =
〈ñ1 . . . ñM |D̃†(α)ρ̃D̃(α)|ñ1 . . . ñM〉. W̃l (α) can be sampled by
executing a relatively simple quantum circuit. While tomog-
raphy gates correspond to single-qubit rotations applied to the
atoms’ registers, tomography requires the implementation of
D̃(α) on the k-modes’ registers. Fortunately, the displacement
operators can be easily implemented by a sequence of one-
and two-qubit gates derived from a Trotter decomposition
similar to that of the polaron transformation. Appendix C
includes further details.

We numerically demonstrate this approach for N = M = 1
and g/ω = 1 in resonance. Figure 3 shows W̃σ z (α) for an
eight-qubit k-mode register in absence of noise. The result
is compared to Wσ z , which is not affected by Trotter and
Fock-space truncation errors. We observe a good qualitative
agreement between the two distributions, even for a few as two
Trotter steps. While large Trotter depths alleviate discrepan-
cies, the implementation accuracy of W̃σ z (α) remains bounded
due to Fock-space truncation errors. In a quantum device,
noise can lead to nonunitary errors for circuits based on
Trotter decompositions, possibly having an impact on W̃σ z (α).
Performance metrics such as those introduced in Ref. [39]
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FIG. 3. Reconstruction of the joint Wigner function for the
resonant Rabi model for g/ω = 1. (a) (Left) Sampled distribution
W̃σ z (α) for an eight-qubit k-mode register and two Trotter steps
per imaginary and real components of D̃(α) in absence of noise.
(Right) Numerically exact result Wσ z (α). (b) Effect of the Trotter
order of D(α) on the reconstructed distribution. The error metric

is defined as �Wσ z (|α|) =
√∫ |α′ |=|α|

|α′ |=0 [W̃σ z (α′) − Wσ z (α′)]2d2α′/N|α|,
where 1/N|α| is a normalization factor. This metric scales with the
Trotter error as |α|2/d , where d being the Trotter depth.

could be used to quantify and improve the fidelity of the
state-characterization circuits.

Finally, we discuss the effect of noise channels on the
performance of the VQA. It is worth highlighting that SES
encodings allow to detect damping errors of the form |ñk〉 →
|̃0k〉 by joint-parity measurements of the k-mode register.
Postselection can then significantly reduce the impact of noise
on the VQA [40]. The downsides of using SES encodings
reside in two main points. First, it trades shorter quantum-
circuit depths for a relatively large qubit overhead compared
to other encodings [32,33]. Second, noise channels that do
not conserve the number of excitations can become dominant
for large qubit arrays (see Appendix D), as the size of the
complement of the SES grows exponentially with the number
of qubits. These observations are, however, applicable to other
SES proposals [28–31].

V. CONCLUSION AND OUTLOOK

In conclusion, we introduced a short-depth and few-
parameter variational form to study the ground state of N
atoms and M electromagnetic modes. We found that such a
variational circuit can approximate the ultrastrong-coupling
ground state with very good accuracy. We implemented a
proof-of-principle demonstration on an IBM quantum proces-
sor. Finally, we used Wigner state tomography to characterize
the ground state and discussed the impact of noise on the
VQA. As the light-matter Hamiltonian is formally identical
to the few-impurity spin-boson model, we envision applica-
tions ranging from quantum optics to problems in condensed-
matter physics. We anticipate that reaching quantum advan-
tage using our approach would require quantum-hardware
performance significantly beyond what is currently available.

033364-4



VARIATIONAL QUANTUM SIMULATION OF … PHYSICAL REVIEW RESEARCH 2, 033364 (2020)

Our work is, however, a first step toward fully digital quantum
simulation of interacting light-matter models.
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APPENDIX A: POLARON TRANSFORMATION AND
QUANTUM-CIRCUIT COMPILATION OF

THE POLARON VARIATIONAL FORM

1. Polaron transformation for the multimode
quantum Rabi Hamiltonian

In this section, we study the effect of the polaron transfor-
mation [Eq. (4)] on the multimode Rabi Hamiltonian [N = 1
in Eq. (2)]. We first consider a slightly more general unitary
of the form

Pf = exp

[
σ x

M∑
k=1

fk (ak − a†
k )

]
, (A1)

where { fk} are real parameters to be determined below. By
transforming H → H ′

f = P†
f HPf , where f = ( f1, . . . , fM ),

we arrive at

H ′
f /h̄ = ω′

q

2
σ zq†

− f q f +
M∑

k=1

ωka†
kak + g′

kσ
x(ak + a†

k )

+ E f . (A2)

Here, ω′
q = ωqe−2 f · f is a renormalized frequency for the

two-level atom, g′
k = gk − ωk fk are new light-matter cou-

pling parameters and E f = ∑M
k=1 ωk f 2

k − 2gk fk is an en-
ergy constant. We have moreover defined the operator q f =
exp(2σ x

∑M
k=1 fkak ).

