
Fast and differentiable simulation of driven quantum systems

Ross Shillito,1, ∗ Jonathan A. Gross,1, † Agustin Di Paolo,1, ‡ Élie Genois,1 and Alexandre Blais1, 2

1Institut quantique & Département de Physique, Université de Sherbrooke, Sherbrooke J1K2R1, Quebec, Canada
2Canadian Institute for Advanced Research, Toronto, M5G1M1 Ontario, Canada

(Dated: December 18, 2020)

The controls enacting logical operations on quantum systems are described by time-dependent
Hamiltonians that often include rapid oscillations. In order to accurately capture the resulting
time dynamics in numerical simulations, a very small integration time step is required, which can
severely impact the simulation run-time. Here, we introduce a semi-analytic method based on the
Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard
numerical integrators. This solver, which we name Dysolve, efficiently captures the effect of the
highly oscillatory terms in the system Hamiltonian, significantly reducing the simulation’s run time
as well as its sensitivity to the time-step size. Furthermore, this solver provides the exact derivative of
the time-evolution operator with respect to the drive amplitudes. This key feature allows for optimal
control in the limit of strong drives and goes beyond common pulse-optimization approaches that
rely on rotating-wave approximations. As an illustration of our method, we show results of the
optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.

I. INTRODUCTION

High-fidelity logical gates are paramount to the real-
ization of useful quantum computation. It is important
in the development of these gates that they be simulated
with great precision to ensure that they meet the par-
ticularly strict requirements for fault-tolerant quantum
computation. Several techniques are used for simulating
the time dynamics of quantum devices, including dynam-
ical solvers such as Runge-Kutta integrators and direct
matrix exponentiation [1, 2]. However, capturing the full
time dynamics with the necessary accuracy requires in-
tegration methods with a sufficiently small time step. As
a result, simulations can be computationally very expen-
sive, even for relatively simple cases such as optimizing
a two-qubit gate.

To ensure that simulations of quantum systems are
feasible, approximations must be made. For example,
a common approximation is to neglect counter-rotating
terms within the rotating wave approximation (RWA) to
greatly reduces the complexity of the simulation whilst
capturing the dominant dynamics. This approximation
renders the Hamiltonian time independent, which can
then simply be exponentiated to obtain the propagator.
However, effects such as the Bloch-Siegert shift which do
not appear under a RWA need to be taken into account
to accurately model the system [3]. In addition, many
gate optimization methods, such as GRAPE, require the
calculation of gradients, something which greatly adds
to the complexity of the numerical calculations [4]. More
specifically, when including the effects of the counter-
rotating terms, there exists no simple derivative of time-
ordered unitaries with respect to the drive amplitudes,

∗ Ross.Shillito@USherbrooke.ca
† Jarthurgross@google.com
‡ adipaolo@mit.edu

and one must resort to approximating the gradients.
Consequently, this approach may not converge to the op-
timal solution, which is problematic when targeting very
high-fidelity gates.

In this work, we develop an algorithm based on a
Dyson series expansion of the time ordered problem that
addresses all of the above difficulties. In this approach,
which we call Dysolve, the time-ordered unitary evolu-
tion operator is written as a product of time-independent
operators which are weighted by the drive amplitudes
and dynamical phases. This algorithm captures the full
fast-oscillatory dynamics irrespective of the integration
step size, thereby decreasing the complexity of the nu-
merical problem. This also greatly decreases the simula-
tion time in comparison to traditional integration-based
solvers without loss of numerical precision. Importantly,
this approach trivializes the derivative with respect to the
drive strength, which can be calculated to an accuracy
equivalent to the order of the Dyson series. Moreover,
this approach is compatible with non-Hermitian dynam-
ics, allowing for the simulation of open quantum systems.

We begin by introducing our approach in Sec. II in
the case of a single, sinusoidal drive with a constant am-
plitude, and then extend the formalism to the case of
multiple drives, accounting for filtering effects on enve-
lope functions. We then define the Dysolve algorithm in
Sec. III, and demonstrate its application to driven quan-
tum systems with random drive envelopes. We proceed
to apply our algorithm to the GRAPE optimization rou-
tine in Sec. IV, and show as an example optimized two-
qubit gates in the circuit QED architecture.

II. OSCILLATORY DRIVE PROBLEM

A. Simple time-dependent Hamiltonians

We begin by considering a simple time-dependent
Hamiltonian with a cosinusoidally oscillating control

ar
X

iv
:2

01
2.

09
28

2v
1

 [
qu

an
t-

ph
]

 1
6

D
ec

 2
02

0

mailto:Ross.Shillito@USherbrooke.ca

2

Figure 1. Tree diagram showing the different branches of the
time ordered integral, with two example branches highlighted.

drive term

Ĥ(t) = Ĥ0 + V̂ (t), V̂ (t) = X̂ cos(ωt). (1)

Here, Ĥ0 =
∑
k λk |k〉〈k| is a generic system Hamiltonian

expressed in its eigenbasis, while X̂ is a dipole operator
that connects the eigenstates of Ĥ0 and which we take to
account for the amplitude of the drive. As will become
important later, we note that we are not using the RWA.

The propagator under Ĥ(t) for some time increment
δt takes the usual form of a time-ordered integral

Û(t, t+ δt) = T exp

(
−i
∫ t+δt

t

dt′Ĥ(t′)

)
, (2)

with T the time-ordering operator. Due to the fast oscil-
latory cos(ωt) term, evaluating the propagator Û(t, t+δt)
is a numerically challenging problem, and there exists few
analytic solutions to even the simplest case of a driven
two level qubit [5]. In special cases, one can invoke the
RWA to remove the explicit time dependence from the
Hamiltonian, thereby allowing for calculation of the prop-
agator from matrix exponentiation directly [6].

However, when the RWA cannot be used due to a
breakdown of the approximation or because a greater de-
gree of accuracy is needed, we propose using a truncated
Dyson series. Consider Eq. (2), written using the defini-
tion of the time-ordering operator

Û (t, t+ δt) =
∞∑
n=0

(−i)n
∫ t+δt

t

∫ tn

t

· · ·
∫ t2

t

Ĥ(tn) · · · Ĥ(t1)dt1 · · · dtn.

(3)
It is useful to express this expansion in terms of powers
of the drive operator V̂ (t), forming the Dyson series

Û(t, t+ δt) =

∞∑
n=0

Û (n)(t, t+ δt), (4)

where we have defined

Û (n)(t, t+ δt) =
∑
ωn

exp

(
i

n∑
p=1

ωn[p]t

)
Ŝ(n)(ωn, δt).

(5)
Here, ωn is an n-vector whose entries are ±ω originating
from the decomposition of the cos(ωt) of the control into
complex exponentials, and ωn[p] is the p-th element of
ωn. The sum over ωn implies a summation over all 2n

possible ωn vectors.

