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We report a first-principles study of the driven dissipative dynamics for Kerr oscillators in the meso-
scopic regime. This regime is characterized by large Kerr nonlinearity, realized here using the nonlinear
kinetic inductance of a large array of Josephson junctions. The experimentally measured nonlinear res-
onance lineshapes of the junction array modes show significant deviations from steady-state numerical
predictions, and necessitate time-dependent numerical simulations indicative of strong measurement-
induced dephasing in the system arising from the large cross-Kerr effect between array modes. Analytical
and numerical calculations of switching rate corroborate this by showing the emergence of a slow time
scale, which is much longer than the linear decay rate and is set by fluctuation-induced switching times in
the bistable regime. Furthermore, our analysis shows that the usual quantum-activated escape treatment is
inadequate for prediction of the switching rates at large frequency shifts caused by strong nonlinearities,
necessitating a quantum treatment that utilizes the full system Liouvillian. Based on our analysis, we iden-
tify a universal crossover parameter that delineates the regimes of validity of semiclassical and quantum
descriptions, respectively. Our work shows how dynamical switching effects in strongly nonlinear systems
provide a platform to study quantum-to-classical transitions.
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Nonlinear optics spans a broad class of phenomena
that involve light-induced variation of optical proper-
ties of a system. Interestingly, the nonlinearity in optical
systems often originates from an inherently quantum-
mechanical process, but the description of the result-
ing output can be either classical or quantum, depend-
ing on the system under consideration and intensity
of the light fields. For instance, nonlinear crystals
implementing frequency mixing and stimulated scatter-
ing [1] are described using classical descriptions rooted
in average nonlinear material susceptibilities. On the
other hand, an alternative class of effects and non-
classical states emerge on quantizing the light fields,
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which are dealt with in the framework of quan-
tum optics [2]. In order to distinguish between these
two descriptions, it is important to understand the
transition from quantum to classical dynamics, espe-
cially given the burgeoning presence of nonlinear sys-
tems in applications triggered by quantum-information
processing [3,4].

An example of a nonlinear phenomenon that is of impor-
tance in both quantum and classical optics is the Kerr
effect, which changes the optical properties in proportion
to the intensity of the incident field. Under a coherent drive
and single photon loss, the Hamiltonian of the kth mode
of a physical system subject to the Kerr effect is given by
(� = 1)

Hk = ωk a†
kak − Kk (a†

kak)
2 + εk(t) a†

k + ε∗
k (t) ak, (1)

and the dynamics of the mode, under the assumption of
Markovian decay, is described by the master equation
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ρ̇ = −i[Hk, ρ] + κk

[
akρa†

k − 1
2
(a†

kakρ + ρa†
kak)

]
. (2)

Here, ωk is the bare resonance frequency mode, Kk is
the Kerr coefficient responsible for shifting the mode fre-
quency, εk(t) = εke−iωdt is the amplitude of a coherent
drive with angular frequency ωd and κk is the single-photon
decay rate of the mode. We note that the Hamiltonian
above assumes that all nonlinear modes are independent;
in principle, there can be additional cross-Kerr coupling
between different k modes of the system. This driven
dissipative Kerr resonator is ubiquitous in physical sys-
tems spanning fiber optics [5], superconducting quantum
circuits with Josephson junctions (JJs) [6–12], optome-
chanical systems [13,14], and atomic ensembles [15].

In particular, JJ-based superconducting circuits natu-
rally realize strong Kerr nonlinearities at the single-photon
level, which have been extensively utilized both for fun-
damental quantum-optical studies [16,17] and quantum-
information-inspired applications [18–20]. This breadth of
applications is enabled by the highly flexible nature of the
nonlinearity realized in superconducting circuits, which
can be tuned either in situ through the flux-tunable super-
conducting quantum interference device-based designs
[21] or ex situ through appropriate selection of junction
parameters; the latter is usually accomplished by design-
ing junctions with different ratios of Josephson energy
and charging energy or, alternatively, by using arrays of
junctions [11,22,23].

Figure 1 maps the different nonlinearity regimes read-
ily accessible with JJ circuits. For nonlinearities much
smaller than the mode linewidth (Kk � κk), the dynam-
ics can be entirely captured by that of a driven classical
Duffing oscillator [24]. This is the domain of the Joseph-
son parametric amplifiers (JPA) [25–27] and Josephson
bifurcation amplifiers (JBA) [28,29] that are routinely
employed for quantum-limited measurements [30,31]. Of
particular interest in this regime is the bistable behavior
occurring when a lossy Kerr resonator is strongly driven.
In this bistable regime, the Kerr resonator may switch
between two stable states corresponding, respectively, to
small and large photon populations of the driven res-
onator [32]. For weak nonlinearity, this switching behavior
is well described by a semiclassical quantum activation
theory [24,29,33]. On the other hand, for large nonlinearity
(Kk � κk), the system enters the photon blockade regime
in which the nonlinearity-induced frequency shift limits
the number of photons in the oscillator under a drive of
fixed frequency. The nonlinear oscillator then becomes an
effective two- or “few”-level system; this is the so-called
transmon regime [34]. In contrast to the semiclassical pic-
ture, oscillators in this regime do not exhibit any bistability
or hysteresis and a full quantum description is necessary to
describe their dynamics.

FIG. 1. Different regimes of Kerr resonator as a function of
relative anharmonicity Kk/ωk, which is inversely related to the
number of levels in the potential well, and the quality factor
ωk/κk. The lower left corner corresponds to parametric and bifur-
cation amplifiers while the upper right corner corresponds to the
transmon regime. Each of these regimes is accompanied by a
sketch of the average steady-state population of the oscillator,
|αk|2, in response to a drive amplitude εk detuned from resonance
by �k = ωk − ωd (see Appendix B). The central region is the
intermediate “mesoscopic” regime that is explored theoretically
and experimentally in this work.

A thorough understanding of fluctuation-induced switch-
ing rates in the crossover region is important for under-
standing and optimizing Kerr oscillators, both from
fundamental physics and application points of view.
For instance, nonlinear oscillators exhibit scale-invariant
behavior near bistability; also, the time needed to switch
from one metastable state to the other limits the qubit mea-
surement time in JBAs [28,29]. However, the crossover
of driven dissipative dynamics from (semi)classical to
the quantum regime remains poorly understood. In this
work, we perform a detailed investigation of this interme-
diate mesoscopic regime between semiclassical bistability
and the transmon regimes for driven Kerr oscillators. The
workhorse of our studies is a Kerr oscillator in the strongly
nonlinear mesoscopic regime, based on a superinductance
formed from an array of Josephson junctions [35]. The
eigenmodes of the array form highly nonlinear oscilla-
tor modes, where the nonlinear shift per photon is larger
than the natural oscillator linewidths. Specifically, we use
the time scale, here labeled τ , associated with decay
into the steady state of the Kerr resonator as a bench-
mark to delineate semiclassical and quantum dynamics.
We report the results of an experiment with a nonlinear
resonator realized with a superconducting quantum cir-
cuit. The results are simulated using a stochastic master
equation and we find signatures of oscillator relaxation
time τ much longer than the intrinsic decay time 1/κ ,
which motivates further theoretical investigations. We go
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beyond a linear treatment and present both numerical and
analytical calculations of switching rates in this system,
considering the situation where the oscillation amplitude
is locked in one of the two metastable dynamical states
in the presence of a strong drive. Our theoretical studies
indicate a breakdown of usual semiclassical treatments that
describe oscillator decay primarily as quantum activation
in a metapotential or, alternatively, by thermal activation.
Instead, in the mesoscopic regime, a quantum treatment is
essential to capture the relaxation time scale of the oscil-
lator. We characterize this transition from a semiclassical
to quantum description by introducing a crossover param-
eter, ξ = Tγ /Tκ , as a ratio of a temperature associated
with tunneling-induced escape Tγ and effective tempera-
ture associated with fluctuations seen by the oscillator Tκ .
When ξ > 1, quantum effects introduce a new decay chan-
nel and fluctuation-induced activation is inadequate to
describe the switching dynamics in this regime.