The parameters fk in Eq. (A2) can reduce the effective
light-matter coupling strength g′

k and thus make the ground
state of such a Hamiltonian closer to that of the noninteracting
case. This, however, holds if the higher-order corrections to
σ z from the operator q†

− f q f , which mixes the k modes, can
be made small at the same time. This leads to a compromise
for the best value of f that can be resolved by optimization of
such a parameter [23,41]. More precisely, assuming that the
ground state of Eq. (A2) results close to vacuum, minimizing
the ground-state energy E f − ω′

q/2 leads to the optimal con-
dition fk = gk/(ωk + ω′

q) and to the implicit equation

ω′
q = ωqe−2

∑M
k=1[gk/(ωk+ω′

q )]2
(A3)

for the renormalized frequency of the atom. We note that
the difficulty of solving the scalar equation (A3) does not
scale with the number of bosonic modes under consideration.
This fact deserves to be highlighted as the optimal value
of f is used to initialize the optimizer before executing
the variational quantum algorithm presented in the main
text and in more details in Appendix A 2. As discussed in

Appendix A 3, this is no longer true in the general case of N >

1, where the complexity of initialization scales exponentially
with N .

We can gain an understanding of how the polaron trans-
formation works by analyzing the behavior of approximate
solutions to Eq. (A3) at the boundaries of the range 1 �
ω′

q/ωq � 0. Indeed, for small coupling strengths gk , we expect
ω′

q to differ only slightly from ωq and thus to be able to ap-
proximate ω′

q/ωq � 1 − ε, where ε � 1. In contrast, for large
coupling strengths compared to the system frequencies, we
expect ω′

q to vanish exponentially and thus ω′
q/ωq � ε to hold.

In the latter situation, the parameters of the polaron transfor-
mation approach the asymptotic scaling fk � gk/ωk leading
to g′

k → 0 (along with ω′
q → 0). This analysis indicates that

the light-matter system effectively decouples in the polaron
frame [see Eq. (A2)], both in the strong- and deep-strong-
coupling regimes. As demonstrated below, the disentangling
capabilities of this transformation and the solution of Eq. (A3)
interpolate smoothly in the intermediate ultrastrong-coupling
regime, making this tool suitable for investigating the light-
matter ground state in a very broad range of parameters.

We confirm the intuition developed in the above paragraph
by analyzing both the single- and two-mode quantum Rabi
Hamiltonians in resonance conditions ωq = ωk ≡ ω, for gk ≡
g ∈ [0, ω]. This is also the regime of parameters considered in
the main text. Here, however, we are also interested in quanti-
fying how well the state P|vac〉 approximates the ground state
of the multimode Rabi Hamiltonian in all coupling regimes.
Figure 4(a) compares the expectation value 〈H ′〉vac to the
exact ground-state energy of the single-mode (left) and two-
mode configurations (right). We observe that 〈H ′〉vac follows
closely the exact solution in the range g/ω ∈ [0, 2]. This
agreement is even improved for larger coupling strengths.
Figures 4(b)–4(d) show the effective atom frequency ω′

q and
coupling strengths g′

k along with the fk parameters of the
polaron transformation. Solid lines correspond to the nu-
merical optimization of ω′

q, while dashed lines are obtained
analytically from a series expansion of the right-hand side of
Eq. (A3) to second order in the small parameter ε for both
ω′

q/ωq � 1 − ε and ω′
q/ωq � ε regimes. As anticipated, we

observe an exponential reduction of the ratio ω′
q/ωq along

with the asymptotic tendency fk � gk/ωk and g′
k → 0 as g

increases. Although the energy of the state P|vac〉 follows
closely that of the ground state in the laboratory frame in
the DSC regime, we note that fk grows linearly with gk in
such conditions. This unfavorable scaling would make the
Trotter-decomposition-based approach employed in the main
text rather inefficient, requiring quantum circuits of larger
depth to reach convergence.

The advantages of investigating the ground-state properties
in the polaron frame are also emphasized by noticing that
Eq. (A2) can be recast into

H ′
f /h̄ � ω′

q

2
σ z +

M∑
k=1

ωka†
kak + 2ω′

q fk (σ+ak + σ−a†
k )

− 2ω′
qσ

z
M∑

k,k′=1

fk fk′a†
kak′ −

M∑
k=1

g2
k

ωk + ω′
q

+ · · · ,

(A4)
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FIG. 4. Performance of polaron transformation in the strong-,
ultrastrong-, and deep-strong-coupling regimes for the single- and
two-mode quantum Rabi models in resonance conditions. (a) Com-
parison between 〈H ′〉vac and the exact ground-state energy. The
present scale emphasizes the qualitative agreement between these
two quantities, although it does not capture relatively small devia-
tions which can be appreciated in the main text. (b)–(d) Show the
polaron transformation parameters (black solid lines) obtained by
numerical optimization. Dashed lines are analytical approximations
of Eq. (A3) at the boundaries of 1 � ω′

q/ωq � 0. The asymptotic
regime of fk � gk/ωk is indicated in (c) (gray dashed lines). A similar
line style in (d) indicates the coupling in the bare frame gk . We
observe that g′

k becomes exponentially small compared to gk as the
bare coupling strength increases. This fact highlights the advantages
of working in the polaron frame.

assuming g′
k/(ωk + ω′

q) � 1 and expanding q f to first or-
der. Equation (A4) is reminiscent of the multimode Jaynes-
Cummings model, with an additional term ∝σ za†

kak′ , that
can either shift the frequency of the atom as a function of
the number of photons in the k modes (k = k′) or allow for
the exchange of an excitation between two k modes through
the atom (k �= k′). Provided that the effect of the latter inter-
action is only perturbative, the ground state of Eq. (A4) is the
vacuum state. As shown in the main text, these conditions also
lead to relatively small fk parameters, making it possible to
construct a short-depth variational form by Trotter decompo-
sition of the polaron transformation.