Equation (5) also introduces the Dyson series opera-

tor Ŝ(n)(ωn, δt) which takes the form

Ŝ(n)(ωn, δt) =
1

2n

∑
m∈Zn+1

+

Ŝ(n)
m (ωn, δt), (6)

and which corresponds to a summation over all Dyson
path operators of n-th order, where m = [mn, ...,m0]
with each index mi ranging from 0 to infinity. These
n-th order path operators are given by

Ŝ(n)
m (ωn, δt) =∫ δt

0

∫ t′M

0

· · ·
∫ t′2

0

(−iĤ0)mnX̂(−iĤ0)mn−1 · · ·X̂(−iĤ0)m0

× (−i)n
n∏
p=1

exp
(
iωn [p] tι(p)

)
dt′1 · · · dt′M

(7)
where we have introduced

M =

n∑
i=0

mi + n, ι(p) =

p−1∑
j=0

mj + p. (8)

Each Ŝ
(n)
m (ωn, δt) correspond to different ways to have

n contributions from the control X̂ (i.e. different termi-
nated branches of the tree diagram), with the mi’s label-

ing the number of applications of Ĥ0 before the subse-
quent application of X̂. The total number of operators
in the path operator is given by M . To simplify the no-
tation, we introduce an indexing function ι(p),which can

be interpreted as the total number of Ĥ0 and X̂ opera-
tors before the p-th application of the control X̂. These
definitions can be visualized as in Fig. 1 where the red
and blue branches correspond to sets of path operators

Ŝ
(n)
[m1,2]

(ωn, δt) and Ŝ
(n)
[m1,0]

(ωn, δt) respectively, with m1

determined by where the path terminates. For example,

Ŝ
(n)
[0,2](ωn, δt) and Ŝ

(n)
[2,0](ωn, δt) terminate at the points in

the branches marked by a star.

Below, we give explicit expressions for these opera-
tors to zeroth and first order in the control. Building
on these results, we then construct expressions that are
easily amenable to efficient numerical evaluation to arbi-
trary orders.

3

B. Evaluation to zeroth and first order

The zeroth order corresponds to the leftmost branch
of the tree diagram of Fig. 1 for which it is straightfor-
ward to obtain an explicit expression. Indeed, the path
operator simply takes the form

Ŝ
(0)
[m0]

(0, δt) =

∫ δt

0

∫ tm0

0

· · ·
∫ t2

0

(−iĤ0)m0dt1 · · · dtm0−1dtm0

=
(−iĤ0δt)

m0

m0!
.

(9)
Summing all of the elements in the branch, we obtain

Ŝ(0)(0, δt) =

∞∑
m0=0

Ŝ
(0)
[m0]

(0, δt) = e−iĤ0δt, (10)

which corresponds, as expected, to the drift evolution of
the Hamiltonian in the absence of drive. In a similar
fashion, the path operator to first order takes the form

Ŝ
(1)
[m1,m0]

(ω1, δt) =

∫ δt

0

∫ tM

0

· · ·
∫ t2

0

(−iĤ0)m1X̂(−iĤ0)m0

× exp
(
±i[ω]tι(1)

)
dt1 · · · dtM ,

(11)
and therefore leads to the following Dyson series operator

Ŝ(1)(ω1, δt) = − iδt
2

∑
k,k′

f(λkδt, (λk′∓ω)δt)〈k|X̂|k′〉|k〉〈k′|.

(12)

This operator weights the matrix elements of X̂ by a
function f whose inputs are weighted eigenvalues {λk}
of the free Hamiltonian Ĥ0 with corresponding eigen-
states {|k〉}, where the second eigenvalue is shifted by
the drive frequency ω1[1] = ±ω. This function is defined
as

f(λk, λk′) =
i

λk − λk′
(
e−iλk − e−iλk′

)
. (13)

We refer to this function as the first order weighting
function. The above expressions are derived in the Ap-
pendix, and are unsurprisingly in exact agreement with
first-order time-dependent perturbation theory.

Crucially, the Dyson operators depend on the size δt of
the time increment, but not the current time of the evo-
lution t. As a result, for a total evolution time T = Pδt,
where P is an integer, the set of P incremental evolution
operators Û(pδt, (p + 1)δt) can be evaluated simultane-
ously. As will become clearer in the next section, this
holds true to arbitrary order.

C. Evaluation to n-th order

To model quantum systems with sufficient accuracy, it
is necessary to consider second- and higher-order terms

in the Dyson series. This can be done following a similar
approach as described above. Indeed, we introduce the
n-th order Dyson operator in a similar fashion to Eq. (12)

Ŝ(n)(ωn, δt) =(
−iδt

2

)n∑
kn

f (λn(kn)δt− c(ωn)δt) 〈k(n)|X̂|k(n−1)〉

× 〈k(n−1)|X̂ · · · |k(1)〉〈k(1)|X̂|k(0)〉|k(n)〉〈k(0)|.
(14)

Here, each kn = (k(0), k(1), · · · , k(n)) is a set of indices

which specify a set of (n+ 1) eigenstates {|k(m)〉} of Ĥ0

with corresponding eigenvalues λn(kn), and we sum over
all possible kn. These eigenvalues are written in vector
form:

λn(kn) ≡ (λk(0) , · · · , λk(n)) , Ĥ0|k(m)〉 = λk(m) |k(m)〉.
(15)

The sum over kn implies a summation over all sets
of eigenstates which the dipole operator X̂ couples in
Eq. (14). Additionally, we have introduced the cumula-
tive vector

c(ωn) =

(
n−1∑
p=0

ωn[n− p],
n−2∑
p=0

ωn[n− p], · · · ,ωn[n], 0

)
.

(16)
The n-th order weighting function f(λn) entering
Eq. (14) can be obtained recursively using the relation
(see Appendix A)

f(λn) = i
f(g(λn))− f(g2(λn) ∪ λn[n])

λn[n− 1]− λn[n]
, (17)

where g(vn) returns vn without its last element,
g2(vn) = g(g(vn)), and the notation ∪ indicates append-
ing an additional element to a vector such that

λn = g(λn) ∪ λn[n]. (18)

In the case of degenerate eigenvalues, we simply define
Eq. (17) by taking the limit λn[n− 1]→ λn[n].

Using Eq. (4) with the above results, we can now form
the truncated Dyson series yielding an approximation to
the evolution operator to n-th order in the perturbation

Ûp ≈
n∑
r=0

Û (n)
p , Û (n)

p ≡ Û (n)(pδt, (p+ 1)δt). (19)

thus yielding the total evolution operator for time T =
Pδt to the same order

Û(0, P δt) ≈ T
P∏
p=0

Ûp (20)

In this formalism, the time-ordering operator T becomes
a trivial operation since we need only arrange the set of
matrices {Ûp} in ascending order from right to left. Using
this method, we can thus calculate an arbitrary number
of terms in the Dyson series, with each subsequent or-
der increasing the accuracy of the approximation to the
propagator operator Û(0, T).