This paper is organized as follows: Sec. I introduces
our experimental implementation of a Kerr resonator in
the mesoscopic regime realized by an array of Josephson
junctions [22]. In Sec. II, we present the theoretical model
describing the ground-state properties and Kerr coupling
between the distributed modes of the array. By doing a
first-principles quantization of the array, we confirm that
the Kerr coefficients for its distributed modes lie in the
regime of interest, Kk/κk ≈ 2 − 5. We then describe how
stochastic master-equation simulations accurately predict
the experimentally observed nonlinear resonance lineshape
for an eigenmode of the array in the presence of an external
drive. In Secs. III and IV, we perform detailed numer-
ical and analytical investigations of fluctuation-induced
switching rates in order to understand the nonlinear effects
observed in the experiment. Section V concludes the paper
with a discussion of the main results and provides an
outlook for future theoretical and experimental studies.
Additional numerical and analytical results are included in
Appendices A and B.

I. EXPERIMENT WITH JOSEPHSON JUNCTION
ARRAYS

Figure 2 depicts the experimental system realizing a
mesoscopic Kerr oscillator, which consists of an array of
80 Josephson junctions capacitively coupled to a transmis-
sion line in a hanger geometry [22]. The sample is mounted
inside a copper box in a dilution fridge at a tempera-
ture of 15 mK. Both coherent driving and measurement of
the resonator are performed through the transmission line.
The transmission signal at output port 2 is amplified by a
HEMT amplifier before being demodulated and recorded.

The resonator has a fundamental frequency of ω0/2π =
4.357 GHz, with an internal quality factor of 37 000 and
external quality factor of 5000. Larger internal quality
factors are observed for other samples [22] but, in all

(a)

(b)

(c)

FIG. 2. (a) Schematic of the experimental set up comprising
an array of Josephson junctions coupled to a transmisson line.
The capacitance Cs is the coupling capacitance between the array
and the tranmission line and Cg , Ce represent the capacitances to
ground at the two ends of the array. (b) Linear lumped-element
circuit model for the array. Each junction is represented as an LC
circuit with capacitance CJ , inductance LJ , and an extra parasitic
capacitance to ground C0. (c) Rotated SEM image of the junction
array.

cases, the quality factor is dominated by the external cou-
pling. The experimental setup is constrained by circulators
and a low-pass filter to measure signals with frequencies
<12 GHz. As a result, only the fundamental mode of
the Kerr resonator can be directly probed. Leveraging the
nonlinearity-induced mode-mode coupling, it is however
possible to probe higher frequency modes. Indeed, a con-
tinuous drive applied to the array at the frequencies of its
higher modes leads to a shift of the fundamental mode fre-
quency. This shift arises due to the cross-Kerr coupling
represented by the interaction term

∑
k �=l −Kkla

†
kaka†

l al,
where Kkl is the cross-Kerr coupling between array modes
k and l while a(†)

k destroys (creates) an excitation in mode k.
This mode-mode interaction leads to a dispersive readout
mechanism for the modes that are above the experimen-
tal frequency cutoff (see Appendix A). This technique was
already used in Ref. [22] to map the full dispersion relation
of the distributed modes of the array. In this way, the first
mode is identified to be at ω1/2π = 11.9 GHz.

To probe the photon number in this first mode as a
function of the drive detuning, a continuous pump tone
is applied close to ω1. Simultaneously, the transmission
spectrum of the fundamental mode is measured by sweep-
ing the frequency of a weak continuous probe tone. The
frequency at which the probe is maximally reflected indi-
cates the resonance of the fundamental mode. Figure 3
shows the experimentally measured frequency shift (dots)
obtained using this method for different pump powers and
as a function of the detuning of the pump drive. The driven
dissipative Kerr resonator always shows a single resonance
peak. Similarly, we note that the measured frequency shifts
show abrupt changes between a low and a high value, with
no values in between the two. The lack of intermediate
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FIG. 3. Frequency shift of the fundamental mode frequency
as a function of pump-drive detuning and for different pump-
drive powers. The dots represent the experimental data while
the lines represent the numerical simulations. The legend indi-
cates the power, P, of the drive applied both in the experiment
and in the simulations, normalized to 0 dB for the weakest
drive display here. For the numerics we use power propor-
tional to the experimentally applied power, parametrized such
that εr ≡ ε1/ε0 dB with ε0 dB/(2π) = 1.83 MHz. The solid lines
are a full stochastic two-mode simulation, while the dashed lines
are the frequency shifts calculated from a one-mode steady-
state assumption using Eqs. (2) and (4). For the simulation we
use K1/(2π) = 5.7 MHz, κ1/(2π) = 2.9 MHz, and κ0/(2π) =
1.0 MHz. For both experiments and simulations, the frequency
shift is obtained by sweeping the probe detuning �0.

values for the frequency shift indicates that no switching
occurs between two bistable states during the time of the
experiment set by the measurement time scale, tm = 1 μs
and averaged 1000 times. We present a detailed theoreti-
cal description of the experimentally observed resonance
lineshapes in the next section.

II. THEORETICAL MODEL

Since only the fundamental mode is directly measur-
able experimentally, the Kerr coefficients are inferred from
a theoretical model of the distributed junction array. To
this end, we write the Lagrangian for the linear part of
the array in terms of the system capacitances and Joseph-
son inductance (LJ ), as shown in Fig. 2(c) [36]. Fol-
lowing a quantization of these modes, we perturbatively
include the nonlinear contributions from the Josephson
junctions (see Appendix A for details) [9,23]. From room-
temperature resistance measurements, we infer an induc-
tance per junction of LJ = 1.9 nH and an effective array
plasma frequency (highest mode frequency) of 18.2 GHz.
The effective array plasma frequency is not equal to the sin-
gle junction plasma frequency ωp = 1/

√
CJ LJ , as would

be the case if the junctions were purely linear elements.
We moreover infer that the system capacitances illustrated
in Fig. 2 to have values C0 = 0.066 fF, CJ = 26.54 fF,
Cg = 10.4 fF, Cs = 3 fF, and Ce = 10.84 fF close to the
design parameters found by simulations [22]. With these
parameters, we estimate the self-Kerr coefficient of the
fundamental mode to be K0/2π = 0.5 MHz, and that for
the first mode to be K1/2π = 5.7 MHz. The latter is almost
a factor of two bigger than the corresponding linewidth
κ1/2π = 2.9 MHz, and hence lies in the intermediate (or
mesoscopic) regime identified in Fig. 1.