2. Quantum-circuit compilation of the polaron variational form

We now provide further details on the quantum-circuit
compilation of the polaron variational form designed for the
multimode quantum Rabi model. Specifically, we seek to

k-
m

od
e 

re
gi

st
er

at
om

(a)

(b)

FIG. 5. Quantum-circuit compilation of the polaron variational
form [Eq. (A5)] for one of the k-mode registers. (a) Schematic rep-
resentation of the variational form as a sequence of controlled two-
qubit gates. Such gates correspond to the unitaries exp( f s

k σ xX̃ e
k /dk )

and exp( f s
k σ xX̃ o

k /dk ), performed at each Trotter step labeled by s.
(b) Compilation of the controlled two-qubit gate in one- and two-
qubit gates available on the IBM quantum hardware [42]. Here,
H denotes the Hadamard gate, Y = Rx (π/2), and Rz, R′

z are rota-
tions around the Z axis using the conventional notation in which
Rμ(θ ) = exp(−iθσμ/2) for μ = x, y, z. If the parameters f s

k are
taken to be independent of the k-mode photon number, then Rz =
Rz( f s

k

√
nk + 1/dk ) and R′

z = R†
z , where nk labels the sites within

the k-mode register. If, in contrast, f s
k → f s

k (nk ) is allowed to vary
from site to site, then Rz = Rz[ f s

k (nk )
√

nk + 1/dk] and R′
z = R†

z or
R′

z = Rz[ f s
k

′(nk )
√

nk + 1/dk] if one wishes to introduce an extra de-
gree of freedom, f s

k
′(nk ), per controlled two-qubit gate. Importantly,

the parameters of the variational form are initialized to the value
specified by the polaron transformation in Eq. (4).

rewrite the unitary

Varform =
M∏

k=1

dk∏
s=1

exp

(
f s
k

dk
σ xX̃ e

k

)
exp

(
f s
k

dk
σ xX̃ o

k

)
(A5)

as a sequence of single- and two-qubit gates available on
IBM’s online quantum platform. The operator X̃ e

k in Eq. (A5),
which was introduced in the main text, is defined as

X̃ e
k = −i

nmax
k −1∑

nk even

√
nk + 1

(
σ x

nk
σ

y
nk+1 − σ y

nk
σ x

nk+1

)
/2. (A6)

X̃ o
k is defined analogously, with nk running over odd numbers

in [0, nmax
k − 1]. Since the Pauli products in Eq. (A6) com-

mute with each other, unitaries of the form exp( f s
k σ xX̃ e,o

k /dk )
factorize into a sequence of controlled two-qubit gates that
can be parallelized over the k-mode qubit registers. As shown
in Fig. 5(a), these two-qubit gates operate on pairs of next-
neighbor qubits of the k-mode registers and are controlled by
the atom qubit. Figure 5(b) provides the compilation of the
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controlled two-qubit gates in elementary single- and two-qubit
gates [42].

The atom and the k-mode registers are initialized to the
states |0〉 and |̃0k〉 = |10 . . . 0〉, respectively, which corre-
spond to the noninteracting ground states. This step is fol-
lowed by dk sets of gates, where dk is the Trotter depth used
to decompose the polaron unitary for mode k. In its simplest
form, the polaron variational form has a single parameter per
Trotter step. For a given s, the two-qubit-gate rotation angle is
determined by such a parameter and the site index nk which
introduces an additional scaling factor ∝√

nk to this angle.
The latter factor arises from the

√
nk scaling of the matrix

elements of the harmonic-oscillator ladder operators (ak and
a†

k) in the photon-number basis. A version of the variational
form with a larger number of parameters can easily be crafted
by letting the two-qubit-gate rotation angle vary and poten-
tially depart from the

√
nk scaling. Moreover, an additional

parameter can be introduced if the controlled two-qubit gates
are implemented as in Fig. 5(b), as this gate compilation uses
two Rz rotations that could be made independent from each
other. In all cases, the initial value of the variational-form
parameters must be set to that of the polaron transformation
in Eq. (4).

An alternative option to the gate in Fig. 5(b) is the im-
plementation a three-qubit gate at a hardware level without
the need of gate compilation. This possibility, investigated in
depth in Appendix E, has a number of advantages with respect
to the compiled version of such gate. In fact, a hardware-level
implementation of the controlled two-qubit gates would lead
to a reduction of the gate count, potentially enabling the sim-
ulation of systems of larger size. Moreover, the gate generator
can be engineered to conserve the number of excitations in
the k-mode registers and thus the SES encoding. Since these
criteria are not guaranteed by the complied version of the gate
in Fig. 5(b), an error occurring halfway in such a sequence
could severely impact the state fidelity.

3. Polaron transformation and variational form
for the multimode Dicke Hamiltonian

In this section, we extend our approach to treat the multi-
mode Dicke Hamiltonian [Eq. (2)]. To this end, the polaron
transformation needs to be modified to include the N atoms as

P{ f i} = exp

[ N∑
i=1

M∑
k=1

σ x
i fik (ak − a†

k )

]
, (A7)

where the real parameters fik , organized in the vectors f i =
( fi1, . . . , fiM ), for i = 1, . . . , N , now depend on both the atom
and the k-mode indices [22]. By transforming the Hamiltonian
in Eq. (2) as H → H ′

{ f i} = P†
{ f i}HP{ f i}, we find

H ′
{ f i}/h̄ =

N∑
i=1

ω′
qi

2
σ z

i q†
− f i

q f i
+

M∑
k=1

ωka†
kak

+
N∑

i=1

M∑
k=1

g′
ikσ

x
i (ak + a†

k ) +
N∑

i,i′=1

Jii′σ
x
i σ x

i′ , (A8)

which generalizes Eq. (A2). Here, we derive parameters
analogous to those introduced for the quantum Rabi model,

including renormalized atom frequencies ω′
qi = ωqie−2 f i· f i

and light-matter coupling constants g′
ik = (gik − ωk fik ), along

with the set of operators q f i
= exp(2σ x

i

∑M
k=1 fikak ) for i =

1, . . . , N . Unlike the N = 1 case, Eq. (A8) also includes an
effective two-body coupling Jii′ = ∑M

k=1(ωk fik fi′k − 2gik fi′k )
between two atoms i and i′, which is mediated by the k modes.