4

D. Generalization to more complex drives

So far, we have only considered a single, cosinusoidal
drive. In practice, for applications such as DRAG [7], it
is useful to consider more complicated drives of the form

V̂ (t) = [Ωx cos(ωt) + Ωy sin(ωt)] X̂,

=
(
Ωeiωt + Ω∗e−iωt

)
X̂,

(21)

where Ω = Ωx+iΩy is the complex drive amplitude. This
generalization requires only a minor modification to the
result of Eq. (5) which now reads

Û (n)(t, t+δt) =
∑
ωn

exp

(
i

n∑
p=1

ωn[p]t

)
Ω(ωn)Ŝ(n)(ωn, δt),

(22)
and where we have introduced

Ω(ωn) = Ωµ(ωn)Ω∗(n−µ(ωn)). (23)

We see from Eq. (21) that Ω and Ω∗ will appear accord-
ing to the number of positive and negative frequency el-
ements in the vector ω respectively, leading to a simple
expression for µ(ωn) in Ω(ωn):

µ(ωn) = (n+

n∑
p=1

ωn[p])/(2ω). (24)

As shown in the Appendix, this formalism can be further
extended to an arbitrary number of drives of different
frequencies, and acting on different system operators.

E. Envelope Functions and Gaussian Filtering

Having established the necessary notation, we can now
take into account control drives with time-dependent am-
plitudes Ω(t). To do so, we discretize the drive envelope
of total time T = Np∆t into Np increments, called pix-
els, each of duration ∆t. For a given pixel i, the drive is
characterized by its complex amplitude ui such that the
envelope can be expressed as [4]

Ω(t) =

Np−1∑
i=0

ui u (i∆t, (i+ 1)∆t), (25)

where u(t, t + ∆t) = Θ(t) − Θ(t − ∆t), with Θ(t) the
Heaviside function.

Additionally, following Motzoi et al. [8], we take into
account the finite bandwidth of the control by applying
a Gaussian filter on the discretized enveloped. To do so,
each pixel is subdivided in Ns subpixels of width δt with
∆t = Nsδt, see Fig. 2. The subpixel amplitudes sl are
then defined as

sl =

Ns−1∑
j=0

Tl,juj , (26)

0 1 2 3 4 5 6

Time (ns)

Figure 2. An example set of pulse amplitudes. The black
bars indicate the chosen drive amplitudes uj , where ∆t =
1 ns. The red bars indicate the subpixels, which provide an
approximate interpolation of the true pulse delivered to the
system (blue), with a bandwidth ω0/2π = 851 MHz.

where the Gaussian filter matrix T has elements

Tl,j =
1

2

{
erf

[
ω0

(
lδt− j∆t

2

)]
− erf

[
ω0

(
lδt− (j + 1)∆t

2

)]}
.

(27)

Following Eq. (22), the n-th order evolution operator over
the l-th subpixel takes the form

Û
(n)
l =

∑
ωn

exp

(
i

n∑
p=1

ωn[p]lδt

)
Ωl(ωn)Ŝ(n)(ωn, δt),

(28)
where the drive function in Eq. (23) picks up an addi-
tional subscript l to denote the l−th subpixel

Ωl(ωn) = s
µ(ωn)
l s

∗(n−µ(ωn))
l . (29)

As can be seen in Fig. 2, the subpixels (red) will often
overestimate or underestimate the filtered pulse (blue)
amplitude depending on its gradient, something which
can become a leading contribution to the error in simu-
lations. In Appendix C, we generalize the amplitudes sl
to have a linear time dependence to compensate for the
change in amplitude of the continuous pulse across a sin-
gle subpixel, providing a more accurate approximation to
the filtered pulse.

III. THE DYSOLVE ALGORITHM

As already explained, the Dyson series operators
Ŝ(n)(ωn, δt) for which we have expressions at arbitrary
order n are functions of the time increment δt and, cru-
cially, are independent of the total evolution time T . The
Dysolve algorithm leverages this fact to parallelize the
time evolution.

5

The algorithm operates in two parts: a preparation
stage and a contraction stage. In the preparation stage,
the Dyson operators Ŝ(n)(ωn, δt) for a Hilbert space size
N are computed up to a chosen truncation order n, and
arranged in a tensor. This tensor has dimensions (R ×
N×N), where R is the total number of Dyson operators.
In the case of a single drive without linear interpolation,
R = 2n+1 − 1, where n is the order of the expansion.

Once the preparation stage is completed, it is in princi-
ple possible to consider arbitrary gate times and drive en-
velopes. Suppose we wish to simulate a time-evolution of
length T = Pδt, where P is an integer. We first generate
a (P×R) tensor whose elements are the envelopes and os-

cillatory terms exp
(
i
∑n
p=1 ωn[p]lδt

)
Ωl(ωn) in Eq. (28).

We then multiply these tensors to obtain a (P ×N ×N)
time-evolution tensor, where the p-th (N×N) matrix cor-

responds to a time-step operator Ûp. This multiplication
constitutes the parallelized portion of the algorithm, with
all P time-evolution operators calculated simultaneously.
As in Eq. (20), we multiply all of the individual evolution
operators in the time evolution tensor to obtain the final
evolution operator Û(0, T). This whole procedure forms
the contraction step of our algorithm.

Below, we will refer to the computation of the evolution
operator Û(0, T) to n-order following the above approach
as Dysolve-n.

A. Benchmarking

Before turning to examples of application of Dysolve,
we first benchmark this algorithm. To do so, there are a
number of factors to consider: i) the size of the Hilbert
space, ii) the drive amplitude, iii) the number of inde-
pendent drive channels, and iv) the shape of the envelope
function. To quantify the performance of our algorithm,
we use two metrics. Given a number of subpixels Ns, we
evaluate: 1) the computation time, and 2) the Frobenius

norm distance between Û(0, T), the propagator calcu-
lated under the Dysolve algorithm with a chosen number

of subpixels, and a reference Ûref(0, T), the same unitary
calculated with very high precision. As discussed further
in Appendix D, we use Dysolve-4 with 104 subpixels to

compute Ûref(0, T), since Dysolve is able to reach preci-
sions on the benchmark setup that are up to three orders
of magnitude greater than QuTiP’s propagator, a com-
parable dynamical solver [9].

For our benchmarks, we use diagonal system Hamil-
tonians with an Hilbert space size N = 25. As a con-
crete example, we take the eigenvalues to be normally
distributed about 7 GHz, the typical operating frequency
of superconducting qubits [10]. We consider between one
and three input drive operators, at the frequency of the
|0〉 ↔ |1〉, |2〉 ↔ |3〉 and |4〉 ↔ |5〉 transitions with |k〉
the k-th lowest lying system eigenstate. The matrix el-
ements of each operator corresponding to these transi-
tions are set to 1. To emulate an arbitrary drive operator

with off-resonant terms, we populate 20% of the remain-
ing matrix elements of the drive operators with complex
numbers normally distributed about 0, after which her-
micity is enforced by the addition of the complex con-
jugate. The envelope function associated to each drive
operator is centered around an amplitude such that the
duration of the simulation is equivalent, in the absence of
the other drives, to a total of 20 Rabi oscillations. In the
context of superconducting qubits with their microwave
drives, this corresponds to the simulation a 500 ns evo-
lution with a drive amplitude of 40 MHz. We take the
pixel amplitudes uj of the envelope functions to be nor-
mally distributed about 40 MHz with a standard devi-
ation of 1 MHz. To reduce statistical fluctuations, the
results presented in Fig. 3 are averaged over 30 simula-
tions, each with different random envelope functions and
system eigenvalues.