Reintroducing the junction nonlinearity in the analysis,
we find that the mode frequencies get shifted by self-Kerr
and cross-Kerr couplings. The kth mode’s frequency, ωk,
is shifted such that the new effective frequency becomes

ωk → ωk −
∑

l

Kkl, (3)

where Kkl is the cross-Kerr contribution between modes k
and l (see Appendix A). Although each Kkl is a factor of
102 − 103 smaller than ωk (on the order of a few MHz),
the cumulative effect of all the modes results in significant
shifts of the eigenfrequencies of the array by up to a GHz
compared to the bare mode frequencies. Moreover, as a
result of the cross-Kerr couplings, when driving the Kerr
resonator, the average photon number, 〈a†

1a1〉, increases
leading to a measurable frequency shift of the fundamental
mode.

As a first, simple, approach to reproducing the data
of Fig. 3, the steady-state photon number, 〈a†

1a1〉s =
Tr(ρsa

†
1a1), is numerically computed using the single-

mode master equation Eq. (2). From this, the frequency
shift of the fundamental mode due to photon population in
the first mode is then estimated to be

�0 = −K01〈a†
1a1〉s, (4)

where K01 = 4
√

K0K1 denotes the cross-Kerr coupling
between the two modes [9]. The result of this calculation
corresponds to the dashed lines in Fig. 3. Evidently, this
steady-state result does not match the experimental data
(dots). Indeed only some features of the experiment are
captured by this single-mode steady-state calculation. For
instance, the detunings are approximately correct. On the
other hand, the shape of the frequency shift as a function
of the detuning is very poorly reproduced. In particular,
the shoulders to the left of the maxima of the shift are not
observed experimentally.

In order to theoretically reproduce the data, we now turn
to an approach that resembles the experimental situation
more closely. First, rather than computing the steady-state
photon population, we compute the full time-dependent
response of the transmitted power along the transmis-
sion line coupled to the array. As in the experiment, this
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response is integrated over a finite measurement time tm
and averaged over 1000 realizations. Any dynamics that
occur on a time scale much slower than tm, such as slow
switching between two bistable states, are therefore nei-
ther resolved in the measurement nor in the simulations.
Second, while the cross-Kerr interaction is used in com-
puting the expected frequency shift in Eq. (4), we now add
this interaction directly to the system Hamiltonian. This
allows for capturing the measurement backaction in the
form of measurement-induced dephasing of the first mode
by the probe tone. The addition of measurement-induced
dephasing increases the effective linewidth of the nonlinear
mode, thereby leading to a reduction in the number of pho-
tons in the mode and, consequently, to a smaller observed
frequency shift.

In order to obtain a description as close to the actual
experiment, we numerically solve the full two-mode
Hamiltonian including both the mesoscopic Kerr mode
(a1) and probe mode (a0) with the stochastic master
equation,

dρZ = −idt [H1 + H0 + Hc, ρZ]

+ dt κ1

[
a1ρZa†

1 − 1
2
(a†

1aρZ + ρZa†
1a1)

]

+ dt κ0

[
a0ρZa†

0 − 1
2
(a†

0a0ρZ + ρZa†
0a0)

]

+ √
κ0

[
dZa0ρZ + dZ∗ρZa†

0

− Tr(dZa0ρZ + dZ∗ρZa†
0) ρZ

]

(5)

valid for heterodyne detection of the fundamental mode a0
[37]. In this expression, Hk is the Hamiltonian given by
Eq. (1), while

Hc = −K01 a†
1a1 a†

0a0 (6)

is the relevant cross-Kerr interaction. In Eq. (5), the density
matrix ρZ is conditioned on the result of a heterodyne mea-
surement where dZ = dWa + idWb, with dWi a stochastic
Wiener processes with 〈dWi〉 = 0 and 〈dW2

i 〉 = dt. (The
subscripts of dWi indicates solely that these are different
independent Wiener processes.) The last term of Eq. (5) is
associated to the homodyne measurement record, which is
used to update our description of the state of the system ρZ .
From the numerical integration of Eq. (5), the transmitted
power can then be calculated as

JT(t) = 1
2

{√
κ0 Tr[ρZ(a0 + a†

0)] + dWa/dt
}2

+ 1
2

{
i
√

κ0 Tr[ρZ(a0 − a†
0)] + dWb/dt

}2
, (7)

which, averaged over time tm, yields the measured signal.
The value �0 corresponding to the maximum transmission

signal, JT, gives the frequency shift plotted in Fig. 3. The
simulations are performed using standard numerical inte-
gration for the deterministic part of the equation and after
each integration step, δt, a random number is drawn from
a Gaussian distribution with variance δt for each stochastic
term dWi such that the stochastic part of dρZ can be readily
calculated.

In Fig. 3, the numerical simulations using the parameters
of the experiment are presented as solid lines, which are in
excellent agreement with the experimental data. The dif-
ference between the steady-state values used in Eq. (4) and
the stochastic master-equation simulations is mainly due
to the facts that the latter (i) includes the full two-mode
interaction and, as a result, the measurement backaction,
and (ii) explicitly takes into account the finite measure-
ment time tm. Therefore, dynamics on time scales much
longer than the characteristic measurement time, which are
not probed by the experiment, are also not observed in
the stochastic master-equation simulation. The most pre-
dominant feature observed from the stochastic simulations,
and not the simpler single-mode steady-state calculations,
is the lack of intermediate values in the abrupt transi-
tion from low photon-number to high photon-number state
when changing the drive detuning, i.e., the “shoulders” in
the steady-state photon number. For strong Kerr nonlinear-
ities the energy levels of a Kerr oscillator are ωk − Kkn and
can be well resolved. The “shoulders” at large detunings
are, thus, signatures of switching events at corresponding
photon-number-selective transitions. These intermediate
values are not resolved in the experiment due to the finite
measurement time and this fact indicates a time scale of
potential switching dynamics much longer than the mea-
surement time tm and comparably or even longer than the
total experimental time of tm times the number of averages.
To fully capture the dynamics of the experiment, a two-
mode model is needed, however, the contributions from
the two-mode interaction do not significantly contribute to
the switching time scale. Rather, the effects of the cross-
Kerr interaction is to account for the measurement-induced
backaction. This backaction affects the detuning and drive
strength for which the increased time scales appear. Thus,
the physics of the long time scales can be understood
from only a single-mode model. In the next two sections,
we confirm this by performing a detailed investigation
of the switching rates for a single-mode Kerr resonator
with parameters in the mesoscopic regime, and explicitly
comparing the predictions from semiclassical and quantum
treatments.

III. NUMERICAL TREATMENT OF THE
SWITCHING RATES

Since both the experiment and stochastic master-
equation simulations show a qualitatively different behav-
ior than the single-mode steady-state master equation,
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a more complete quantum description is necessary to
quantitatively understand the switching dynamics of Kerr
resonator in large-nonlinearity regimes. In particular, as
evident from Fig. 3, the lack of intermediate photon-
number values in the bistable regime indicates that there
is no dynamical switching between the two bistable states
within the time scale of the experiment. In this section,
we perform numerical simulations of the steady-state pho-
ton number and switching rates of the Kerr oscillator
introduced in the previous section. Specifically, in order
to identify the appropriate description for the nonlinear
oscillator in mesoscopic regime, we compare the results
obtained from semiclassical simulations with that from
quantum master-equation simulations.