Due to the latter interaction, the ground state of Eq. (A8)
is not necessarily close to that of the noninteracting case.
Instead, we assume a ground-state Ansatz of the form∏M

k=1 |ψa〉|̃0k〉, where |ψa〉 is the ground state of the effective
spin Hamiltonian

Ha/h̄ =
N∑

i=1

ω′
qi

2
σ z

i +
N∑

i,i′=1

Jii′σ
x
i σ x

i′ . (A9)

By minimizing the energy of Ha, one finds a parametrization
{ f i} of the polaron transformation, that approximately decou-
ples the atoms from the k modes in Eq. (A8) [22]. In contrast
to the case of the quantum Rabi model, the cost of finding a
proper disentangling transformation now scales exponentially
with system size.

Focusing on the limit of small N , Eq. (A9) can still be han-
dled on a classical processor which is used for diagonalizing
Ha and optimizing its ground-state energy as a function of
{ f i}. It is worth mentioning that quantum routines, such as
variational eigensolvers and quantum annealing, might also be
useful for this task. In particular, the latter method is attractive
for large N due to the possibility of embedding Ising-type
Hamiltonians with long-range interactions into physical mod-
els with bounded connectivity.

Regardless of how the above optimization is performed, a
quantum circuit is needed to prepare the state |ψa〉 on the atom
registers. This initialization step is followed by the application
of the polaron variational form

Varform =
N∏

i=1

M∏
k=1

dik∏
s=1

exp

(
f s
ik

dik
σ x

i X̃ e
k

)
exp

(
f s
ik

dik
σ x

i X̃ o
k

)
,

(A10)
where σ x

i is the Pauli-X operator for the ith atom, and dik

is the Trotter order of the polaron unitary involving this
qubit and the k mode labeled by k. Furthermore, f s

ik are the
parameters of the polaron variational form, adding to a total
of

∑N
i=1

∑M
k=1 dik parameters, which scales linearly with the

number of atoms. Additional parameters can be introduced
by allowing f s

ik → f s
ik (nk ) to depend on the k-mode photon-

number index.
Figure 6 shows a schematic of the variational form in-

cluding the initialization step. We assume that |ψa〉 can be
synthesized by a set of da hardware-efficient layers acting on
the atom registers [3]. Although this is not scalable to large
N , the choice of a hardware-efficient approach is motivated
by the lack of structure in Eq. (A9). As previously shown in
Fig. 5, the polaron variational form contains sets of controlled
two-qubit gates acting on the k-mode registers. In the present
case, the control qubit is swept across the atom registers, while
the number of Trotter steps dik may vary from one set to the
other. Finally, we note that the compilation of the controlled
two-qubit gates in one- and two-qubit gates is the same as in
Fig. 5(b).

033364-7



AGUSTIN DI PAOLO et al. PHYSICAL REVIEW RESEARCH 2, 033364 (2020)

k-
m

od
e 

re
gi

st
er

at
om

s 
re

gi
st

er

FIG. 6. Quantum-circuit compilation of the variational form for
the multimode Dicke problem for three atoms and a single k-mode
register. The variational form is initialized on the state

∏M
k=1 |ψa〉|̃0k〉

by means of hardware-efficient layers acting on the atom registers.
The hardware-efficient variational form is followed by layer of
controlled two-qubit gates identical to those in Fig. 5(b). Here, the
control qubit is swept over the atom registers, and the number of
Trotter steps may vary with the atom and k-mode indices.

APPENDIX B: PERFORMANCE OF THE VQA
ON A QUANTUM PROCESSOR

1. VQA simulations with different hardware-noise levels

Mitigating the effect of noise is one of the greatest chal-
lenges for near-term quantum computers. In order to first
quantify this effect, it is useful to investigate the performance
of the VQA for a variable noise strength. One way to modify
the effective level of noise that a quantum algorithm is subject
to is to perform the quantum gates necessary for the com-
putation having made these artificially slower. This enhances
the effect of any decoherence channel and thus leads to an
increased noise strength. Although we do not have low-level
access to the pulses applied on the quantum hardware, like in
Ref. [7], we can simulate the effect of a variable noise strength
on the VQA by modifying the error model accordingly. This
strategy also allows us to simulate a noise level below the
calibrated values for the quantum device in use, which are
provided by QISKIT [34].