The numerical simulations reported in Fig. 3 are per-
formed on a 2.8 GHz, Intel Xeon Gold 6242 Processor
(16 cores/32 threads) using python. Since the prepara-
tion stage only needs to be performed once for a particu-
lar system Hamiltonian, the reported computation time
accounts only for the contraction stage of the Dysolve
algorithm. We report the preparation times in the fig-
ure caption for reference. The top three panels of Fig. 3
present the norm distance between Dysolve-n for n = 2,
3 and 4 as a function of the number of subpixels, and for
increasing number of input drives. Even with large drive
amplitudes and long evolution times, we obtain an ex-
cellent approximation to the final unitary operation with
relatively few subpixels. For example, using a fourth or-
der Dyson expansion with 40 subpixels yields a norm
distance error of less than 10−5 in all cases. Importantly,
as shown in the bottom panels of Fig. 3, the computa-
tion time needed to reach this level of accuracy is only
on the order of a few seconds (less than 3 s). In com-
parison, QuTiP’s propagator function takes about 16
minutes to perform the calculation to an equivalent ac-
curacy for a single input drive. Such a significant speedup
proves to be particularly useful when, as dicussed in sec-
tion Sec. IV, the contraction stage of the algorithm needs
to be repeated many times in an optimization loop. Addi-
tional benchmarking results are provided in Appendix D.

IV. APPLICATION TO OPTIMAL CONTROL

Optimal control is an essential tool in the development
of high-fidelity gates for quantum computation. Most op-
timization algorithms, such as GRAPE [4], rely on calcu-
lating the gradient of the gate fidelity with respect to the
drive amplitude at each pixel. With most approaches,
this requires recalculating the evolution operator at each
time interval, something which can be as expensive as
the original calculation of the unitaries. Moreover, this
calculation is generally performed with the presumption
that the Hamiltonian is time independent over the dura-
tion of a subpixel, thus invoking a form of the RWA. In

6

10−7

10−5

10−3

10−1

10−8

10−6

10−4

10−2

100
N

o
rm

d
is

ta
n
ce

er
ro

r

1 input drive

Dysolve - 2

Dysolve - 3

Dysolve - 4

2 input drives 3 input drives

101 102

Number of sub pixels

10−1

100

101

C
o
m

p
u
ta

ti
o
n

ti
m

e
(s

)

101 102

Number of sub pixels

101 102

Number of sub pixels

Figure 3. Dysolve benchmarks. First row: Frobenius norm distance from the propagator Ûref(0, T) for the Dysolve algorithm
for T = 500 ns. Second row: Contraction time of the Dysolve algorithm as a function of the subpixel number Ns. The slope of
the data is precisely 1, meaning that the computational time scales linearly with the number of subpixels. Preparation stage
computation time: (35 ms, 1.9 s, 6.8 s) for (Dysolve-2, 3, 4) and 1 input drive, (0.35 s, 13 s, 87 s) for 2 input drives and (0.78 s,
47 s, 408 s) for 3 input drives.

our expansion, such an assumption is not required.

Here, we show how Dysolve can be applied to opti-
mizing control pulse envelopes to maximize gate fidelity.
More precisely, we consider optimizing the fidelity of an
evolution Û(T) with respect to a target gate unitary

Ûtarget. In general, Û(T) acts on the full Hilbert space of

the system while Ûtarget is defined on its computational
subspace. The objective is thus to maximize the perfor-
mance function [8]

Φ =
1

d2

∣∣∣Tr
(
Û†targetÛ(T)P̂

)∣∣∣2, (30)

where d is the dimension of the computational subspace
(d = 2 for a single qubit), and P̂ is the projector on
that subspace. Although our approach can in principle
deal with an arbitrary number of drives, for simplicity
here we consider control of a single set of complex drive
amplitudes uj .

We use a GRAPE-like approach to maximize the gate
fidelity which requires the gradient of the cost function
Φ with respect to the drive amplitude at each pixel uj

and subpixel sl [8]

∂Φ

∂uj
=

M−1∑
l=0

Tl,j
∂Φ

∂sl
,

∂Φ

∂sl
=

1

d2
2 Re

{
Tr

[
Û†target

∂Û

∂sl
P

]
Tr
[
ÛtargetÛ

†P
]}
.

(31)
Within the framework of the Dysolve algorithm, it is

simple to evaluate the operator (∂Û/∂sl). Indeed, using
Eq. (20), we find that for the n-th order Dyson expansion,
the derivatives of the unitaries take the form

∂Û

∂sl
=

(
M∏

m=l+1

Ûm

)
∂Ûl
∂sl

(
l−1∏
p=0

Ûp

)
,

∂Ûl
∂sl

=

n∑
m=0

∑
ωm

exp

(
i

m∑
p=1

ωm[p]lδt

)
∂Ωl(ωm)

∂sl
Ŝ(m)(ωm, δt),

∂Ωl(ωm)

∂sl
= µ(ωm)s

(µ(ωm)−1)
l s

∗(n−µ(ωm))
l .

(32)

Importantly, note that the Dyson operators Ŝ(n)(ωn, δt)
remain unchanged by the derivative. As such we only
need to perform the preparation stage of the Dysolve al-

gorithm once, with the calculation of ∂Û/∂sl. Thus, the
optimization iterations only require the contraction stage

7

computation to be performed. Further, these derivatives
are exact. Consequently, the effects of off-resonant and
counter-rotating terms are accounted for in the deriva-
tives. This is the strength of the Dysolve algorithm for
optimization.

Recall from Eq. (21) that the real and imaginary com-
ponents of the drive amplitudes are associated with the
magnitudes of the cosine and sine quadratures, respec-
tively. Thus, to calculate the relevant amplitude deriva-
tives for the cosine and sine drive envelopes, one simply
calculates the appropriate sum or difference of the deriva-
tives in Eq. (31):

∂Φ

∂uj,x
=

1

2

(
∂Φ

∂uj
+
∂Φ

∂u∗j

)
,

∂Φ

∂uj,y
=
−i
2

(
∂Φ

∂uj
− ∂Φ

∂u∗j

)
,

(33)

where uj = uj,x + iuj,y. To perform the GRAPE algo-
rithm, the set of drive amplitudes are simply updated
by taking steps in the direction of the gradient of the
fidelity [4]

uj,(x,y) → uj,(x,y) + ε
∂Φ

∂uj,(x,y)
, (34)

where ε is a small, positive number which need not be
fixed during the optimization process. For example, one
could use a backtracking line search to maximize the gain
in fidelity [11, 12]. In the examples presented below, we
simply use a sufficiently small ε for the updating process
to be stable.