We begin with a generic description of the steady-
state response of a nonlinear oscillator. It is convenient to
delineate the time-averaged response into three regions, as
sketched in Fig. 4 for an oscillator with K = κ (this cor-
responds to the mesoscopic regime depicted as the blue
region in Fig. 1). The thick full line is a representative
curve obtained using a master-equation simulation, while
the narrow dashed line is obtained from a semiclassical
analysis with the same parameters. In region I, the res-
onator relaxes to a state with a low photon number on a
time scale of Tκ = 1/κ . There may be two stable classical
solutions in this region, as indicated by the dashed line in
Fig. 4, but the fluctuations associated with the low photon-
number state are not sufficient to bring the system to the
high photon-number state. For the lower branch solution
of this region, the semiclassical and the full quantum treat-
ment give identical results for both the relaxation time into
the steady state and for the steady-state photon number.
Indeed, in this regime, only few photons are present and, as
a consequence, the nonlinear effects play only a minor role.
Region III is conceptually comparable to region I, except
that the system relaxes into a high photon-number state.
In region II, the dynamics are such that the photon num-
ber initially latches to a low photon-number state, but after
some time it jumps to, and continues to fluctuate around, a
high photon-number state [38,39]. This switching between
the high and low photon-number states continues and we
refer to the time scale of this dynamics as the switch-
ing time, τ . We henceforth focus on region II, and study
switching times as a function of the ratio K/κ1. In particu-
lar, we are interested in quantifying the difference between
a weakly nonlinearly Kerr resonator, which we expect to
behave classically, and a highly nonlinear Kerr resonator
where quantum fluctuations are expected to play a larger
role.

We first consider a semiclassical description, which we
obtain from the Heisenberg-Langevin equation satisfied by
the first mode,

ȧ1 = −i
[

a1, H1

]
− κ1

2
a1 + √

κ1ain
1 (t), (8)

-

FIG. 4. Representative curves showing numerical calculations
of steady-state photon number as a function of the drive detuning
for K = κ and ε = 6κ (as the red curves in Fig. 5 but with smaller
nonlinearity, i.e., closer to the semiclassical regime). The solid
black line shows the results calculated using the master equation,
while the dotted lines show the results ontained using a semiclas-
sical equation of motion [see Eq. (9) and Appendix B]. In regions
I and III, the resonator relaxes to its steady state on an aver-
age time scale Tκ = κ−1. Region II corresponds to the switching
region where the oscillator dynamics slow down considerably.

where H1 is given by Eq. (1). Here the input field, ain
1 (t),

satisfying the commutation relation [ain
k (t), ain†

k′ (t′)] =
δkk′δ(t − t′), accounts only for the quantum fluctuations
induced by the environment. The driven dissipative Kerr
resonator is most conveniently treated in a frame rotat-
ing at the drive frequency, ωd, such that we make the
replacements ε1(t) → ε1 and ω1 → �1 = ω1 − ωd in the
Hamiltonian.

We first attempt to solve the time evolution using a
semiclassical trajectory approach [40], which replaces the
system field operators with complex numbers, 〈a〉 → α.
This replacements reduces Eq. (8) to an equation of motion
for the phase-space variable α (see also Appendix B for a
deterministic classical treatment). However, when replac-
ing the input field with a stochastic variable to account
for the quantum noise associated with ain

1 (t), this approach
becomes only approximate in the presence of nonlinear
mixing terms in the Hamiltonian, since it does not account
for up- and down-converted quantum noise due to mode
mixing. The resulting semiclassical stochastic equation of
motion can then be written as

α̇ = −i�α + 2i K |α|2α − iε − κ

2
α + √

κ ζ(t), (9)

corresponding to an equation for the coherent state ampli-
tude of the system, and where ζ(t) is the stochastic
Wiener process that models the quantum vacuum noise.
{Here, ζ(t) = [dWa(t)/dt + i dWb(t)/dt]/

√
2 represents a

stochastic Wiener process with 〈dWi〉 = 0 and 〈dW2
i 〉 = dt

that, on average, corresponds to the input field being the
quantum vacuum state.} Here, we suppress the subscript
1 both for brevity and to underscore the generality of this
treatment. A particular realisation of ζ(t) is referred to as a
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semiclassical trajectory. In the bistable regime of the oscil-
lator, a trajectory initially latches to a low photon-number
state, and after some time jumps to a high photon-number
state [38,39]. As the switching continues with a waiting
time between the successive switches approximately Pois-
son distributed, we use an exponential function to fit the
average over many trajectories to extract the time scale to
reach steady state.

To understand the quantum effects that arise in the
switching dynamics of the Kerr resonator, we next perform
numerical master simulations, Eq. (2), of the driven system
with the Hamiltonian, Eq. (1), and analyze the relax-
ation towards the steady state. From these simulations,
we observe an oscillatory behavior of the photon number
that relaxes on a time scale Tκ followed by an exponen-
tial relaxation towards the steady state. The relaxation time
scale, τ , can therefore be readily extracted from the expo-
nent of exponential decay obtained using master-equation
simulations.

In Fig. 5, we compare the results obtained from both
simulations described above, for a strongly nonlinear Kerr
oscillator with K = 2κ (solid lines) and for a weakly non-
linear Kerr oscillator with K = 0.2κ (dashed lines). The
results of the master-equation simulation are shown in
Fig. 5(a), while those of the semiclassical trajectories are
shown in Fig. 5(b). In both cases, the relaxation time is
shown in blue (left axis) and the average photon number
in red (right axis). First, it is clear from both the classi-
cal and quantum numerical treatments that the switching
time (blue lines) can significantly exceed the linear decay
time Tκ = 1/κ near the bistability. Further, for weak non-
linearity K = 0.2κ , both the quantum and the semiclassical
approaches show a sharp rise in τ close to the detuning
where the steady-state maximum photon number reaches
its maximum (compare dashed lines between the main
figure and the inset). This behavior is a generic feature of
weakly nonlinear systems. Semiclassically, it can be under-
stood as being caused by the switching rates between two
stable states becoming equal.

For larger nonlinearity, K = 2κ , the discrepancy
between the full quantum simulations and semiclassical
numerics is much more pronounced (compare solid lines
between the main figure and the inset). Specifically, a
much wider distribution of time scales is predicted by
the quantum treatment in the strong nonlinearity regime,
which the semiclassical approach completely fails to cap-
ture. This observation is not surprising and is reinforced by
the fact that the steady state in this regime shows a neg-
ative Q parameter, Q = [〈(�a†

1a1)
2〉 − 〈a†

1a1〉]/〈a†
1a1〉 ≈

−0.4, which indicates sub-Poissonian statistics. Similarly,
the steady-state Wigner function displays negative values
(not shown), a clear sign of the nonclassical nature of the
state of the system. Numerical simulations with varying
K/κ further confirm that the average behavior observed
in Fig. 5 gradually transitions from a situation where the
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FIG. 5. Comparison of steady-state photon number and the
relaxation time scale τ (in units of 1/κ) as a function of the
drive detuning �/κ , obtained from quantum master-equation
simulations (a) and the semiclassical simulations averaged over
200 semiclassical trajectories (b). The red lines represent steady-
state photon numbers (right axis), while the blue lines are the
time scales obtained from an exponential fit to the time evolution
of the photon number (left axis). The solid lines are simulation
results for K = 2κ , while the dashed lines show the results for
K = 0.2κ . The blue lines indicating the relaxation times τ associ-
ated with the switching dynamics are only plotted in the bistable
regime. In all cases, the resonator is initialized in the vacuum
state and a drive of amplitude ε = 6κ is used.

semiclassical treatment matches well with full quantum
simulation for small K , towards a larger discrepancy when
K is increased (not shown).