We modify the noise level in simulation defining a noise
factor ηnoise, such that

T1 = T device
1 /ηnoise,

T2 = T device
2 /ηnoise,

r1q−g = ηnoise rdevice
1q−g , (B1)

r2q−g = ηnoise rdevice
2q−g ,

rreadout = ηnoise rdevice
readout,

where T1 and T2 are single-qubit relaxation and dephasing
times, r1q−g and r2q−g are single- and two-qubit gate error
probabilities, and rreadout is the readout error probability, re-
spectively. The quantities in Eq. (B1) which are labeled as
“device” correspond to calibrated values for the day that the
runs were executed.
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g
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/
ω

ηnoise

2.0
1.0

0.5
0.1

FIG. 7. Simulation of the VQA performance under variable noise
strength. ηnoise = 1 corresponds to the realistic noise model provided
by QISKIT for the IBM Q Poughkeepsie device. The shared area
indicates the range of results which are possible with levels of noise
ηnoise = 0.1–2. Extrapolation to zero noise indicates that results with
acceptable accuracy are only attainable with levels of noise one order
of magnitude smaller than those in the current generation of devices.

Figure 7 shows the result of the simulations with vari-
able noise strength. We use the simultaneous-perturbation-
stochastic-approximation (SPSA) method as classical opti-
mizer, with parameters α = 0.602 and γ = 0.101 defined in
Ref. [3]. We perform 25 calibration steps to compute the
parameters a and c and another 100 SPSA trials for the actual
optimization procedure. From the simulations, we conclude
that VQA results with acceptable accuracy with respect to
the exact ground-state energy would be attainable with noise
levels that are one order of magnitude smaller than the actual
ones. We note that extrapolation schemes to the zero-noise
regime, like the ones discussed in Refs. [7,43], can potentially
help to further mitigate the effects of noise.

2. Simulations on the quantum processor

For the quantum-hardware runs we use 3 qubits out of
the 20 available on the IBM Q Poughkeepsie chip. The
connectivity map of the device is shown in Fig. 8. The
average error rates recorded throughout our experiments were
(5.25 ± 0.212) × 10−3 and (3.75 ± 0.364) × 10−2 for single-
qubit gates and controlled NOT (CNOT) gates, respectively.
These error rates are highly dependent on the actual date
on which the experiment took place. Mitigation of readout

FIG. 8. Connectivity map of IBM Q Poughkeepsie quantum
processor. Qubits 14, 18, and 19 (highlighted) were used for our
experiment. The choice of qubits was dependent on the respective
single- and two-qubit gate errors.

033364-8



VARIATIONAL QUANTUM SIMULATION OF … PHYSICAL REVIEW RESEARCH 2, 033364 (2020)

errors is done with the standardized methods provided by
QISKIT-IGNIS. There, a measurement calibration matrix is used
to identify readout errors by preparing 2N basis states and
estimating the probability distribution of such state, with N the
number of qubits in simulation. The probability distribution
of an unknown state can then be corrected based on these
estimates. The calibration matrix was updated after every
run or every 120 minutes of wall-clock time for the VQA
runs.

Beyond coherent and incoherent errors on quantum hard-
ware, the main limitation to greater accuracy has been found
to be the classical optimizer. Indeed, the SPSA method fails
to acquire the expected solution in several cases, potentially
getting stuck into local minima. We confirm this hypothesis
indirectly by performing the optimization of the variational
Ansatz in simulation assuming the calibrated noise model
for the device. We then compute the expectation value of
such variational states on quantum hardware. This additional
experiment can reach significantly better accuracy than those
obtained by running the optimization over quantum-hardware
energy estimations, as shown in Fig. 2. We therefore expect
new and more powerful optimization algorithms to enable
higher-accuracy VQA results.

APPENDIX C: SAMPLING THE JOINT
WIGNER FUNCTION

We now provide details about the sampling of the joint
Wigner distribution in Eq. (8). We begin by noticing that
measurements of the Pauli products σ

l1
1 . . . σ

lN
N can be done

in the computational basis, provided that a set of single-qubit
gates {Rli} are executed on the atom register prior to qubit
readout. Taking this into consideration, we now focus on the
case where the Pauli string σ

l1
1 . . . σ

lN
N contains only σ z and/or

identity operators and no prior rotation of ρ is needed.
Equation (8) makes use of the probability distribution of

the displaced density matrix D̃†(α)ρ̃D̃(α). In order to sample
such a distribution, D̃†(α) needs first to be compiled into
single- and two-qubit gates. Since this joint-displacement op-
erator is a product of single-mode displacements of the form
D̃†(αk ), we only provide the quantum-circuit compilation for
the latter unitary. To this end, it is convenient to introduce
the real (αR

k ) and imaginary (αI
k) parts of the displacement

parameter αk = αR
k + iαI

k , and to expand the displacement
operator as D̃†(αk ) � exp[αR

k (ãk − ã†
k )] exp[−iαI

k (ãk + ã†
k )],

where “�” indicates an equivalence up to a global phase.
Making use of the site operators of the k-mode registers, we
find

ãk − ã†
k = −i

nmax
k −1∑
nk=0

√
nk + 1

(
σ x

nk
σ

y
nk+1 − σ y

nk
σ x

nk+1

)
/2,

ãk + ã†
k =

nmax
k −1∑
nk=0

√
nk + 1

(
σ x

nk
σ x

nk+1 − σ y
nk

σ
y
nk+1

)
/2. (C1)

Splitting the k-mode registers into even- and odd-index qubit
subsets, the exponentiation of the operators in Eq. (C1) can
be implemented by a Trotter expansion, as it was done for the
polaron variational form.
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FIG. 9. Sampling the joint Wigner distribution corresponding to
the atom and k-mode registers. (a) Quantum-circuit compilation of
the displacement operators applied on the k-mode registers (here
shown for a single mode), along with the single-qubit gates needed
for tomography of the atom registers. These gates are executed on
the ultrastrong-coupling ground state synthesized by the polaron
variational form. The k-mode displacement unitary is split in real and
imaginary components, implemented by gate sequences with Trotter
depth dR and dI , respectively, which may in general be different.
The imaginary component is depicted first, and makes use of the
two-qubit gates in (b) where Rz = Rz(αI

k

√
ñk + 1/dI ) and R′

z = R†
z .