A. Example: Cross-Resonance Gate for Coupled
Transmons

As an example of application of our implementation of
the GRAPE algorithm with Dysolve, we present results
of the optimization of a two-qubit gate. To this end,
we consider the system of two fixed-frequency transmon
qubits, illustrated in Fig. 4. Each qubit is described by
a Hamiltonian of the form [10]

Ĥj = 4ECj n̂
2
j − EJj cos ϕ̂j , (35)

where n̂j and ϕ̂j with j = c, t are the conjugate charge
and phase operators of the transmon, while ECj and EJj
are the charging and Josephson energies. More precisely,
we consider the cross-resonance gate, which performs an
X rotation on a target qubit conditional on the state of
a control qubit which is driven at the target qubit’s fre-
quency [13, 14]. Optimal control has been applied to this
gate before in Refs. [15, 16]. However, these approaches
have made use of simplified models for the device and
of the rotating wave approximation.Taking advantage of
the Dysolve algorithm, our approach generalizes pre-
vious work on the cross-resonance gate by considering

Figure 4. Superconducting circuit for cross-resonance gates
between transmon qubits. The leftmost transmon, of fre-
quency ωc/2π, plays the role of the control qubit and
is strongly driven by the voltage source Vc at the fre-
quency ωt/2π of the target qubit (rightmost transmon). The
target qubit is also driven by Vt using a relatively weak tone
that serves to give additional control. ϕ̂c and ϕ̂t correspond
to the phase degree of freedom associated with the control
and target qubits, respectively.

the full circuit Hamiltonian and including all counter-
rotating terms.

Following the standard circuit-quantization proce-
dure [17], the two-transmon Hamiltonian can be put in

the form Ĥ(t) = Ĥ0 + V̂ (t) with

Ĥ0 = Ĥc + Ĥt + ~gn̂cn̂t,

V̂ (t) = Ωc(t)n̂c + Ωt(t)n̂t,
(36)

where Ĥc, Ĥt are the Hamiltonian of the control and tar-
get qubits, respectively, and ~gn̂cn̂t results from the ca-
pacitive interaction between the qubits. The amplitudes
Ωc(t),Ωt(t) are the time-dependent drives

Ωc(t) = [Ωcx(t) sin(ωtt) + Ωcy(t) cos(ωct)] ,

Ωt(t) = [Ωtx(t) sin(ωtt) + Ωty(t) cos(ωtt)] ,
(37)

with {Ωcx,Ωcy,Ωtx,Ωty} the drive envelope functions to
be optimized by GRAPE. While activating the cross-
resonance gate only requires driving the control qubit at
the frequency of the target, the additional control over
the target qubit Ω̂t(t) is useful to eliminate single qubit
rotations and obtain higher fidelities to the target uni-
tary [18, 19].

We choose to operate this gate with control and tar-
get frequencies of ωc/2π = 5.1 GHz, ωt/2π = 4.9 GHz,
and anharmonicities αc/2π = −355 MHz and αt/2π =
−352 MHz, respectively. Moreover, the qubit-qubit cou-
pling is set to g/2π = 4.29 MHz and the target unitary is
taken to be ZX90 gate [20, 21]. Figure 5 shows the infi-
delity of the cross-resonance gate as a function of the gate
time. We find that for a flat pulse a gate fidelity of 98.5%
in a 300 ns gate time is possible (red symbols), while val-
ues approaching 99% can be reached when correcting for
additional single-qubit rotations (orange symbols). In
contrast, GRAPE reaches significantly higher fidelities,
going beyond 99.99% in a shorter gate time, even when
accounting for all off-resonant and counter rotating terms
(blue symbols).

To further demonstrate that GRAPE under Dysolve
can successfully optimize the cross-resonance gate more

8

50 100 150 200 250 300

Gate time (ns)

10−5

10−4

10−3

10−2

10−1
1
−

Φ GRAPE

Constant pulses

Constant pulses
+ rotations

Figure 5. Infidelity of the CR gate as a function of the chosen
gate time when the gate is operated at the qubit-qubit detun-
ing ∆/2π = (ωc−ωt)/2π = 210 MHz. The red curve indicates
the best obtainable infidelity from a constant amplitude pulse,
with the orange curve reporting the infidelity up to arbitrary
single qubit rotations on both qubits, applied before and after
the cross-resonance gate channel. The blue curve reports the
infidelity when optimized under the GRAPE algorithm until
convergence.

−300 −200 −100 0 100 200 300

Detuning (MHz)

1

2

3

4

1
−

Φ

×10−4

GRAPE

Figure 6. Infidelity of the CR gate as a function of the
detuning of the qubits when optimized under GRAPE for
5000 iterations. The control qubit frequency is fixed to
ωc/2π = 5.10 GHz.

generally, Fig. 6 shows the fidelity of an optimized 300-ns
gate as a function of the qubit-qubit detuning ∆/2π =
(ωc−ωt)/2π. In the numerical simulations, this detuning
is varied by changing the target qubit frequency whilst
keeping the qubit-qubit coupling and the control-qubit
frequency fixed. We note that the performance of the
gate at positive detunings is approximately in line with
those predicted by Schrieffer-Wolff perturbation theory
for an echoed-cross resonance gate performed on a similar
device [22]. The results are excluded at ∆ = 0,±α, as the

qubits strongly hybridized due to resonances. The slight
variations in the GRAPE fidelity in the wide detuning
range are partially attributable to variations in higher-
order two-qubit coupling amplitudes across, alongside the
performance of gradient ascent for different optimization
landscapes. This also constitutes evidence for the robust-
ness of our algorithm, as excellent fidelities are obtained
in a broad range of parameters.

V. FUTURE WORK AND CONCLUSION

We have demonstrated that the Dysolve algorithm
provides a means to quickly and accurately simulate
driven systems whilst accounting for all of the effects
of the counter-rotating and off-resonant terms. Analy-
sis of ultrafast quantum gates and the quantum speed
limit [23], where counter-rotating effects are particularly
important, would also be possible with our algorithm.
Additionally, this method trivializes the calculation of
the gradient, allowing for rapid optimization without the
need for additional approximations, and can be modified
to include dissipative effects. Indeed, a simple extension
of the optimization scheme would allow for optimization
of lossy quantum systems specifically, through an open
GRAPE-like scheme [24], or the simulation of larger lossy
systems through the use of trajectories. We also note that
as the expressions depend explicitly on the drive ampli-
tudes, second derivatives and the Hessian matrix can also
be calculated exactly, opening the door to second order
optimizers such as Newton’s method.

We anticipate that future iterations of the Dysolve al-
gorithm improve the efficiency of both the preparation
and contraction stages of the algorithm. Given the par-
allelized nature of this solver, we also envision a direct
extension to graphics processing units (GPU’s), which
could allow for fast simulation of significantly larger sys-
tems. We leave this for future work.

At the time of publication, the authors were made
aware of a recent paper [25] which uses a different ap-
proach to obtain a result similar to that which we provide
in Sec. II. Our derived weighting functions are equivalent
to divided differences [26] utilised in their method.

ACKNOWLEDGMENTS

We thank Catherine Leroux for discussions and Éric
Giguère for assistance with numerical calculations. This
work was undertaken thanks in part to funding from
NSERC, the Canada First Research Excellence Fund,
and the U.S. Army Research Office Grant No. W911NF-
18-1-0411.