The numerical results presented here can now be com-
pared to the results of Fig. 3. There, the steady-state behav-
ior showed intermediate values in the bistable regime,
while the experimental data was only correctly reproduced
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using a two-mode stochastic quantum analysis that take
into account the finite measurement time. This is consis-
tent with the emergence of a very slow time scale, which
can be significantly longer than the linear decay rate κ

of the oscillator; since dynamics on very long time scales
are not probed by the experiment, it invalidates a steady-
state analysis of the data. Moreover, for sufficiently large
nonlinearities (K > κ) as relevant to the experiment with
JJ arrays, this slow time scale cannot be attributed only
to semiclassical switching dynamics. In the next section,
we present analytical studies highlighting the differences
between the semiclassical picture and the full quantum
calculations of the switching rate in the large nonlinear-
ity regime (K/κ ≥ 1), while comparing them against the
numerical results obtained in this section.

IV. ANALYTICAL TREATMENT OF THE
SWITCHING RATES

A. Quantum calculation

In the last section, we saw that the increase in the
switching time in this regime is not captured by a semi-
classical treatment. Therefore, we now consider an analyt-
ical description that takes into account the full nonlinear
quantum dynamics.

To this end, we consider the Liouvillian describing the
time evolution of the driven dissipative single-mode Kerr
oscillator in the mesoscopic regime [Eqs. (1) and (2)]. In
a Hilbert space of dimension N (N being the number of
Fock states included in the calculation), the Liouvillian has
N 2 eigenvalues. The time-evolved density matrix can be
expressed in terms of these eigenvalues as

ρ(t) =
∑

λ

cλeλtρλ, (10)

where ρλ are the eigenstates of the Liouvillian, L[ρλ] =
λ ρλ. In the presence of damping, all the eigenvalues have
negative real parts, with the exception of the steady state
ρs for which λ = 0. This also represents the only physical
state of the system that survives at long times. To pre-
serve the trace at all times, including in steady state, ρs
always appears in this decomposition with a constant pref-
actor of cs = 1. Since the time evolution is trace preserving
this implies that Tr(ρλ �=0) = 0 and that ρλ �=0 are not valid
density matrices with direct physical significance [41].

Here, we are interested in the time-dependent fraction of
population in the steady state and therefore we re-express
the expansion as a linear combination of orthogonal unit-
trace density matrices. To accomplish this, we consider the
eigenvalue, χ �= 0 of the Liouvillian, L[·], defined as the
eigenvalue with the smallest real part [42]. We observe
that 〈ρs, ρχ 〉 �= 0, with 〈A, B〉 = Tr(A†B) respresenting the
matrix inner product. To ensure orthogonality, we use a

Gram-Schmidt construction to define

ρ̃χ = ρχ−〈ρs, ρχ 〉
〈ρs, ρs〉 ρs, (11)

with 〈ρ̃χ , ρs〉 = 0. The normalized density matrix ρ̃ =
ρ̃χ/Tr(ρ̃χ ) has unit trace, but it is not ensured to be positive
definite. Nevertheless, we can express the density matrix
ρ(t) as

ρ(t) = β0(t)ρs + β1(t)ρ̃ + σ(t), (12)

where σ(t) only ensures the positive definiteness of the full
density matrix, while the factors βi denote the decay rates.

In order to mimic the exponential relaxation observed in
the numerical analysis of Sec. III, we surmise that β0(t) =
(1 − β̃0e−λet) with λe represents the “escape rate,” thereby
explicitly assuming Markovian switching dynamics. To
estimate the rate at which the density matrix approaches
the steady state in the long-time limit, we can calculate the
time scale λe by inserting Eq. (12) into the master equation,
Eq. (2), and taking the inner product with ρs to obtain

β̇0(t) = 〈 ρs,L[ρ(t)] 〉. (13)

The quantum-induced switching rate can now be expressed
as λe = β̇0(t)/[1 − β0(t)]. Since σ(t) only plays a role in
preserving positive definiteness, the dominant time scale
is not affected by it and we can omit σ(t) in the analysis
of the time scale without introducing unphysical behav-
ior. Without σ(t), the expression for λe only accounts for
the dynamics induced by the steady state and the small-
est eigenvalue of L[ρ(t)], the two dominant contributions
in the long-time limit. While λe is explicitly time depen-
dent, in the regime of interest it is approximately constant
and we can therefore neglect the time dependence and sim-
ply evaluate for t = 0 where ρ(t = 0) is the initial vacuum
state. This leads to the following expression for λe:

λe = 〈 ρs,L[ρ(t = 0)] 〉
[

1 − 〈ρs, ρ(t = 0)〉
〈ρs, ρs〉

]−1

. (14)

The solid lines in Figs. 6(a) and 6(b) show the results of
the analytical calculation of the switching times λ−1

e for
K/κ = 2 and K/κ = 0.2, respectively. The dashed lines
represent the time scales extracted from the numerical
master-equation simulation also shown in Fig. 5. Though
Eq. (14) predicts a larger value of τ = λ−1

e than that
observed numerically, the analytical calculations qualita-
tively match the numerical results. We can understand the
larger value for τ obtained analytically from the fact that
we neglect σ(t). Indeed, in general σ(t) has contributions
from all eigenvalues of the Liouvillian, which includes
contributions with a larger negative real part than χ . There-
fore, the dynamics associated with σ(t) must be strictly
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FIG. 6. Comparison for switching times between oscillators
with strong Kerr nonlinearity, K = 2κ , (a) and (c), and weak
Kerr nonlinearity K = 0.2κ , (b) and (d). (a),(b) Analytical calcu-
lation of the relaxation time scale shown in solid lines, while the
dashed lines are the time scales extracted from numerical simu-
lations (also shown in Fig. 5). In (c) and (d), the switching time
scales obtained from escape rates in a metapotential are displayed
[Eq. (18)]. The dashed lines are the time scales extracted from the
semiclassical numerical simulations. Inset: the inset in the lower-
left panel displays an example of the metapotential U(x) for the
parameters marked by the blue dot. The ticks on the x axis are
at 0 and x0 with ticks on the y axis showing the corresponding
values of the energy in the metapotential. For all simulations and
calculations, driver power ε = 6κ is used.

faster than τ . In particular, the Liouvillian spectrum may
show a twofold degeneracy in the real part of the eigenval-
ues, which may speed up the dynamics by up to a factor
of 2. The prolonged time scales observed in both experi-
ment and in numerical simulation can, therefore, directly
be qualified using a simple analytical quantum calculation.