What follows is the implementation of the real component of the dis-
placement operator, which executes the two-qubit gates in (c) where
Rz = Rz(αR

k

√
ñk + 1/dR ) and R′

z = R†
z . Qubit readout is performed

at the end of the quantum circuit in (a), leading to the histogram of
counts in (d) after several repetitions of the experiment. This allows
for reconstruction of the joint Wigner function as described in the
main text.

Figure 9 summarizes the procedure for sampling the joint
Wigner function with a set of tomography gates applied on the
ultrastrong-coupling ground-state synthesized by the polaron
variational form in Fig. 9(a). A first set of two-qubit gates,
compiled in Fig. 9(b), implements a displacement operator
along the imaginary-αk axis with a Trotter order dI . This
is followed by a similar set of gates, compiled in Fig. 9(c),
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implementing a displacement along the real-αk axis with
Trotter depth dR. Additionally, single-qubit tomography gates
are applied on the atom registers. The circuit is terminated by
readout of both the atom and k-mode registers. A histogram of
counts [Fig. 9(d)] is constructed by repeating this procedure
for a fixed (l,α) pair. The joint Wigner function can then
be computed from this histogram approximating the trace
operator in Eq. (8) by

Trq[. . . ] � 2M

πM

∑
q

(−1)
∑N

i=1 βqi c(q1, . . . , qN ; ñ1, . . . , ñM ),

(C2)
where c(q1, . . . , qN ; ñ1, . . . , ñM ) are the normalized counts
for the basis vector |q1, . . . , qN ; ñ1, . . . , ñM〉 in which qi ∈
[0, 1] is the state of the ith atom, and βqi ∈ [0, 1] accounts
for the presence of a σ z

i operator before qubit readout. More
precisely, such a parameter is set according to the rules
βqi = 1 − qi if li = z, and βqi = 0 if li = 0. We note that the
approximate relation in Eq. (C2) can be replaced by an exact
equivalence in the limit of large counts.

The reconstruction error scales with the amplitude of the
displacement parameters |αk|2, although it can be reduced
by increasing the Trotter order in the implementation of
the unitaries D̃†(αk ). The finite Fock-state truncation of the
encoded bosonic modes sets an upper bound to the accuracy of
the reconstructed joint Wigner distribution, as demonstrated in
Fig. 3. Given that the quantum circuit corresponding to such
operators is appended to that of the polaron variational form,
this procedure would ultimately be limited by the strength of
the noise in the quantum processor. However, we find that
Trotter depths as small as 2 are enough to demonstrate the
qualitative features of the joint Wigner distribution.

APPENDIX D: EFFECT OF PHASE- AND BIT-FLIP NOISE
CHANNELS UNDER A SES ENCODING

This Appendix discuses the so-called memory error of a
small-qubit register encoding a bosonic mode. We consider
both phase- and bit-flip error channels acting on a copy
of the maximally entangled state |ψ〉 ∼ ∑nmax

k
nk=0 |nk〉, in ab-

sence of logical gates. Specifically, we compute the state
fidelity F (ρ, ρ ′) = Tr[

√
ρρ ′√ρ] [44], where ρ = |ψ〉〈ψ | ⊗

|ψ〉〈ψ | and ρ ′ ∼ ∑nmax
k

nk ,n′
k=0 |nk〉〈n′

k| ⊗ EC(|nk〉〈n′
k|). Here, EC

are multiqubit error channels obtained by composition of
single-qubit ones, Eq,C. The latter have the general form
Eq,C(•) = ∑1

i=0 Ei • E†
i , where {Ei} are the Kraus operator

for the channel C. Denoting the error probability with r, we
define the phase-flip channel by E0 = √

1 − r1, E1 = √
rσ z,

while E0 = √
1 − r1, E1 = √

rσ x correspond to the bit-flip
channel.

Figure 10 shows the result for the state fidelity assuming a
k-mode register containing up to a maximum of seven qubits.
As anticipated in the main text, we find that bit-flip errors
are the most relevant as the size of the k-mode register is
increased. This can be understood intuitively by looking at the
complement SES of the SES subspace used for the encoding.
Since the number of basis vectors in SES, and thus the
dimension of this subspace, grows exponentially with nmax

k , a
noise operator breaking the SES symmetry could significantly
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FIG. 10. Effect of phase-flip (a) and bit-flip (b) error channels on
the fidelity of a maximally entangled state as a function of the total
error probability. We consider a k-mode qubit register of size nmax

k +
1 � 7. The legend applies for both left and right plots. We observe a
significant decrease of the state fidelity as the size of the qubit register
is increased. As discussed in the main text, bit-flip errors are expected
to be dominant as the register size is scaled up to simulate a larger
number of modes with also greater Fock-state truncation. The inset
shows the state fidelity as a function of nmax

k for an error probability
of 10−1.

affect the state fidelity in the limit of large nmax
k . On the

other hand, it is worth noticing that this might not necessarily
limit the performance of near-term algorithms requiring only
a small number of qubits. Alternatives for scaling up to larger
devices include the use of qubits with naturally long T1 times,
or a different encoding for the bosonic modes [32,33]. Future
work will investigate the performance crossover of the various
possible encodings as the variational circuit is scaled up.
Finally, we note that state fidelity, although standard, is a
strong metric to evaluate the performance of our variational
algorithm, and provides only a qualitative estimation of the
impact on the energy of the variational Ansatz.