[1] J. C. Tremblay and T. Carrington, The Jour-
nal of Chemical Physics 121, 11535 (2004),

https://doi.org/10.1063/1.1814103.

https://doi.org/10.1063/1.1814103
https://doi.org/10.1063/1.1814103
https://arxiv.org/abs/https://doi.org/10.1063/1.1814103

9

[2] C. Moler and C. Loan, SIAMREV 20, 801 (1978).
[3] F. Bloch and A. Siegert, Phys. Rev. 57, 522 (1940).
[4] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen,

and S. J. Glaser, Journal of Magnetic Resonance 172,
296 (2005).

[5] E. Barnes and S. Das Sarma, Phys. Rev. Lett. 109,
060401 (2012).

[6] Y. Wu and X. Yang, Phys. Rev. Lett. 98, 013601 (2007).
[7] F. Motzoi, J. M. Gambetta, P. Rebentrost, and F. K.

Wilhelm, Phys. Rev. Lett. 103, 110501 (2009).
[8] F. Motzoi, J. M. Gambetta, S. T. Merkel, and F. K.

Wilhelm, Phys. Rev. A 84, 022307 (2011).
[9] J. Johansson, P. Nation, and F. Nori, Computer Physics

Communications 184, 1234 (2013).
[10] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I.

Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Phys. Rev. A 76, 042319 (2007).

[11] L. Armijo, Pacific J. Math. 16, 1 (1966).
[12] P. A. Absil, R. Mahony, and B. Andrews,

SIAM Journal on Optimization 16, 531 (2005),
https://doi.org/10.1137/040605266.

[13] C. Rigetti and M. Devoret, Phys. Rev. B 81, 134507
(2010).

[14] J. M. Chow, A. Córcoles, J. M. Gambetta, C. Rigetti,
B. Johnson, J. A. Smolin, J. Rozen, G. A. Keefe, M. B.
Rothwell, M. B. Ketchen, et al., Physical review letters
107, 080502 (2011).

[15] J. L. Allen, R. Kosut, J. Joo, P. Leek, and E. Ginossar,
Physical Review A 95, 042325 (2017).

[16] S. Kirchhoff, T. Keßler, P. J. Liebermann, E. Assémat,

S. Machnes, F. Motzoi, and F. K. Wilhelm, Physical Re-
view A 97, 042348 (2018).

[17] M. H. Devoret et al., Les Houches, Session LXIII 7
(1995).

[18] S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gam-
betta, Physical Review A 93, 060302 (2016).

[19] A. Patterson, J. Rahamim, T. Tsunoda, P. Spring, S. Je-
bari, K. Ratter, M. Mergenthaler, G. Tancredi, B. Vlas-
takis, M. Esposito, et al., Physical Review Applied 12,
064013 (2019).

[20] J. M. Chow, J. M. Gambetta, A. D. Corcoles, S. T.
Merkel, J. A. Smolin, C. Rigetti, S. Poletto, G. A. Keefe,
M. B. Rothwell, J. R. Rozen, et al., Physical review let-
ters 109, 060501 (2012).

[21] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A.
Smolin, M. Ware, J. Strand, B. L. Plourde, and M. Stef-
fen, Physical Review A 87, 030301 (2013).

[22] M. Malekakhlagh, E. Magesan, and D. C. McKay, Phys.
Rev. A 102, 042605 (2020).

[23] Y. Shao, B. Liu, M. Zhang, H. Yuan, and J. Liu, Physical
Review Research 2, 10.1103/physrevresearch.2.023299
(2020).

[24] M. Abdelhafez, D. I. Schuster, and J. Koch, Phys. Rev.
A 99, 052327 (2019).

[25] A. Kalev and I. Hen, An integral-free representation
of the dyson series using divided differences (2020),
arXiv:2010.09888 [quant-ph].

[26] C. de Boor, Surveys in Approximation Theory 1, 46–69
(2005).

Appendix A: Derivation of n-th order weighting functions

In this Appendix, we derive the n-th order weighting function and the form of the Dyson series operators. We begin
by defining a frequency-dependent set of path operators

R̂[mn,...,m0](vn, δt) = (−i)n
∫ δt

0

dtM · · ·
∫ t2

0

dt1(−i(Ĥ0 − vn[n]))mnX̂ · · · (−i(Ĥ0 − vn[1]))m1X̂(−i(Ĥ0 − ivn[0]))m0 ,

(A1)

where, for now, vn is an arbitrary vector and M =
∑n
i=0mi + n. Since there is no explicit time dependence in

Eq. (A1), we can evaluate its M integrals simultaneously,

R̂[mn,...,m0](vn, δt) =
(−i)n(−i(Ĥ0 − vn[n]))mnX̂ · · · (−i(Ĥ0 − vn[1]))m1X̂(−i(Ĥ0 − vn[0]))m0(δt)M

M !

= (−iδt)n (−iδt(Ĥ0 − vn[n]))mnX̂ · · · (−iδt(Ĥ0 − vn[0]))m0

M !
.

(A2)

Inserting identity operators IN =
∑
k |k〉〈k|, with Ĥ0|k〉 = λk|k〉 and N the size of the system’s Hilbert space, between

groups of Ĥ0 and each X̂ operator leads to

R̂[mn,...,m0](vn, δt) = (−iδt)n
∑
kn

〈k(n)|X̂|k(n−1)〉〈k(n−1)|X̂...|k(1)〉〈k(1)|X̂|k(0)〉|k(n)〉〈k(0)|

× (−i(λn(kn)− vn)[0] δt)m0 · · · (−i(λn(kn)− vn)[n] δt)mn

M !
.

(A3)

https://doi.org/10.1137/1020098
https://doi.org/10.1103/PhysRev.57.522
https://doi.org/https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/https://doi.org/10.1016/j.jmr.2004.11.004
https://doi.org/10.1103/PhysRevLett.109.060401
https://doi.org/10.1103/PhysRevLett.109.060401
https://doi.org/10.1103/PhysRevLett.98.013601
https://doi.org/10.1103/PhysRevLett.103.110501
https://doi.org/10.1103/PhysRevA.84.022307
https://doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.76.042319
https://projecteuclid.org:443/euclid.pjm/1102995080
https://doi.org/10.1137/040605266
https://arxiv.org/abs/https://doi.org/10.1137/040605266
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1103/PhysRevB.81.134507
https://doi.org/10.1103/PhysRevA.102.042605
https://doi.org/10.1103/PhysRevA.102.042605
https://doi.org/10.1103/physrevresearch.2.023299
https://doi.org/10.1103/PhysRevA.99.052327
https://doi.org/10.1103/PhysRevA.99.052327
https://arxiv.org/abs/2010.09888

10

To obtain the Dyson operator, we sum Eq. (A3) over all m ∈ Zn+1
+ . To this end, we define the n-th order weighting

function f(λn) as

f(λn) =
∑

m0,...,mn

(−iλn[0])m0 · · · (−iλn[n])mn(∑n
z=0(mz) + n

)
!

=
∑

m0,...,mn−2

(−iλn[0])m0 · · · (−iλn[n− 2])mn−2

∞∑
P=0

P∑
p=0

(−iλn[n− 1])P−p(−iλn[n])p(∑n−2
n=0(mn) + P − p+ p+ n

)
!