B. Semiclassical calculation: quantum activation

The quantum calculation based on the Liouvillian qual-
itatively reproduces the dynamics of the full master
equation. However, for weak nonlinearity, we expect a
semiclassical treatment to be sufficient. Here, we compare
the switching rates predicted by the numerical simulations
with analytical results for a fluctuation-induced escape
from a metapotential [24]. A metapotential is an effec-
tive potential that corresponds to the same equation of
motion as the semiclassical model. In this treatment, the
fluctuations associated with the noise ζ(t) in Eq. (9) are
transformed into an effective temperature and the switch-
ing rate τ can then be evaluated as a thermal escape rate

from a local minimum of the metapotential [33,43]. The
increased time scale in region II in this picture corresponds
to a higher effective barrier in the metapotential.

To estimate the semiclassical escape rate, we begin by
first considering the semiclassical equation, Eq. (9), with
ζ(t) = 0 (see Appendix B), and later reinstate the effect
of the noise. The general approach is to rephrase the com-
plex equation into a real equation for a generalized position
variable, x, that changes slowly in time. To this end, we
solve Eq. (9) with ζ(t) = 0 and denote the low-amplitude
solution as α0 and the unstable solution as αu. Next, we
define a rotation angle ϕ = tan−1[−Im(αu − α0)/Re(αu −
α0)] such that the quantity x0 = eiϕ(αu − α0) is a real num-
ber and the axis on the line from 0 to x0 constitutes our
position variable x. In order to determine the metapo-
tential U(x), we make a substitution α(t) = α0 + e−iϕz(t)
and rewrite the equation of motion, Eq. (9), in the form
ż = F(z), where

F(z) = (−i� − κ/2)(z + eiϕα0) − ieiϕε

− 2iK(z + e−iϕα∗
0)(z + eiϕα0)

2 (15)

represents the effective force on the particle. The complex
variable z can be represented in terms of two real vari-
ables, playing the role of the coordinate and momentum,
z = x + ip . Since the two states α0 and αu are steady states,
it follows that F(0) = F(x0) = 0. Further, since the imag-
inary part accounts for the dynamics of the momentum p ,
we can write the derivative of the metapotential U(x) as

Im[F(x)] = ṗ = −dU(x)
dx

. (16)

Integrating this equation results in a one-dimensional
metapotential,

U(x) = −
∫

Im[F(x)] dx, (17)

with a minimum at 0 and maximum at x0 as illustrated
in the inset of Fig. 6(c). Following Kramer’s escape law
[44,45], the escape rate over the barrier can be written as
[33,43]

λe = γ0 exp
(

−�U
κ

)
, (18)

with �U = U(x0) − U(0) denoting the activation energy.
Note that effective temperature is set by the mode
linewidth, κ , since it enters as the prefactor for ζ(t) in Eq.
(9). The rate γ0 is the attempt frequency and it is extracted
from the quadratic term of the potential, which can be
expressed as (γ 2

0 /2κ)x2. When increasing the drive ampli-
tude, ε, the barrier height is decreased leading to a faster
escape rate [46].
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In Figs. 6(c) and 6(d), we show λe obtained using this
quantum-activation approach (solid lines) and compare it
with the switching rates extracted from the semiclassi-
cal simulations (dashed lines, also shown in the inset of
Fig. 5). We observe that, for small detunings, the simula-
tions match the escape rate calculation of Eq. (18) quite
well. However, a large discrepancy is observed for larger
detunings when the switching time dramatically increases
near the bifurcation point, where the rates between the two
stable states equilibrates as already explained in the con-
text of the numerical simulations. In the escape-rate cal-
culation, we are however only calculating a one-way rate
and, thus, we do not capture the same increase in switch-
ing time. More interestingly, and as should be expected,
we observe that while the escape-rate calculation cap-
tures the behavior of the semiclassical simulations well, it
does not capture the quantum corrections relevant in the
strongly nonlinear regime (K/κ = 2), as observed from
its deviations from predictions of quantum calculation and
master-equation simulations [cf. Figs. 6(a) and 6(c)].

To summarize this section, we consider the time scales
relevant for the relaxation of a Kerr resonator towards the
steady state. Going back to the regions introduced in Fig.
4, we noticed that, most significantly, the time scale for
relaxation towards the steady state becomes very large in
region II. This is consistent with experimental data pre-
sented in Sec. I, where we found a steady-state description
to be inadequate due to the finite time scale set by the
measurement rate (see also the experiments presented in
[32]). We also find that while a semiclassical calculation
adequately predicts the dynamics of a weakly nonlinear
system, it fails to capture the structure of the time scales for
relaxation, τ , seen for large nonlinearities. The time scale
for relaxation can be accurately predicted by a simplified
but fully quantum model. On the other hand, an escape-rate
calculation matches the semiclassical trajectory simula-
tions only partly, and completely fails to describe the
dynamics for large nonlinearities.

C. Crossover parameter

The observed breakdown of the semiclassical theory can
be understood in a phenomenological manner by intro-
ducing a damping-dependent crossover temperature Tγ

[47],

Tγ = �γ0

2πkB

(√
κ2

4γ 2
0

+ 1 − κ

2γ0

)
, (19)

where γ0 is the attempt frequency in the metapotential
introduced in the semiclassical calculation. Using this
definition, we can define a crossover parameter ξ as

ξ ≡ Tγ

Tκ

, (20)

FIG. 7. Crossover parameter ξ as a function of reduced detun-
ing �/κ for a nonlinear oscillator. For �/κ <

√
3/2, γ0 depends

entirely on the detuning of the resonator (dashed curve), while
for �/κ >

√
3/2, γ0 is largely dominated by the photon ampli-

tude in the resonator (solid curve). This change is captured by
the rotation of the real axis of the one-dimensional metapoten-
tial denoted by angle ϕ. The crossover point is consistent with
the region where breakdown of the semiclassical theory was
observed previously.

where Tκ = �κ/kB denotes the effective temperature of
the quantum fluctuations coupled to the oscillator. The
semiclassical to quantum crossover boundary is set by
ξ = 1 [47].

Figure 7 shows ξ as a function of detuning of the oscil-
lator. For ξ < 1 or Tκ > Tγ , the decay dynamics can be
described largely using the semiclassical activation treat-
ment. However, as the detuning of the oscillator increases,
and Tγ > Tκ , quantum tunneling effects can become essen-
tial to describe the nonlinear decay dynamics. We find that
the attempt frequency γ0, and consequently ξ , does not
depend on the strength of the nonlinearity explicitly. This
makes ξ a universal quantity for a dissipative decay of a
metastable state; nonetheless, strong nonlinearity K/κ > 1
is essential for the oscillator to bifurcate at large enough
detunings and enter the quantum regime as shown in Fig. 6.
This intuition is consistent with significant deviations of
both numerical simulations and Liouvillian-based analyt-
ical estimates from quantum activation results at large
nonlinearity. Nonlinear oscillators with large K/κ thus
access a qualitatively different regime from that described
by (thermal or quantum) activation-based models, in which
rate of escape via tunneling is exponentially small [46].