APPENDIX E: CIRCUIT-QED IMPLEMENTATION
OF THE CONTROLLED-EXCHANGE GATES

With the purpose of reducing the gate count of the polaron
variational form, we now present a superconducting-qubit
implementation of a controlled-exchange gate. We stress,
however, that the proposed approach could be leveraged by
any other quantum-hardware platform with native interactions
similar to those found in a standard circuit-QED setup. Below,
we provide an ideal implementation of the gate interaction
and then suggest a superconducting circuit that approaches the
ideal scheme.

We first consider the case of a single atom and k-mode
registers. The frequency of the physical qubit corresponding
to the atom is denoted by ων , while the frequencies of the
qubits belonging to the k-mode register are denoted by ωnk ,
with nk ∈ [0, 1, . . . , nmax

k ]. Note that these frequencies are not
related to the parameters of the problem that one wishes to
simulate. With the purpose of engineering a controlled two-
qubit gate, we assume the two qubits of the k-mode register,
labeled by μ ∈ [nk, nk + 1], to be independently coupled to
the atom qubit with a time-dependent interaction strength.
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This situation is described by a three-qubit Hamiltonian of the
form

Hideal/h̄ = ων

2
σ z

ν +
∑

μ

[ωμ

2
σ z

μ + 
μ(t )(σ+
μ σ−

ν + σ−
μ σ+

ν )
]
,

(E1)
where we take, in particular, 
μ = 
0

μ + 2εμ sin[(ωμ − ων +
δμ)t + φμ]. Here, 
0

μ is an always-on interaction strength,
2εμ is the modulation amplitude, δμ is a frequency detuning
with respect to the μ-ν transition, and φμ is a relative phase.
Counter-rotating terms of the form σ+

μ σ+
ν and its Hermitian

conjugate have been omitted after a rotating-wave approxi-
mation (RWA).

To make the three-qubit-gate interaction explicit, we now
perform a standard time-dependent Schrieffer-Wolff transfor-
mation with generator

S =
∑

μ

[

0

μ

ωμ − ων

+ iεμe−i[(ωμ−ων+δμ )t+φμ]

2(ωμ − ων ) + δμ

]
σ+

μ σ−
ν − H.c.,

(E2)
conceived to remove first-order interaction terms by
the condition [H0, S] + Hint − iṠ = 0, where H0 = ων

2 σ z
ν +∑

μ

ωμ

2 σ z
μ and Hint = ∑

μ 
μ(t )(σ+
μ σ−

ν + σ−
μ σ+

ν ). Assum-
ing 
0

μ/(ωμ − ων ) � 1 (dispersive regime) and εμ/[2(ωμ −
ων ) + δμ] � 1, we expand the transformed Hamiltonian up to
second order in the interaction strength, and move to a frame
rotating at frequencies ων for the atom qubit and ωμ + δμ

for the k-mode qubits, where the modulated interaction is
resonant. Setting the phase of the drives as φnk = 0 and
φnk+1 = −π/2, and performing a second RWA, we find the
effective Hamiltonian

H ′
ideal/h̄ = ξnk

2
σ z

μ

(
σ x

nk
σ

y
nk+1 − σ y

nk
σ x

nk+1

) + δων

2
σ z

ν , (E3)

where drive parameters have been chosen to satisfy −δμ +
(
0

μ)2/(ωμ − ων ) + ε2
μ/δ′

μ = 0, with δ′
μ = 2(ωμ − ων ) + δμ.

The drive condition removes terms ∝σ z
μ from Eq. (E3)

and makes the three-qubit interaction resonant in the cur-
rent frame. Moreover, ξnk has been defined as an effective
exchange-interaction rate between the two neighboring qubits
of the k-mode register, that is mediated by the atom qubit and
given by

ξnk = 1

2

εnk εnk+1

δ′
nk

δ′
nk+1

(
δ′

nk
+ δ′

nk+1

)
. (E4)

Additionally, we derive a shift to the frequency of the atom
qubit given by δων = −(
0

μ)2/(ωμ − ων ) − ε2
μ/δ′

μ, due to the
interaction with the two other qubits and the presence of the
drive.

Evolution under the Hamiltonian in Eq. (E3)
generates the desired controlled-exchange gate operation
exp[−i(ξnk t/2)σ z

μ(σ x
nk

σ
y
nk+1 − σ

y
nk σ

x
nk+1)] which is key to the

polaron variational form. Due to the presence of the term
∝δων in Eq. (E3), an unintentional Rz rotation on the atom
qubit needs to be corrected for by applying an additional
single-qubit gate. Modulation amplitudes εμ/2π of the
order of 10 MHz and typical values of δ′

μ/2π of the order
of the GHz lead to controlled-exchange rates ξnk /2π in
the range 0.1–0.5 MHz. Despite this number being small
compared to standard rates of one- and two-qubit gates

in superconducting-qubit architectures, counting with a
direct implementation of the three-qubit gate still provides a
significant advantage with respect to its compiled counterpart
in Fig. 5. In fact, the proposed gate is designed to conserve
the excitation number of the k-mode registers and thus the
SES encoding. Furthermore, while the gate time of the direct
implementation is proportional to the desired rotation angle,
the compiled version of the gate has an approximately fixed
gate time determined by the number of CNOT gates in
the circuit. This important difference would be leveraged
further as the Trotter order of the polaron variational form
is increased, making the controlled rotations closer to the
identity.