=
∑

m0,...,mn−2,P

(−iλn[0])m0 · · · (−iλn[n− 2])mn−2
(
(−iλn[n− 1])P+1 − (−iλn[n])P+1

)(∑n−2
n=0(mn) + P + 1 + n− 1

)
!(−iλn[n− 1] + iλn[n])

= i

[
f(g(λn))− f(g2(λn) ∪ λn[n])

λn[n− 1]− λn[n]

]
,

(A4)

where f(λ0) = exp(−iλ0[0]). This gives us the form of R̂(n)(vn, 0, δt):

R̂(n)(vn, δt) =

(
−iδt

2

)n∑
kn

〈k(n)|X̂|k(n−1)〉〈k(n−1)|X̂...|k(1)〉〈k(1)|X̂|k(0)〉|k(n)〉〈k(0)| × f((λn(kn)− vn) δt). (A5)

We then note that

eiωt0f(λn) = f(λn − ωt0). (A6)

To prove this, first note that this is trivially true for f(λ0). We then make the inductive step, assuming Eq. (A6) to
be true for n− 1. Then,

eiωt0f(λn) = i

[
eiωt0f(g(λn))− eiωt0f(g2(λn) ∪ λn[n])

λn[n− 1]− λn[n]

]
= i

[
f(g(λn)− ω0t)f(g2(λn) ∪ λn[n]− ω0t)

(λn[n− 1]− ω0t)− (λn[n]− ω0t)

]
= f(λn − ω0t).

(A7)

By linearity, this implies that eiaδtR̂(n)(vn, δt) = R̂(n)(vn + a, δt).

We now consider the effect of a set of oscillatory terms. To this end, we first note that the Dyson path operator in
Eq. (7), as well as the Dyson operators themselves, can be defined recursively

Ŝ
(n)
[mn,...,m0]

(ωn, δt) = (−iĤ0)mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mn
eiωn[n]tM−mn Ŝ

(n−1)
[mn−1,...,m0]

(g(ωn), tM−mn
) , (A8)

Ŝ(n)(ωn, δt) =
1

2

∑
mn∈Z+

(−iĤ0)mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mn
eiωn[n]tM−mn Ŝ(n−1)(g(ωn), tM−mn

) , (A9)

R̂(n)(vn, δt) =
1

2

∑
mn∈Z+

(−iĤ0 − ivn[n])mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mn
R̂(n−1)(g(vn), tM−mn

) , (A10)

We now wish to demonstrate that R̂(n)(c(ωn), δt) = Ŝ(n)(ωn, δt), where c(ωn) is the cumulative vector introduced in

11

Eq. (16). To first order,

Ŝ(1)(ω1, δt) =
1

2

∑
m1∈Z+

(−iĤ0)m1X̂

∫ δt

0

dtM · · ·
∫ tM−m1+1

0

dtM−m1
eiω1[1]tM−m1 Ŝ(0)(0, tM−m1

)

=
1

2

∑
m1∈Z+

(−iĤ0)m1X̂

∫ δt

0

dtM · · ·
∫ tM−m1+1

0

dtM−m1

[∑
i

|i〉〈i|eiω1[1]tM−m1 f(λitM−m1
)

]

=
1

2

∑
m1∈Z+

(−iĤ0)m1X̂

∫ δt

0

dtM · · ·
∫ tM−m1+1

0

dtM−m1

[∑
i

|i〉〈i|f((λi − ω1[1])tM−m1)

]
,

=
1

2

∑
m1∈Z+

(−iĤ0)m1X̂

∫ δt

0

dtM · · ·
∫ tM−m1+1

0

dtM−m1R̂
(0)([ω1[1]], tM−m1),

=
1

2

∑
m1∈Z+

(−i(Ĥ0 − 0))m1X̂

∫ δt

0

dtM · · ·
∫ tM−m1+1

0

dtM−m1R̂
(0)(g([ω1[1], 0]), tM−m1),

= R̂(1)([ω1[1], 0], δt)

= R̂(1)(c(ω1), δt).

(A11)

We again make the inductive step with the assumption that R̂(n−1)(c(ωn), δt) = Ŝ(n−1)(ωn, δt). To proceed, we first
show the following result:

c(g(vn)) =

([
n−1∑
p=1

vn[n− p]

]
,

[
n−2∑
p=1

vn[n− p]

]
, · · · ,vn[n− 1], 0

)
.

=

([
n−1∑
p=0

vn[n− p]

]
,

[
n−2∑
p=0

vn[n− p]

]
, · · · ,vn[n− 1] + vn[n],vn[n]

)
− vn[n]

= g

([
n−1∑
p=0

vn[n− p]

]
,

[
n−2∑
p=0

vn[n− p]

]
, · · · ,vn[n− 1] + vn[n],vn[n], 0

)
− vn[n]

= g(c(vn))− vn[n]

(A12)

Then,

Ŝ(n)(ωn, δt)

=
1

2

∑
mn∈Z+

(−iĤ0)mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mne
iωn[n]tM−mn Ŝ(n−1)(g(ωn), tM−mn)

=
1

2

∑
mn∈Z+

(−iĤ0)mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mne
iωn[n]tM−mn R̂(n−1)(c(g(ωn)), tM−mn)

=
1

2

∑
mn∈Z+

(−iĤ0)mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mn
R̂(n−1)(c(g(ωn)) + ωn[n], tM−mn

)

=
1

2

∑
mn∈Z+

(−iĤ0 − i0)mnX̂

∫ δt

0

dtM · · ·
∫ tM−mn+1

0

dtM−mn
R̂(n−1)(g(c(ωn)), tM−mn

)

= R̂(n)(c(ωn), δt).

(A13)

finishing the induction and giving the final desired form in Eq. (14).

Appendix B: Multiple Drive Inputs

Suppose there are q-independent drive inputs each with own drive frequency and operator. For an n-th order Dyson
expansion, we define an n-dimensional vector β with values ranging from 1 to q, each value referring to one of the

12

drive inputs. To simplify the notation, we drop all subscripts n, which are implied. The new Dyson series operators
corresponding to a particular vector β is

Ŝ
(n)
β (ωβ, δt) =

∑
kn

〈k(n)|X̂β[n]|k(n−1)〉〈k(n−1)|...〈k(1)|X̂β[1]|k(0)〉|k(n)〉〈k(0)|f(λ− δtvβ), (B1)

with ωβ an n−vector where the p-th element of this vector is ±ωβ[p], or more simply, plus or minus the drive frequency

corresponding to the β[p]-th input. Similarly, X̂β[p] refers to the β[p]-th input operator. The definition of vβ remains
unchanged from Eq. (16), albeit with the new drive frequency vector ωβ. The drive function is also modified and now
reads

Ω(ωβ) =

n∏
p=1

Ωµ
β[p]Ω

∗(1−µ)
β[p] , (B2)

where

µ =
1

2

(
1 + sign{ωβ[p]}

)
, (B3)

thus allowing us to define our generic n-th order Dyson series,

Û (n)(t, t+ δt) =
∑
β

∑
ωβ

exp

(
i

n∑
p=1

ωβ[p]t

)
Ω(ωβ)Ŝ

(n)
β (ωβ, δt), (B4)

which reads as a version of Eq. (22) with multiple drive operators and frequencies.