V. DISCUSSION AND OUTLOOK

In conclusion we investigate the switching dynam-
ics of a Kerr resonator in a combined experimental,
numerical, and analytical framework. We use experimen-
tal microwave spectroscopy data of a distributed mode of
a Josephson junction array with K/κ ≈ 2 and observed
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that the relaxation into the quantum steady state is not
resolved in the experiment due to switching times much
longer than the probe time. We also simulate the experi-
ment using a two-mode stochastic master equation and find
that the numerical simulations match very well with the
experimental data, thus confirming our interpretation. A
recent experiment [32] has directly measured the very slow
switching dynamics in a weakly nonlinear Kerr resonator.

To further analyze the slow switching rates observed in
the experiment we perform both semiclassical trajectory
simulations and quantum master-equation simulations. We
find that, for a range of parameters, the time scale to relax
into the steady state is increased significantly beyond the
natural decay time of the resonator, especially for strong
nonlinearity (K/κ � 1) as compared to that for weak non-
linearity (K/κ � 1). We find that a semiclassical trajec-
tory method is able to describe this slowdown only in the
weak nonlinearity regime, while a full quantum master-
equation treatment is essential to calculate the switching
rates for strongly nonlinear oscillators. To analytically esti-
mate the time scales to reach the steady state, we compare
a simplified quantum model and a semiclassical metapo-
tential model. In the semiclassical metapotential treatment,
the fluctuation-induced switching between bistable states
is modeled as an activation over barrier in a metapoten-
tial, with the fluctuation intensity determined by thermal
or quantum noise. We find significant deviations from this
model, especially when switching rates are small; more-
over, these deviations are especially pronounced for large
K/κ and persist even far from bifurcation. In contrast, we
obtain good qualitative agreement between quantum calcu-
lations and full master-equation simulation in this regime.
This is not entirely surprising since thermal or quantum
activation models necessarily assume weak nonlinearity or
weak driving conditions for the oscillator [46]. Our results
indicate that switching dynamics in mesoscopic oscilla-
tors, i.e., when K/κ � 1 may be dominated by some other
mechanism, such as dynamical quantum tunneling.

The conclusions drawn in this work regarding the time
scales associated with switching dynamics in nonlinear
Kerr resonators are highly relevant for the characteriza-
tion of state-of-the-art applications of Josephson devices
especially in the strong nonlinearity regimes where quan-
tum effects are more pronounced. In particular, we describe
how the interplay of switching rates and the repetition
rate of the experiment is essential to explain the experi-
mentally measured nonlinear response of the superinduc-
tance presented in Fig. 3. We expect our results to guide
the design of applications that similarly aim to observe
nonlinear spectroscopic signatures in Kerr resonators. In
addition, our results can directly be used for assessing the
performance of a bifurcation readout scheme for super-
conducting qubits [28,29]. In such a scheme, the required
measurement time has to be a few multiples of the char-
acteristic switching time. Thus, Eqs. (14) and (18) can

be directly used for finding the required measurement
time and, consequently, the expected qubit readout fidelity.
These concerns become increasingly important as devices
based on arrays of Josephson junctions, similar to the
application in this work, continue to play an important
role in experiments and theory proposals including various
readout schemes [7,48,49], quantum controllers [50–52],
and even qubit architectures [21,53,54].

Furthermore, our calculations for the Kerr coefficients
for the higher distributed modes of the Josephson array
presented here (see Appendix A) indicate that these modes
should be in the “mesoscopic” regime (defined as K � κ)
investigated here. This regime is also optimal for direct
observation of dissipative quantum tunneling [55], which
is usually obscured by the activation-dominated switch-
ing observed in the JBA regime [38]. Moreover, since the
switching rate does not follow activation dependence on
noise intensity, this suggests that mesoscopic Kerr oscil-
lators can be useful platforms to test dynamics resulting
from non-Gaussian noise. More generally, our study pro-
vides a framework to explore multiphoton quantum effects
[56], quantum noise properties, and quantum-to-classical
transitions in strongly nonlinear systems.
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APPENDIX A: KERR-RESONATORS WITH
ARRAYS OF JOSEPHSON JUNCTIONS

We consider a Kerr resonator, consisting of a linear 1D
array of N Josephson junctions forming a nonlinear induc-
tance, with first and last junctions capacitively shunted to
ground. We, at first, assume that each of these junctions are
sufficiently linear such that we can neglect the nonlinearity
of each junctions. Each junction is described by its effec-
tive inductance LJ and capacitance CJ . Furthermore, we
include a parasitic capacitance to ground for each junction,
C0. This gives us the (linearized) Lagrangian for the array:

Larray =
N∑

n=1

CJ

2
(φ̇n − φ̇n+1)

2 + C0

2
φ̇2

n

− 1
2LJ

(φn − φn+1)
2. (A1)
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The terms in Lagrangian corresponding to the end capaci-
tances can be written as

Lend = Cs

2
φ̇2

1 + Cg

2
φ̇2

1 + Ce

2
φ̇2

N+1, (A2)

where Cs is the capacitance to the transmission line, which
controls the external quality factor of the array resonances,
Cg is the shunt capacitance on the first junction, and Ce
is the shunt capacitance on the last junction. Including the
terms due to shunt capacitances, the full Lagrangian can
then be written as

L = Larray + Lend

= �̇φT C

2
�̇φ − �φT L

2
�φ, (A3)

where we introduce the symmetric matrices C and L along
with the vector φ = {φ1, φ2, . . . , φN+1}T.

Standing waves across the array now constitute a set of
normal modes for the array. Formally, we find these stand-
ing mode by diagonalizing the matrix �2 = C−1L−1, such
that the Euler-Lagrange equations for these modes decou-
ple. The eigenvalues of the matrix, �2 are the squares of
the normal-mode frequencies of the Kerr resonator. We can
similarly define the effective capacitances and inductances
for these modes as

Ck = �vT
k C�vk, L−1

k = �vT
k L�vk, (A4)

where �vk are the corresponding eigenvectors of �2.
The eigenfrequencies are now, by construction, given
by ωk = 1/

√
LkCk. Keep in mind that the actual modes

are described by the physical phase variable φ(t) =∑
k φk(t)�vk, where φk(t) is a function oscillating with

ωk; thus, the physical amplitude of the phase is in the
φk(t) variables and no physical quantify depends on the
normalization of �v.

1. Quantization of the modes

Having found the normal modes we can apply a canon-
ical quantization scheme to develop a quantum model
for the JJ array [36]. This is done by first rewriting the
Lagrangian into diagonal form

L =
∑

k

Ck

2
φ̇k(t)2 − 1

2Lk
φk(t)2. (A5)

This Lagrangian now yields the conjugate variables

qk = Ckφ̇
2
k , (A6)

such that we can introduce the quantum operators φ̂k and
q̂k satisfying the commutation relation [φ̂k, q̂k] = i�. The

Hamiltonian for the system is then readily obtained as

H =
∑

k

q̂2
k

2Ck
+ φ̂2

k

2Lk
, (A7)

which can be recast into the form

H =
∑

k

ωka†
kak (A8)

by introducing the ladder operators (a†
k , ak) as

φ̂k =
√

�ωkLk

2
(a†

k + ak), (A9a)

q̂k = i

√
�ωkCk

2
(a†

k − ak). (A9b)

The real physical phase variable is now described by the
quantum variables, φ̂ = ∑

k φ̂k �φk and we confirm that for
a given wave function of the system the phase variable is
independent of the normalization of �φk.