Having presented an ideal model for the controlled-
exchange gate, we now elaborate on a possible
superconducting-circuit implementation of the Hamiltonian

(a) (b)

(c)

FIG. 11. Variational quantum-optics (VQO) superconducting
processor. (a) Schematic of a controlled-exchange gate between three
transmon qubits. The qubit in red plays the role of the atom register,
controlling the switch on and off of an exchange interaction be-
tween two neighboring transmons belonging to the k-mode register.
(b) Superconducting-qubit implementation of the concept in (a). A
tunable coupler (light green) is introduced to mediate the interaction
between the atom and k-mode registers. (c) Device for the VQO
simulation of the ultrastrong interaction between N atoms (in red)
and two bosonic modes (light blue, left and right). A superconducting
resonator acting as a quantum bus is required to enable long-range
interactions between the atoms and the coupler modes. Moreover,
the bus mode enables dispersive two-qubit gates between the atom
qubits if made frequency tunable [46], which are required for state
preparation in the case of N > 1.
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in Eq. (E1). In particular, we consider an architecture made
of transmon qubits and tunable couplers (see Fig. 11), similar
to that studied in Ref. [45]. Using couplers to mediate
parametric interactions allows us to remove the need for
frequency tunability of the qubit modes resulting in greater
coherence times. Standard circuit quantization of the
unit-cell device in Fig. 11(b), followed by a two-level and
rotating-wave approximations, leads to the Hamiltonian

H = ωb
c [�ext]

2
σ z

c + ωb
ν

2
σ z

ν +
∑

μ

ωb
μ

2
σ z

μ + gν (σ+
μ σ−

c + σ−
μ σ+

c )

+
∑

μ

gμ(σ+
μ σ−

c + σ−
μ σ+

c ), (E5)

where ωb
c [�ext] denotes the bare frequency of the tunable

coupler, ωb
ν is the bare frequency of the atom qubit, {ωb

μ} are
the bare frequencies of two neighboring qubits in the k-mode
register, and {gν, gμ} are the respective coupling strengths
between such qubits and the coupler. We assume that the
coupler frequency can be tuned and modulated by a external
magnetic flux �ext through the coupler’s SQUID loop.

Following [45], we perform the adiabatic elimination of
the coupler mode by means of a Schrieffer-Wolff transforma-
tion in the dispersive regime gν � �b

ν[�ext], gμ � �b
μ[�ext],

where �b
β[�ext] = ωb

β − ωb
c [�ext]. Assuming that the coupler

mode remains in its ground state at all times, we derive an
effective Hamiltonian of the form Heff = Hideal + Herr, where
Hideal is the ideal interaction model given in Eq. (E1) with
frequency parameters ων = ωb

ν + g2
ν/�

b
ν[�ext], ωμ = ωb

μ +
g2

μ/�b
μ[�ext] and flux-tunable coupling strengths


μ[�ext (t )] = gμgν

2

(
�b

μ[�ext] + �b
ν[�ext]

)
�b

μ[�ext]�b
ν[�ext]

. (E6)

Herr is a spurious off-resonant term coupling directly the two
qubits of the k-mode register. Implementation of the interac-

tion model in Eq. (E3) from Heff requires a two-tone modula-
tion of �ext (t ) at frequencies ωμ − ων + δμ for μ ∈ [nk, nk +
1]. We observe that the effect of Herr can be exactly canceled
by tuning the qubits to the destructive-interference condi-
tion �b

nk
[�ext] = −�b

nk+1[�ext]. However, this also leads to
a small interaction strength for the controlled-exchange op-
eration. A better alternative is to consider the two k-mode
qubits being coupled to an additional ancillary mode whose
frequency is chosen to counteract the effect of Herr. Moreover,
if the k-mode qubits are properly detuned the residual inter-
action only leads to a frequency renormalization of the drive
condition above and to an off-resonant controlled-exchange
interaction between ν and nk (nk + 1) via nk + 1 (nk) which
can be dropped by means of a RWA. As anticipated, we find
that for typical circuit parameters and without optimization,
the gate-interaction rate ξnk can reach values in the range
of 0.1–0.5 MHz, assuming a modulation amplitude between
25%–50% of 
0

μ [45]. Further improvements on the speed of
the gate might be enabled by optimization of the proposed cir-
cuit, the use of other possible coupling schemes implementing
Eq. (E3), or optimal control techniques [47].

The proposed implementation may be scaled up to a larger
number of qubits, as shown schematically in Fig. 11(c) for
the case of N atoms and two k modes. A cavity bus mode
is used to enable long-range interactions between the tunable
couplers and the qubits playing the role of atom registers.
Moreover, the bus mode allows for the implementation of
two-qubit gates between the atom qubits, which are necessary
to initialize the polaron variational form for N > 1. We note
that the controlled-exchange gates can be parallelized over
even and odd qubits of the k-mode registers. Finally, we stress
that scaling up to a larger number of qubits entails issues
that are beyond the scope of this work and requires to be
examined in greater detail. The analysis of this Appendix,
however, provides a path forward toward the implementation
of variational quantum-optics algorithms on special-purpose
hardware.
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