Appendix C: Linear interpolation of subpixels

The accuracy of the Dyson expansion is insensitive to the drive frequency ω – rather, it depends only on the number
of subpixels and the drive amplitudes. However, if each subpixel assumes a constant amplitude, a leading error can
be caused by the change in amplitude of the drive over a single subpixel. In Fig. 7, we illustrate this issue, where the
subpixel amplitudes (black bars) will over or underestimate the true pulse amplitude, depending on the gradient of
the envelope function. To circumvent this issue, we consider a new linear interpolation of the drive envelope over a
single subpixel. We define yl(t) as the new time dependent amplitude for the l-th subpixel:

yl(t) = s′l +
sl+1 − sl

δt
(t− lδt), lδt < t < (l + 1)δt, (C1)

where s′l is calculated from a modified filter function to ensure that the integral of the subpixel matches that of the
continuous pulse. The yl(t) time-dependent subpixels are shown in orange, and well approximate the true pulse even
for relatively few subpixels.

To determine the impact of the linear time term t0 on the time ordered integral, we consider the (n− j)-th iteration
of a Dyson Series operator,

∫ δt

0

dtM · · ·
∫ tM−m(j+1)

0

dtM−mj
tM−mj

exp
(
iωn[j]tM−mj

)
Ŝ(j−1)(g(j−1)(ωn), tM−mj

) ,

=

∫ δt

0

dtM · · ·
∫ tM−m(j+1)

0

dtM−mj
(−i∂ωn,j) exp

(
iωn[j]tM−mj

)
Ŝ(j−1)(g(j−1)(ωn), tM−mj

) ,

= (−i∂ωn,j)

∫ δt

0

dtM · · ·
∫ tM−m(j+1)

0

dtM−mj exp
(
iωn[j]tM−mj

)
Ŝ(j−1)(g(j−1)(ωn), tM−mj) ,

= (−i∂ωn,j) Ŝ
(j)(g(j)(ωn), tM−mj+1) ,

(C2)

where we define ∂ωn,j as the derivative with respect to the j-th component of the vector ωn. For example

∂ωn,j(ωn) = [0, 0, · · · , 1︸︷︷︸
j-th

, · · · , 0]. (C3)

13

0 1 2 3 4

Time (ns)

Figure 7. Linear interpolation of the pulse sequences (yellow) with two subpixels per pixel. The black bars indicate the original
Gaussian filtering, with the blue line the ‘true’ filtered pulse.

This result allows us to modify Eq. (29) to the following result, replacing the drive amplitude function by a drive
amplitude operator,

Ω̂l(ωn) =

n∏
p=1

(sl − is′l∂ωn,p)
µ

(s∗l + is′∗l ∂ωn,p)
1−µ

, where µ =
1

2

(
1 + sign{ω[p]}

)
, (C4)

where the derivatives are to act upon the Dyson series operators. It is important to note that s′l � sl in the majority
of cases – as such, it is possible to consider a partial truncation of the series, where only up to a certain power of
derivative terms s′l are included in the set of Dyson series operators.

To make use of the drive amplitude function, we must determine the derivatives of the weighting function f(λn).
We begin with the base case with λ0 = [λ0],

d

dλ0
f(λ0) =

d

dλ0
e−iλ0

= −ie−iλ0

= lim
ε→0

e−i(λ0+ε) − e−iλ0

ε
= if(λ0 ∪ λ0).

(C5)

Now, we assume that ∂λn,jf(λn) = if(λn[j] ∪ λn). Then,

∂λn,jf(λn) = i∂λn,j
f(g(λn))− f(g2(λn) ∪ λn[n])

λn[n− 1]− λn[n]

=
i

λn[n− 1]− λn[n]

[
∂λn,jf(g(λn))− ∂λn,jf(g2(λn) ∪ λn[n])

]
=

i

λn[n− 1]− λn[n]

[
if(g(λn[j] ∪ λn))− if(g2(λn[j] ∪ λn) ∪ λn[n])

]
= if(λn[j] ∪ λn).

(C6)

Appendix D: Benchmark calculations

In order to calculate the Frobenius norm error used as a metric in our benchmarks, we required an excellent
approximation to the reference propagator operator Ûref(0, T). We first considered an alternative numerical solver,
propagator from the python package QuTiP. We selected highly accurate settings for this computation, namely
absolute and relative tolerances of 10−16, 2 different numerical methods with their maximal order (12 for adams and
5 for bdf), discretizing each pixel into 104 subpixels and allowing for 1017 internal sub-steps. After averaging over
many simulations of T = 500 ns with a single drive, it became apparent that the propagator function was converging

14

100 101 102 103

Number of subpixels

10−7

10−5

10−3

10−1

10−8

10−6

10−4

10−2

100
N

o
rm

d
is

ta
n

ce
er

ro
r

Dysolve− 3

Dysolve− 4

bdf

adams

adams

100 101 102 103

Number of subpixels

10−2

10−1

100

101

102

103

C
o
m

p
u

ta
ti

o
n

ti
m

e
(s

)

bdf

Figure 8. Comparison of the Dysolve algorithm and QuTiP’s propagator over an evolution of 20 Rabi oscillations, with the
same parameters as in Fig 3 of the main text. Left panel: Frobenius norm distance between the Dysolve algorithm with
different subpixel numbers and QuTiP’s propagator with adams (circles) and bdf (x’s) methods. The squares are the norm
distance between Dysolve-n and Dysolve-4 with 104 subpixels. The dashed line indicates the error between propagator with
the adams and bdf methods. Right panel: Computational time of Dysolve and propagator for results of the left panel. The
dashed lines refer to the computational time for propagator with adams and bdf with the highly accurate settings described
in the text.

and unable to return solutions with a Frobenius norm error less than 5 × 10−6, as seen in Fig. 8. The shortcoming
of this numerical method was confirmed by the fact that the norm distance between adams and bdf was found to
be significantly greater than the norm distance between adams and the Dysolve algorithm for a sufficient subpixel
number. This is in addition to a computational time at least 2 order of magnitudes larger with the standard QuTiP
approach as seen in the right panel of Fig. 8.

	Fast and differentiable simulation of driven quantum systems
	Abstract
	I Introduction
	II Oscillatory Drive Problem
	A Simple time-dependent Hamiltonians
	B Evaluation to zeroth and first order
	C Evaluation to n-th order
	D Generalization to more complex drives
	E Envelope Functions and Gaussian Filtering

	III The Dysolve algorithm
	A Benchmarking

	IV Application to Optimal Control
	A Example: Cross-Resonance Gate for Coupled Transmons

	V Future Work and Conclusion
	 Acknowledgments
	References
	 References
	A Derivation of n-th order weighting functions
	B Multiple Drive Inputs
	C Linear interpolation of subpixels
	D Benchmark calculations