2. Reintroduction of the nonlinearity

The potential energy quadratic in phase variables, as
used in Eq. (A1) implicitly assumes small phase excursions
φ � ϕ0 [with ϕ0 = �/(2e)] for which Josephson junc-
tion potential −EJ cos(φ/ϕ0) is approximated as cos x ≈
1 − x2. To study the effect of nonlinear contributions of
the junctions in the array, we include the next term in
the expansion that gives rise to a nonlinear term in the
potential, Unl, seen by the phase φ

Unl = − 1
24LJ ϕ

2
0

N∑
n=0

(φn − φn+1)
4 . (A10)

Introducing the variable

�φk(n) = vk[n] − vk[n + 1], (A11)

where vk[n] denotes the nth entry in the vector �vk, we
can rewrite the potential in terms of the quantum mode
operators as

Unl = −
∑

k1,k2,k3,k4

∏4
j =1 φ̂kj

24LJ ϕ
2
0

N∑
n=1

4∏
j =1

�φkj (n). (A12)

Generally, such a term will lead to Kerr terms as well
as beam-splitter term. The beam-splitter terms are, how-
ever, only important between modes with small frequency
difference, or if the system is strongly pumped by some
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FIG. 8. Calculated self-Kerr shifts per photon Kll for different
modes of the Josephson junction array described in Sec. I.

external field of appropriate frequency that makes these
terms resonant. Since we are primarily interested in the
few photon regime of the lowest modes, which are all
well separated in frequency, we only consider the self-Kerr
and the cross-Kerr terms. These can be expressed with the
Hamiltonian

Hnl = −
∑

kl

Kkla
†
kaka†

l al, (A13)

where the Kerr coefficients are found by inserting Eq. (A9)
into Eq. (A12) and rearranging the terms such that we
obtain Eq. (A13) as

Kkl = 2 − δkl

4LJ ϕ
2
0

�ωkLk

2
�ωlLl

2

N∑
n=1

�φk(n)2�φl(n)2, (A14)

with δkl being the Kronecker delta. Figure 8 shows the
Kerr shifts for the first eight array modes, calculated using
the parameters for the array presented in Sec. I. We note
that the presence of end capacitances loads the array
and decreases the mode frequencies significantly [22]. As
evident from Eq. (A14), the mode frequencies and con-
comitant Kerr shifts per photon can be much larger for an
unloaded Josephson array.

As a last important detail, we should mention that
the nonlinear coupling between the modes also drags the
eigenfrequencies down such that the real mode frequencies
become

ω′
k = ωk −

∑
l

Kkl. (A15)

This extra contribution is very important as this can
shift the frequency of each mode by as much as 2 GHz
for parameters similar to the experiment of Sec. I. The

Hamiltonian for the array is, therefore, expressed as

H =
∑

k

ω′
ka†

kak −
∑

kl

Kkla
†
kaka†

l al. (A16)

APPENDIX B: CLASSICAL SOLUTION FOR
KERR OSCILLATOR

We adopt a simple classical description of the driven dis-
sipative Kerr resonator by replacing the quantum operator
a with the classical complex variable α and ignore vac-
uum fluctuations. This yields the equation of motion (for
convenience we change the phase of the drive)

α̇ = −i�α + 2iK |α|2α − κ

2
α + ε. (B1)

In steady state, this leads to the following expression for
n = |α|2,

ε2 = �2n − 4�Kn2 + 4K2n3 + κ2

4
n, (B2)

which can be used to find the drive power needed for a
given target photon number. We may take the inverse to
obtain n(ε), however, we are not ensured that this function
will be single valued. As a matter of fact, there will always
be a set of parameters, � and K , for a given κ where n(ε)

is multivalued and we can write the highest and lowest n’s
in this bistable regime as

nc,± = − �

3K

[
1 ∓

√
1 − 3

4

(
1 + κ2

4�2

)]
. (B3)

This expression for nc,± can now be inserted into Eq. (B2)
to get the critical drive power to be in the bistable regime.
An alternative approach would be to numerically prop-
agate the dynamical equation, Eq. (B1) until the steady
state is reached. In contrast to the multivalued solution of
Eq. (B2), this would only give a single value, but if the
parameters are chosen to be in bistable regime the steady
state depends on the initial condition. Experimentally this
appears as hysteresis in the system, where, say, a con-
tinuous adiabatic change of � yields different results for
increasing or decreasing �.

It is worth noting that when κ � K , the dissipation
in the resonator dominates the dynamics, destroying all
the quantum coherent effects. In this respect, for a Kerr
resonator with K/κ � 1 a classical description of dynam-
ics should suffice. To investigate this further, we compare
the results of master equation and classical-field equation
simulations, shown in Fig. 9. The first thing that we
observe in Fig. 9 is that for an initial coherent state,
α(0) = √

30, which is very close to the steady state, we
have initially a small amount of oscillations in both the
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FIG. 9. Classically bistable regime with K = κ/20, � = 2.5κ ,
and ε = 4κ . In (a) we see a master-equation simulation for an ini-
tial coherent state of amplitude α(0) = √

30 and with a different
phase, α(0) = −√

30. Furthermore, we have a simulation start-
ing from vacuum and a simulation from vacuum for two different
signs of the detuning. We do the same simulation in (b), but using
the classical equation of Eq. (B1). Panels on the right show the
photon-number distributions obtained for the final state, where
P(n) is the probability to be in the n-Fock state, for two different
initial states: (c) α(0) = −√

30 and (d) α(0) = 0 (vacuum).

quantum [Fig. 9(a)] and classical [Fig. 9(b)] simulations
before both converge to the same steady-state value for the
photon number. Interestingly, the initial phase of the oscil-
lations is very different between the classical and quantum
simulations.

The second observation is that if we change the initial
phase of the coherent state to α(0) = −√

30, the difference
between the quantum and the classical simulation becomes
pronounced. The quantum simulation shows a small drop
in photon number followed by a convergence towards a
steady-state value different from the one with opposite
phase. The classical simulation shows oscillations, since
we are far away from the steady state, but eventually the
photon number converges to the same steady-state value
that we find for the simulation with opposite sign on α(0).
Now one might be tempted to interpret this behavior as
the mean photon number being very different in the classi-
cal case and in the quantum case. Nonetheless, on taking
a closer look at the steady-state photon-number distribu-
tion obtained from the quantum simulation [Figs. 9(c) and
9(d)], we find that this is not the case. We see that the
origin of the intermediate photon number comes from a
dual-peaked photon-number distribution; this can be inter-
preted as the steady state being a mixed state between the
two peaks, each very close to a Poissonian distribution.
The classical simulation is only single valued, so it always
selects only one of the solutions, depending on the size of
the initial coherent state. We observe a similar behavior,

when we start in the vacuum state. Here, there is always
a very few number of photons, so the nonlinearity plays a
smaller role. The quantum and the classical simulations are
very similar, but, due to the quantum fluctuations, there is
a small probability for the oscillator to end up in the high
photon number state even when it starts in vacuum [see
Fig. 9(d)].

Finally, we see that if we change the sign of the detun-
ing, �, the quantum and classical simulation are identical.
This is because the sign change moves us away from the
bistable regime. So in both cases, the dynamics is deter-
ministic and, since we are always at a low photon number,
the nonlinearity again plays a small role.
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